
Evaluating the Performance of an Evolutionary Tool for
Exploring Solution Fronts

Neil Urquhart

Edinburgh Napier University
10 Colinton Road
Edinburgh, UK

EH10 5DT

Abstract. EvoFilter is an evolutionary algorithm based tool for searching through
large non-dominated fronts in order to find a subset of solutions that are of inter-
est to the user. EvoFilter is designed to take the output of existing Multi Objective
Evolutionary Algorithms and act as a decision support tool for users. Currently
EvoFilter is available for all to use on-line [1]. This paper evaluates the perfor-
mance of EvoFilter by creating a large number of randomised filter specifications
which are then applied using EvoFilter and a simple filter to a range of non-
dominated fronts created by a portfolio of Multi Objective Genetic Algorithms
(MOGAs). The results show that EvoFilter is capable of finding sets of solutions
that meet the users’ requirements more closely than those found using the simple
filter. EvoFilter increases performance on some objectives by including relevant
solutions event if these solutions slightly lessen performance on other objectives.
The filter discussed in this paper may be accessed at [1].

1 Introduction and Motivation

Real-world optimisation problems are often multi-objective, with objectives that may
conflict and may have differing priorities in the view of the end user. Such objectives
could include minimising financial costs,CO2 produced, distance travelled or resources
(e.g. staff or vehicles) required. In such cases a common approach is to utilise a multi-
objective genetic algorithm (MOGA) which produces a non-dominated front of solu-
tions. Such a front of solutions can have many advantages from a user perspective, the
front might allow the user to examine a range of solutions, exploring what is possible
both in terms of extreme solutions, which optimise one objective to the maximum or
compromise solutions which optimise a number of constraints as best possible. There
exists a final decision to be carried out by the user when selecting the solution from
within the front, there may be no single solution which is ideal in all aspects. This level
of political decision making is difficult to incorporate into the problem formulation and
so must be undertaken by planners, with domain expertise, based on factors such as
political and legislative pressure, public opinion, financial constraints or corporate poli-
cies. For example, if environmental impact conflicts with staff cost, then there exists
a level of political decision making required in order to determine which objectives
should be prioritised.

The non-dominated front may be large, sizes of over 200 items are not uncommon,
in such cases the decision for the user becomes more complex. If the problem has only
two dimensions then the front may be plotted as a curve against two axes which gives
the user a visualisation which can help them choose. But, with greater than two dimen-
sions, visualisation becomes more complex, one option is to use Parallel Coordinates
[2]. which allow visualisation of many dimensions. When using Parallel Coordinates
the plot may become crowded when too many solutions are plotted, thus for larger
fronts it becomes difficult for the user to make a choice.

In this paper we seek to evaluate the EA based filter, known as EvoFilter in order
to assess its usefulness alongside a more traditional filtering technique. This evaluation
is necessary, should we wish to advocate the use of EvoFilter which is available as an
on-line tool [1] for anyone to make use of. As in [3] we use a multi-objective Work-
force Scheduling and Routing Problem (WSRP) to test the filter. The WSRP is a useful
problem to test the filter on as it has multiple objectives, some of which are conflicting,
and when solved using a MOGA produces non-dominated fronts in a range of sizes.

2 Previous Work

A survey of a priori and post priori methods of supporting decision makers faced with
a Pareto front of solutions to choose from is presented in [4], the authors use a multi-
objective evolutionary algorithm to solve a multi-objective control problem, the output
of which is a non-dominated front of potential solutions. Methods of decision support
include self-organising maps and subtractive clustering, fuzzy scoring and data envel-
opment analysis (all post priori approaches) and a guided multi-objective genetic algo-
rithm (a priori). The authors suggest that the post priori approach of subtractive clus-
tering, fuzzy scoring and data envelopment analysis is the most promising approach of
those examined.

