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Abstract

The end effect plays an important role in determining where the rotation

measuring gauges should be located in a torsion test. A thorough review on

the impact of end effect in a torsion test has been conducted, followed by

an experimental validation. A close-ranged photogrammetric method using

binocular stereo vision technique was employed in this study. The results

have indicated that the end effect has a great impact on a region of 1.5

times the cross-sectional depth of the beam from the supports. Therefore,

the distance between the gauges and the supports as specified in BS EN

408:2010+A1:2012 for the torsion test setup is not sufficient for the beams

with slender cross-sections. This research has also indicated that it is more

appropriate to use the depth of the beam as the referencing dimension to

specify this required minimum distance.
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1. Introduction

The end effect plays an important role in the torsion test when determin-

ing the gauge distance, i.e. the distance that the gauges should be located

away from the supports. Insufficient distance will bring an unnecessary error

into the measurement, while an excessive distance will create difficulties and5

inconveniences for the test setup. Hence, it is fundamentally important to

investigate the end effect in this type of mechanical test. According to Saint-

Venant’s Principle, when testing structural-sized samples the gauge sections

should be located at a certain distance away from the supports or loads,

where, the stress and strain in the beam are uniform and the end effect is10

negligible (Boresi and Schmidt, 2003; Horgan and Simmonds, 1994; Horgan

and Carlsson, 2000). In the case of isotropic materials, studies by Horgan and

Carlsson (2000), Horgan (1982) and Choi and Horgan (1977) have shown that

Saint-Venant’s end effect can be neglected at a distance approximately equal

to the cross-sectional depth of the beam. However, in terms of orthotropic or15

transversely isotropic materials, where the longitudinal modulus of elasticity

(EL) is far greater than its tangential (ET ), radial modulus of elasticity(ER)

and shear modulus (GLT ), the latter authors proposed that the stresses (τ)

decay exponentially from the location of the support or load as follows,

τ ∼ Ce−kX (1)20

where, k ≈ 2×π
h

(GLT/EL)1/2 is the decay rate; X is the location from the

support or load; C is a constant; and, h is the cross-sectional depth. Horgan
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and Carlsson (2000), Horgan (1982) and Choi and Horgan (1977) proposed

that the characteristic decay length (λ∗) can be determined by:

λ∗ = ln(100)/k ≈ ln(100)
h

2× π (
EL
GLT

)1/2 (2)25

According to BS EN 338:2016: Structural Timber Strength Classes (BSI,

2016), for most of the structural timber classes for softwood, the mean lon-

gitudinal modulus of elasticity (EL) ranges from 0.7 to 16 GPa, while, the

mean shear modulus ranges from 0.44 to 1.00 GPa. Using equation 2, it can

be estimated that the decay length of the end effect is between 1.8-3 times30

the cross-sectional depth (h) of the specimen.

The discrepancy identified indicates that the recommendation detailed in

BS EN 408:2010+A1:2012: Timber structures - Structural Timber and Glued

Laminated Timber - Determination of some Physical and Mechanical Prop-

erties (BSI, 2010), Clause 11.1.2 for the torsion test has limited consideration35

of Saint-Venant’s end effect on the rotation measurements of a beam, espe-

cially for beams with a high cross-sectional aspect ratio (h/b, where h depth

and; b thickness of the beam). According to this standard, the rotations

should be measured at a distance of two to three times the cross-sectional

thickness (b) from the supports or loads. This specification is provisionally40

accepted for beams with low cross-sectional aspect ratios, such as a square

section. However, the most commonly used timber beams in construction

have slender cross-sections with aspect ratios of 3 to 5. For these types of

sections, the specified setup is clearly too close to the supporting or loading

points which introduces unnecessary error in the rotation measurement.45

Gupta et al. (2002b) conducted a finite element analysis of stress dis-

tribution on a timber beam subjected to a torque at one end. Their study
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indicated that a distance of two times the cross-sectional depth, plus the grip

