Research Output

Decentralized dynamic understanding of hidden relations in complex networks

  Almost all the natural or human made systems can be understood and controlled using complex networks. This is a difficult problem due to the very large number of elements in such networks, on the order of billions and higher, which makes it impossible to use conventional network analysis methods. Herein, we employ artificial intelligence (specifically swarm computing), to compute centrality metrics in a completely decentralized fashion. More exactly, we show that by overlaying a homogeneous artificial system (inspired by swarm intelligence) over a complex network (which is a heterogeneous system), and playing a game in the fused system, the changes in the homogeneous system will reflect perfectly the complex network properties. Our method, dubbed Game of Thieves (GOT), computes the importance of all network elements (both nodes and edges) in polylogarithmic time with respect to the total number of nodes. Contrary, the state-of-the-art methods need at least a quadratic time. Moreover, the excellent capabilities of our proposed approach, it terms of speed, accuracy, and functionality, open the path for better ways of understanding and controlling complex networks.

  • Type:

    Article

  • Date:

    25 January 2018

  • Publication Status:

    Published

  • Publisher

    Springer Nature

  • DOI:

    10.1038/s41598-018-19356-4

  • Cross Ref:

    19356

  • Library of Congress:

    QA75 Electronic computers. Computer science

  • Dewey Decimal Classification:

    004 Data processing & computer science

  • Funders:

    Historic Funder (pre-Worktribe)

Citation

Mocanu, D. C., Exarchakos, G., & Liotta, A. (2018). Decentralized dynamic understanding of hidden relations in complex networks. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-19356-4

Authors

Keywords

complex networks; artificial intelligence; swarm computing

Monthly Views:

Available Documents

  • pdf

    Decentralized dynamic understanding of hidden relations in complex networks

    4MB

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
    © The Author(s) 2018

  • Downloadable citations

    HTML BIB RTF