The EvoFilter algorithm was previously described in [1], it attempts to filter a non-
dominated front to just those solutions that are of interest to the user. The user can
specify this areas of interest in terms of the range of solutions of interest on a partic-
ular axis and by specifying the minimum difference between solutions, of interest to
the user. The input to the algorithm is an existing non-dominated front, and the output,
a smaller front that meets the users’ specifications, selected by an Evolutionary Algo-
rithm. A similar approach of reducing the size of the non-dominated front after creation
is described in [5], but the approach taken is to partition the front into clusters, using
techniques such as k-means, and then select one solution to represent each cluster in a
reduced size of front. Cluster analysis is also undertaken by the authors of [6].

The authors of [7] take the approach of generating a smaller front, rather than
searching through an existing front, using a method known as the Smart Normal Con-
straint (SNC) method which generates a reduced size Pareto set, by directing the search
to areas of interest.

The concept of using filters to filter out redundant solutions from a Pareto front is
introduced in [8]where a two stage process is used to filter solutions from an existing
Pareto front. The first stage known as the global filter, removes any non-Pareto solu-
tions, the second stage reduces the size of the front by removing any solutions that do

not meet a pre-defined trade-off requirement. The combination of the two filters results
in a small front whose members exhibit the maximum amount of trade-off between ob-
jectives. Earlier work with filters includes [9] where the filter is incorporated within an
evolutionary algorithm.

The Workforce Scheduling and Routing Problem (WSRP) has been extensively in-
vestigated, although similar to vehicle routing problems, the focus of the WSRP is on
individuals rather than vehicles. For a comprehensive introduction to the WSRP and
an overview of the latest developments, the reader is directed towards [10], [11] and
[12]. A number of previous researchers have examined the scheduling and routing of
workforces, including home care scheduling[13], security personnel scheduling [14]
and technician scheduling [15]. A attempt to model the WSRP as a bi/multi-objective
problem can be found in [11], the authors use cost and patient convenience as the twin
objectives. The solution cost is the travel cost and staff overtime costs, patient conve-
nience is defined as to whether the member of staff allocated is preferred, moderately
preferred or not preferred, with penalties allocated as appropriate. The results presented
show a strong relationship between convenience and cost; the more convenient a solu-
tion the higher the cost is likely to be.

3 Methodology

3.1 The Workforce Scheduling and Routing Problem

In order to evaluate EvoFilter we apply it to a multi-objective Workforce Scheduling
and Routing Problem (WSRP) as previously described in [3]. A set of clients each
require a visit, each visit has a specific location (within greater London), a duration and
a time window, within which the visit must commence. Each visit must be allocated
to an employee, who will undertake the visit, each employee is allocated a set of visits
which comprise a days work. An employee may be set to travel by public transport or
by motor car, which will determine the times taken to travel between visits and the CO2

produced.
The output from a portfolio of Multi-Objective Evolutionary Algorithms (MOEAs),

are merged to produce a set of non-dominated solutions. Each of the MOEAs within the
portfolio uses a problem representation based on a grand tour permutation of visits and
travel modes between visits. When constructing a solution each visit is added to the
solution in the permutation order, initially, there will be no employees within the so-
lution so the first visit is added as the initial visit of a new employee, the travel mode
for that employee being determined by this visit. Each subsequent visit i is then con-
sidered, being added to the first employee that can feasibly undertake the visit using the
travel mode from their previous visit. If the visit cannot be added to any of the exist-
ing employees, a new employee is created and the visit is added to that employee. In
this manner a feasible solution is constructed from the problem representation. When a
solution has been built, its internal costs, CO2 emission and impact on traffic may be
calculated.

Within our problem we have the following dimensions (each of which which may
or may not be used as objectives):

1. Total Cost (£)
2. Staff Cost (£)
3. Travel Cost (£)
4. Staff required
5. CO2

6. Car use

Note that items 1-4 are internal costs to the organisation providing the service, items
5 and 6 are external costs.