distance needs to be excluded from both ends of the beam in order to obtain

a uniform shear stress distribution. Compared to the distance recommended50

by BS EN 408 (BSI, 2010) there is a significant difference for beams with

slender cross-sections. The torsion test is widely recognised as a suitable test

method for evaluating the shear properties of the timber beams as it creates a

perfectly pure shear status in the specimen (Soltis and Rammer, 1994; Gupta

et al., 2002a; Davalos et al., 2002; Gupta and Siller, 2005; Khokhar et al.,55

2008), therefore, it is important to investigate how the end effect propagates

from the ends of the beam. To provide proper guidelines for the industry in

measuring the shear properties using the torsion test method, there is a need

to better understand the Saint-Venant’s end effect in torsion test. The aim of

this study is to experimentally evaluate the propagation of this effect along60

the beam using a tailor-made and close-range photogrammetric technique.

To achieve this aim, two objectives were targeted as follows:

1. To evaluate the end effect in a torsion test method when determining

the shear modulus of a timber beam and to improve the current practice

adopted by the industry;65

2. To develop a state-of-art photogrammetric technique for determining

the shear modulus using torsion test method and to circumvent the

limitation of the test setup recommended by the current code of prac-

tice.

Compared to the proposed photogrammetric technique, the conventional in-70

clinometers or modified inclinometers as indicated in BS EN 408 (BSI, 2010)

possess several limitations. For instance, they are limited to record only the
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rotation of a specific plane at a predetermined location. Hence, it is difficult

to use these types of devices/designs to measure the distribution of the rota-

tion on a specimen during the test. Therefore, a more advanced and accurate75

close-range photogrammetry technology based on stereo vision was employed

to capture this rotation. Using the triangulation algorithm, the displacement

of any point in the cameras’ field-of-view can be measured with two or more

sets of photos taken before and after the loading. A well-known method for

acquiring the 3-D coordinates of an object is Binocular Stereo Vision. This80

is a passive triangulation technique where two images taken from two differ-

ent viewpoints are analysed to extract a depth map of the scene (Peng and

Guo-Qiang, 2010; Wohler, 2013). This system is similar to simplified human

visual perception. Unlike the early version of this system where some setups

are very strict, such as the cameras having to be mounted exactly parallel to85

each other, the most up-to-date system offers more flexibility and is capable

of handling the camera/lens imperfections more easily.

2. Materials and Methods

2.1. Materials

With a view to that the cross-sectional aspect ratio is an important pa-90

rameter in determining the impact of the end effect, 12 timber beams with

the aspect ratios ranging from 1 to 4.89 were selected and tested. All beams

are rectangular, structural-sized and kiln dried with a testing length of at

least 19 times the largest cross-sectional dimension. Based on BS EN 408

(BSI, 2010), the samples were conditioned at the standard environment of95

20◦C±2◦C and 65%±5% relative humidity for about four weeks before test-
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Table 1: Material informationa

Nominal Dimensions

b h L QTY A.R. M.C. Specie[
mm

] [
mm

] [
m
] [

%
]

95 95 1.9 2 1 12.8 RP

45 95 1.9 2 2.11 10.4 RP

75 225 4.3 2 3 11.2 WW

45 170 3.4 2 3.78 10.4 WW

45 195 3.9 2 4.33 12 RP

45 220 4.3 2 4.89 12.5 WW

a A.R.=Aspect Ratio (h/b); M.C.=Moisture Content;

RP=Redwood (Pine); WW= WhiteWood (Spruce);

ing. The moisture content of the samples was measured in accordance with

BS EN 13183-1:2002, Moisture content of a piece of sawn timber. Determi-

nation by oven dry method (BSI, 2002), the results and beams specifications

are presented in Table 1.100

2.2. Methods

In the example of the torsion test setup, illustrated in BS EN 408 (BSI,

2010), the gauges and rotation measuring system are not well designed. The
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circular gauge may not rotate the same angle as the specimen due to the

possible warping in the cross-section (Figure 1). In addition, the LVDTs105

used in the system will not be able to handle a slightly larger rotations.

Therefore, there is a need to develop a more suitable method to overcome

the above limitations.

Figure 1: Circular wooden gauge and possible warping effect
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2.2.1. Stereo Vision System

Humans and most animal’s visual perception are through a highly so-110

phisticated 3D vision system. The binocular stereo vision system is able to

compute disparity, distance and 3D coordinates of any object by simulating

the human eyes. In this system, two cameras simultaneously capture the

images of an object from different positions and angles (Li et al., 2016). The

basic principle behind the employed binocular stereo vision is illustrated in115

Figure 2.

In the Figure 2, assume oxyz is the cameras coordinate systems (CCS), XOY

is left and right image coordinate system and f is the effective focal length,

which is the distance between camera coordinate system (lenses) and image

coordinate system (image sensor within the camera). Parameters that are120

related to left and right images are subscripted by l and r, respectively. For

convenience, the world coordinate system (WCS) is made of the left camera

coordinate system (oxyz = olxlylzl).

The spatial positional relationship between the world coordinate system

and right camera coordinate system can be obtained as:125


xr

yr

zr

 = M


x

y

z

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



x

y

z

1

 (3)

Where M = [R|T ], [R] expresses the rotation matrix and [T ] is translation

transform vector between world coordinate system (oxyz) and right camera
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Figure 2: Principle of employed stereo vision
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coordinate system (orxryrzr);

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , T =


tx

ty

tz

 (4)130

According to the pinhole imaging theory (Wohler, 2013), the following ex-

pressions can be made,

sl


Xl

Yl

1

 =


fl 0 0

0 fl 0

0 0 1



x

y

z

 , sr


Xr

Yr

1

 =


fr 0 0

0 fr 0

0 0 1



xr

yr

zr

 (5)

For the spatial point in the WCS, the corresponding coordinates in the left

and right image can be obtained as;135

ρ


Xr

Yr

1

 =


frr11 frr12 frr13 frtx

frr21 frr22 frr23 frty

r31 r32 r33 tz



x

y

z

1

 (6)

and finally, the 3D coordinate of the object can be obtained as;

x = zXl

fl

y = z Yl
fl

z = fl(frtx−Xrtz)
Xr(r31Xl+r32Yl+r33fl)−fl(r11Xl+r12Yl+r13fl)

= fl(frty−Yrtz)
Yr(r31Xl+r32Yl+r33fl)−fl(r21Xl+r22Yl+r23fl)

(7)

In the equation (7), if each camera’s focal length (fl and fr) and coor-

dinates of the spatial point in both left and right images are known, the140
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3D coordinates of the point in WCS can be obtained. Rotation matrix and

translation transform vector can be determined by calibration.

The employed stereo vision setup is illustrated in Figure 3. When the

stereo vision system is employed to determine 3D coordinates, camera cali-

bration is usually required to determine the relationship between the camera145

lens and the image planes and also the relationship between the cameras and

the calibration plate (Wohler, 2013). The overall performance of this system

strongly depends on the accuracy of the calibration process. In this experi-

ment, 100mm×100mm high precision ceramic calibration plate was used in

the calibration process to provide a satisfactory accuracy.150

The first step of the image processing in this experiment is to select

the regions of interest based on the grey scale of the target area (Figure

5). Within the selected region, the target dots are located using a pattern

recognition filter (roundness and size). The matrix of the centres of the target

dots provides the contour of the surface deformation of the timber beam, from155

which rotation at the various location can be extracted and analysed (Figure

6).

2.2.2. Torsion Test

The torsion test procedure followed BS EN 408 (BSI, 2010). Beams were

clamped at the supports spanning at least 19 (≈ 20) times the largest cross-160

sectional dimension (h). Each specimen were mounted securely edgewise

with vice-like grip at the supports and the centres of specimen ends were in

line with the centre of rotation to allow it to rotate about its longitudinal

axis (Figure 7). A gap of approximately 5mm between the grip and end of

the specimen was provided to allow for possible warping and prevent any165
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Figure 3: Binocular stereo vision setup
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Figure 4: The image before processing

Figure 5: Image segmentation using global threshold
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Figure 6: The target dots’ matrix

build up contact stresses.