We utilise a portfolio of algorithms to produce non-dominated fronts, the algorithms
in the portfolio are based upon NSGA-II [16, 17], SEAMO [18] and SPEA2 [19], see
[3] for a full description. It is useful to be able to visualise a Pareto front in order to
determine the range of the objectives covered and the trade-offs available. For a 2-
dimensional problem the front can be plotted by allocating each dimension to the X
and Y coordinates, but for dimensions greater than two, plotting becomes problematic.
When considering problems with a more than 2 dimensions than 2 a parallel coordinate
plot [2] allows fronts to be visualised and the relationships between the solutions objec-
tives to be explored. Within a parallel coordinates plot a vertical axis is created for each
dimension, each solution being represented by a poly-line intersecting each axis at the
point appropriate for that solution.

3.2 The EvoFilter Algorithm

The EvoFiler algorithm is used to select a subset of solutions from a non-dominated
front based on a specification set by the user. EvoFilter has been incorporated with a
web based tool [1] (see figure 2) which allows the user to specify the ranges within each
axis that interest them and to specify a minimum distance on each axis which should
separate solutions. The source code for the algorithm is available on line [20]. Selecting
a range on an axis is analogous to the practice of ”brushing” [2] which allows the user
to specify sections of one or more axes in order to select only those poly-lines that pass
through the specified sections.

EvoFilter is based upon an evolutionary algorithm , the representation being a binary
string, one bit for each member of the Pareto front, a 1 signifies that the solution is
filtered a 0 signifies that the solution is to be left in. We use a population size of 20
, creating one child using uniform crossover and a random bit flip mutation in each
generation , see algorithm 1 and table 1.

The fitness function examines each item within the front and adds penalties as fol-
lows:

1. Any solution not filtered on an axis that is out of range add a penalty of the differ-
ence between the item value and the closest range limit

2. Any solution that is filtered, but lies within a range then add a fixed penalty of 0.01
3. Any pair of solutions on an axis that are closer together than the specified criteria

add a penalty based on the actual difference, less the minimum specified

The first two items penalise solutions which are unfiltered outside of the specified
range on an axis and solutions that are filtered which lie within the specified ranges.

(a)

(b)

Fig. 1. EvoFilter is incorporated within a web tool, which may be used to open a front of solutions
and find sets of solutions of interest to the user. Figure 1(a) shows a large 6 dimensional front
loaded from a .CSV file. We apply a simple range filter to the CO2 and Total cost dimensions in
figure 1(b).

(a)

(b)

Fig. 2. EvoFilter can filter by difference, figure 2(a) shows the effect of placing a requirement of
a minimum of 10% difference on the Total Cost axis. A combination of minimum difference and
range filtering may be seen in figure 2(b).

Algorithm 1: EvoFilter
1 randomise population();
2 while evals<MAX EVALS do
3 parent1 = tournament();
4 parent2 = tournament();
5 if rnd() <RECOMBINATION PRESSURE then
6 child = new Individual(parent1,parent2);
7 else
8 child = parent1.clone();

9 if rnd() <MUTATION PRESSURE then
10 mutate(child);

11 evaluate(child);
12 rip = replacementTournament();
13 if rip.finCost() >child.finCost() then
14 population.remove(rip);
15 population.add(child);

16 return findBest();

Items 1 and 3 allocate penalties which increase depending on the severity of the issue.
The algorithm has been implemented in Java (and is contained within a a Java Servlet)
can undertake 400,000 evaluations in approx. 10s, allowing a fast response to the user,
who may set and adjust the criteria interactively.

Table 1. Parameters used within the Evolutionary Algorithm

Parameter Value
Population size 20
Recombination Pressure 0.5
Mutation Pressure 0.5
Selection tournament size 2
Replacement tournament size 2

3.3 Experimental Methodology

In order to assess the performance of the evolutionary filter we generate random filter
specifications and then compare the front produced by the evolutionary filter, with the
front produced using a simple filter and the original unfiltered front. In total 75,000 ran-
dom filter specifications were generated, random specifications were used to simulate
the web based environment where a user may pick any combination of range filter and
minimum difference filter across the problem dimensions. When generating a random
filter specification we first randomly select a non-dominated front to which the filter
will be applied, 10 fronts generated by a MOGA (described in section 3.1) were used,

the specifications are given in table 2. Three types of random filter specifications were
generated; those with only range filters, those with only minimum difference filters and
those with a mixture of both types.

The algorithm has been implemented in Java (and is contained within a a Java
Servlet) can undertake 400,000 evaluations in approx. 10s, allowing a fast response
to the user, who may set an adjust the criteria interactively.

The range filters were applied randomly to dimensions with a probability of 0.3,
if a dimension is selected then the upper and lower bounds of the range are selected
randomly in the range 0-1 (in 0.1 increments). A minimum difference filter was applied
to a dimension with a probability of 0.2, the minimum difference is selected randomly
from the values 0.01, 0.05, 0.1, 0.15 and 0.2.

The simple filter operates as follows:

– For each axis with a range filter specified, any individual solution not within the
range is filtered out.

– For each axis with a minimum distance filter, each solutionXi is considered in turn,
and compared against every other remaining solution Xj , if the distance between
Xi and Xj is less than the minimum specified then Xj is filtered out.

Problem Instance Optimisation Criterion Front Size
offset-r00 CO2 TotalCost CarUse 867
offset-8 CO2 TotalCost CarUse 495
lon-1 CO2 TotalCost CarUse 338
blon-1 CO2 TotalCost CarUse 225
cluster-4 CO2 TotalCost 132
blon-2 CO2 TotalCost 91
offset-1 CO2 TotalCost 53
blon-1 CO2 TravelCost 21
offset-8 CO2 TravelCost 7

Table 2. The non-dominated fronts used within the experiment.

4 Results

We simulate the actions of a user, by creating 75,000 filter specifications, each of which
represents a possible interaction with EvoFilter via the web interface. Our results are
based on comparing the results produced for each specification

To simulate the range of possible user interactions with the filter 75,000 filter spec-
ifications were generated (see section 3.3). Within these filter specifications there will

be a number which specify a filter which eliminates all of the solutions in a front. Ta-
ble 3 shows the number of instances in which a front was produced after filtering, the
first thing that we note is that fronts are only produced in less than 50% of cases. We
note that from a users’ perspective there is a significant chance that their filter will not
produce any solutions, but fast run time of EvoFilter allows them to adjust and re-filter
rapidly. More significant are the 5% of cases where EvoFilter can find some results,
but simple filter cannot. Such cases suggest that EvoFilter can find some members of
the front which closely match the filter, but fall out width the filter in a minor way, but
which may still be of interest to the user. Ultimately, it is the domain expertise of the
user that will evaluate the usefulness of a particular solution in context.

Fig. 3. The upper plot shows the parallel coordinates plot for a non-dominated front (comprising
91 examples). The boxes on the axis denote a set of filter criterion. In this case we note that that a
simple filter does not return any solutions, as there are no solutions that intersect all of the areas of
interest. The lower plot shows the output from EvoFilter, which has found a small set of solutions
which although not an exact match are close enough to be of interest to the user. Plots produced
by http://www.parallelcoordinates.de/

Filter specifications 75000
simple filter 31558 42.08%
EvoFlter 35443 47.26%

Table 3. The number of filter specifications which resulted in a front with more than 0 members.

It is useful to get some idea of the reduction in front size that occurs during the
filtering process, table 4 gives the average sizes of fronts before and after the application
of a filter. On average EvoFilter results in a front that is only 14% of the size of the
original, which is smaller than that produced by Simple-filter. As might be expected
filters than include elements of both range and difference filtering are the most strict
and result in the largest % reduction in front size, least effective are those filters that
only reduce the minimum difference between members of the front. We can investigate
the front sizes further by examining how, for each filter specification type, the size of
the fronts resulting from each of the filter compares, see table 5. Overall, when all filter
specifications are considered, we note that approximately equal numbers (37 %) are
have a larger front produced by the EvoFilter or the Simple Filter, with 25 % having an
equal size for both filters. If we only consider those filter specifications which have a
mixture of range and minima difference filters we note that in the majority of cases (70
%) the EvoFilter finds a smaller front that the front found by the Simple-filter.

All Both Filters Range Only Diff only
Absolute % Absolute % Absolute % Absolute %

Original front 237.99 297.67 328.84 216.76
Simple filter 54.71 22.99% 19.06 6.40% 39.78 12.10% 60.54 27.93%
Evofilter 34.75 14.60% 30.46 10.23% 49.90 15.18% 32.51 15.00%
Table 4. The size of front produced (for instances where a front is produced by the filter). The
column marked all shows for all instances where a front was found. The results are further broken
down by filter type.

All Both Range Diff
Total >0 31282 2246 4304 24732
evoFilter >simple filter 11851 37.88% 27 1.20% 70 1.63% 11754 47.53%
evoFilter== simple filter 7670 24.52% 661 29.43% 1227 28.51% 5782 23.38%
evoFilter <simple filter 11761 37.60% 1558 69.37% 3007 69.87% 7196 29.10%

Table 5. A comparison of front sizes produced by each type of filter.

The size of front produced by the filters may vary, but it is the content of the front
that determines its usefulness to the end user. Ideally a filter is required that allows
the smallest number of solutions required to give the user reasonable choice within the

bounds of the filter specification. Traditionally, non-dominated fronts have been com-
pared using the Hyper Volume metric, which measures the area contained behind a non-
dominated front. Table 6 shows the average Hypervolumes produced in the experiment.
It is worth noting that both filters (EvoFilter and Simple Filter) reduce the Hypervolume
by 50%, whilst the filters themselves have broadly similar averages. This suggests that
although the fronts are considerably reduced in scope from the original, by filtering the
fronts output by the filter are largely the same in scope, regardless of the filter used.

Orioginal Front Simple filter Evol Filter
All 6.948 3.536 3.567
Both 8.412 2.639 3.182
RangeOnly 8.669 3.036 3.361
DiffOnly 6.516 3.704 3.637

Table 6. Average Hypervolume produced within the experiment.

Although there is difference in size between the fronts produced by the two filtering
techniques, what is more important from a users’ perspective, examining the difference
in the solution space covered by the filtered front. A metric known as range error may
be calculated for each dimension of the front as shown in algorithm 2.

Algorithm 2: CalcRangeError
1 foreach dimension d do
2 if dMaxd > fMaxd then
3 rangeErrd = (dimMaxd - fMaxd)

4 if dMind < fMind then
5 rangeErrd+= (fMind - dimMind)

The range error records any dimensions upon which there are solutions that are
outside of the filter range, the further outside the filter the larger the error. Table 7
records the average range errors found in the experiment. We note that the Simple Filter
always produced a range error of 0 as it filters out any individual which is outside of
the range in any dimension. We note large error values with no filter in place, and very
small values when using the EvoFilter. The range error tells us that EvoFilter sometimes
allows an individual that has some dimensions that are out of range, but this does not
show any advantage in using the EvoFilter. EvoFilter is only of any benefit if the errors
recoded in table 7 are counterbalanced by benefits. One major benefit is a greater range
of solutions within a filtered dimension, allowing greater choice to the user. Table 8
examines the range ∆ of solutions on dimensions that have a range filter. For each filter
specification, we compare the fronts produced on thee basis:

– ∆ EvoFilter >∆ Simple-filter True if the difference between the maximum and
minimum values plotted on the axis for EvoFilter is greater than that for Simple
Filter.

– ∆ EvoFilter within the Filter Specification True if the maximum and minimum
values plotted on the axis after using EvoFilter are within the range specified by the
filter specification.

– ∆ EvoFilter >∆ Simple-filter AND ∆ EvoFilter is within the Filter Specifica-
tion True, if both of the above two conditions are true.

It is the last condition that is of interest to us, that suggests a situation where, on a
given axis the EvoFilter has found a set of solutions that offer a wider choice than the
Simple-filter, but without violating the range set out in the filter specification. Table 8
shows the number of instances (fronts) where the above three conditions hold true and
the number of individual axis as well. We note that when filtering on both minimum
difference and range over 50% of instances have at least one axis where EvoFilter out-
performs the Simple-filter. We note that the advantages shown in Table 8 should be used
to offset the errors shown in table 7.

Original Front Simple filter Evol Filter
All 23.38 0.00 0.03
Both 97.48 0.00 0.08
RangeOnly 119.08 0.00 0.15

Table 7. Average Range Error

Criterion A Criterion B Criterion C
Examples Axis Fronts Axis Fronts Axis Fronts

All 31282 60146 16545 52.89% 13073 5913 18.90% 5967 3392 10.84%
Both Filters 2246 7869 1580 70.35% 4847 2080 92.61% 2513 1304 58.06%
Range Only 4304 13713 1580 36.71% 8221 3834 89.08% 3454 2088 48.51%
Diff Only 24732 38564 11959 48.35% 0 0 0.00% 0 0 0.00%

Table 8. A comparison as to how the range of data points present after filtering compares with the
spread requested by the filter. Criterion A = EvoFilter ∆ >simple ∆, Criterion B = EvoFilter
∆ within range. Criterion C =EvoFilter ∆ within range and >simple

As well as comparing performance on the basis of range filtering, it is also use-
ful to examine performance on the basis of minimum difference filtering. An error
value may be calculated for each axis to be subject to minimum difference filtration.
To calculate the error the distance between each item on the axis is calculated, if
the distance is <than the minimum distance specified the error is deemed to be the
mindist − actualdist such errors are summed across the entire front. The results of
calculating these errors can be seen in table 9. We note that when only filtering on

minimum difference 68% of instances show a lesser error from EvoFilter than from
Simple-filter.

Original SimpleFilter EvoFilter Evo diff err. <Simple diff err. %
All 26.59 3.88 3.64 17054 54.52%
Both Filters 21.52 0.73 1.19 74 3.29%
Range Only 6.00 1.07 1.28 53 1.23%
Diff Only 30.63 4.65 4.27 16927 68.44%

Table 9. Average min difference errors.

5 Conclusions and Future Work

The experiment conducted uses randomly generated filter specifications to simulate
users undertaking filtering using the on-line tool [1], we note that only just under half
of these situations does EvoFilter find a result (table 3). When dealing with real-world
problems there will be a number of cases where solutions simply do not exist - for in-
stance as a general rule within the WSRP problem examined solutions with low CO2

and low financial cost are rare. In such cases it is usually better to let the user know that
no solutions that meet their requirements exist, rather than attempting to find the nearest
matches which are too far removed from the users’ request to be of use. We do note that
EvoFilter can find solutions in 5% cases where the simple filter cannot (see table 3).
The knowledge that there is a 50% chance that a users’ first set of requirements will
not return any solutions, makes the fast runtime of EvoFilter all the more necessary, so
that the user may refine their requirements over a number of iterations.

We note that EvoFilter is at its most useful when filtering by range (also known as
brushing in Parallel Coordinates literature), and that table 8 shows that EvoFilter can
find sets of solutions which, although braking user constraints on range on some axis
can result in other axis having a greater spread of solutions within range. The primary
advantage of EvoFilter is the ability to include solutions which cause a slight breach of
the users’ requirements on one axis, but compensate for that by increasing performance
on another axis.

It is hoped to encourage use of the EvoFilter tool, in conjunction with a number of
real-world problems. The file format used to upload fronts could be modified to include
more information, including phenotype information, this would allow the user to also
specify features within the phenotype that are desirable. and could be included in the
filtering criterion. Currently we only search through non-dominated fronts, but these do
not represent the entire final population of most MOGAs, we could increase the search
space to include other, dominated, solutions, on the basis that they might be a good
match for user criterion.

References

1. Urquhart, N.: Evolutionary decision support for multi-objective problems. http://
socoptimisation.napier.ac.uk:8080/ParetoFilter/main.jsp (2017)

2. Inselberg, A.: Parallel Coordinates. Visual MultidimensionalGeometry and its applications.
Springer (2009)

3. Urquhart, N., Hart, E.: Creating optimised employee travel plans. In: Proceedings of the The
11th edition of the International Conference on Evolutionary and Deterministic Methods for
Design, Optimization and Control with Applications to Industrial and Societal Problems.
(2015)

4. Zio, E., Bazzo, R.: A Comparison of Methods For SelectingPreferred Solutions in Multi-
objective DecisionMaking. Number 6 in Atlantis Computational Intelligence Systems. In:
Computational Intelligence Systems in Industrial Engineering. Atlantis Press (2012)

5. Cheikh, M., Jarboui, B., Loukil, T., Siarry, P.: A method for selecting pareto optimal solutions
inmultiobjective optimization. Journal of Informatics and Mathematical Sciences 2(1) (2010)
51–62

6. Chaudhari, P.M., Dharaskar, R., Thakare, V.M.: Computing the most significant solution
from pareto front obtained in multi-objective evolutionary. (IJACSA) International Journal
of Advanced Computer Science and Applications, 1(4) (October 2010) 63–68

7. Hancock, B.J., Mattson, C.A.: The smart normal constraint method for directly generating a
smart pareto set. Structural and Multidisciplinary Optimization 48(4) (Oct 2013) 763–775

8. Mattson, C.A., Mullur, A.A., Messac, A.: Smart pareto filter: obtaining a minimal represen-
tation of multiobjective design space. Engineering Optimization 36(6) (2004) 721–740

9. Cheng, F.Y., Li, D.: Genetic algorithm development for multiobjective optimization of struc-
tures. AIAA Journal 36(6) (2017/10/31 1998) 1105–1112

10. Castillo-Salazar, J.A., Landa-Silva, D., Qu, R.: Workforce scheduling and routing problems:
literature survey and computational study. Annals of Operations Research 239(1) (2016)
39–67

11. Braekers, K., Hartl, R.F., Parragh, S.N., Tricoire, F.: A bi-objective home care scheduling
problem: Analyzing the trade-off between costs and client inconvenience. European Journal
of Operational Research 248(2) (2016) 428 – 443

12. Hiermann, G., Prandtstetter, M., Rendl, A., Puchinger, J., Raidl, G.R.: Metaheuristics for
solving a multimodal home-healthcare scheduling problem. Central European Journal of
Operations Research 23(1) (2015) 89–113

13. Rasmussen, M., Justesen, T., Dohn, A., Larsen, J.: The Home Care Crew Scheduling Prob-
lem:: Preference-Based Visit Clustering and Temporal Dependencies. DTU Management
(2010)

14. Misir, M., S.P.V.K., Berghe, G.V.: Security personnel routing and rostering: a hyper- heuristic
approach. Proceedings of the 3rd International Conference on Applied Operational Research,
ICAOR11 (2011)

15. Gunther M, N.V.: Application of particle swarm optimization to the british telecom work-
force scheduling problem. Proceedings of the 9th International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway (2012)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algo-
rithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6 (2000) 182–197

17. Seshadri, A.: Nsga-ii: A multi-objective optimization algorithm. Matlab Central File Ex-
change (2006)

18. Valenzuela, C.: A simple evolutionary algorithm for multi-objective optimization (seamo).
In: Proceedings of the Conference on Evolutionary Computation, 2002. (CEC ’02). 2002
Congress on. Volume 1. (May 2002) 717–722

19. E. Zitzler, M.L., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm
for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation, and
Control, CIMNE (2002) 95–100

20. Urquhart, N.: Evofilter source code. https://github.com/NeilUrquhart/
EvoFilter (January 2018)