Generally speaking, over-exposed images present fewer details and as the

consequence, this will reduce the accuracy of the measurement. Therefore,

a dark background was used in these tests. The matrix of white target dots

with 10mm horizontal and vertical spacing was mapped onto this background170

(Figure 4). This design was printed on the glossy adhesive-backed paper and

fixed to the desired areas on the surface of each beam. The glued paper was

then cut with a sharp knife along each grid lines that lie between dots so

that each dot can move individually. The cameras selected for this project

were four Canon EOS 550Ds, which are an 18.0 megapixel digital single-lens175

reflex camera, and equipped with 50mm Canon EF f/1.8 II fixed focal lenses.

The testing procedure was conducted using a 1 kN-m Tinius Olsen torsional
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Figure 7: Torsion Test Setup

testing machine. Torque was applied to each specimen at one end with a

rate of 4◦ per min. The test setup is shown in Figure 9. Coordinates of

each target point are computed in the image processing software (MvTec180

HALCON). This set of data profiles the surface deformation of the timber

beam. By tracing the coordinates of each vertical lines, the rotation of each

section can be computed using linear regression algorithm with the MATLAB

programme developed by the authors. Each specimen was pre-loaded to 4◦

rotation as an initial (reference) position and all the subsequent coordinates185

and forces were referenced to this position. The torque was increased at

a speed of 4◦ per min. Loading curve is shown in Figure 8. The cameras

have been taking the images at constant intervals to allow us to record the

torque and the rotation relationship at every vertical target lines (sections).
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Figure 9: Torsion test setup with stereo vision system

From this relationship, the torque stiffness of each vertical section can be190

calculated. The corresponding shear modulus of each vertical section can

then be determined using the Equation 8 based on Saint-Venant’s torsion

theory;

Gtor =
ktor
ηhb3

l1 (8)

Where ktor = T/φi is the torque stiffness, T is applied torque, φi is relative195

rotation between each symmetrical pair of vertical sections (i), Gtor is the

shear modulus and l1, η, h and b are: free testing length, shape factor, cross-

sectional height and thickness of the beam, respectively.

The calculated shear modulus at each vertical section is plotted against the

distance of this section from the end. Results are presented in Figures 10 to200

15.
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3. Results and Discussion

The target areas are arranged symmetrically at both ends (Figure 9), and

the relative rotation between each symmetrical pair of vertical lines/sections

is obtained through the proposed approach. The corresponding shear mod-

ulus can be derived from the obtained relative rotations. Based on Saint-

Venant’s principle, the end effect will have an impact on the shear modulus

measurements at the gauge sections which are not sufficiently far enough

away from the ends. The variation of the shear modulus measurements at

these gauge sections will reveal the impact of the end effect. These variations

against the distance from the end of the beam are presented in Figures 10

to 15 for all tested specimen. The Figures illustrate the decay of the end

effect from the ends towards the centre. For convenience, the abscissas on

the top and bottom are plotted in terms of depth and thickness coefficients.

Each Figure is divided into two segments; segment one has a high variation

in the shear modulus measurement due to the significant impact of the end

effect, whereas segment two possesses low variation, implying considerably

low impact.

It is interesting to note that the specimen with a very low aspect ratio (i.e.

AR=1) has relatively higher variation in both segment one and two compare

to those in other specimens (Figures 10 to 15). The author’s opinion is that

this discrepancy is due to the fact that the torsional effect of the transverse

bending loads travels longer distances in specimens with low aspect ratios.

According to the torsional test setup detailed in BS EN 408 (BSI, 2010),

the distance of the gauges from the ends of the beam is two to three times

cross-sectional thickness (2b ≤ l1 ≤ 3b). The results revealed that this dis-
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Figure 10: AR=1 ; CoV=32.54% ; Red Pine

tance is clearly not far enough to avoid the impact of the end effect in the

shear modulus measurement. This experimental study agrees with the con-

clusions drawn from previous research; Gupta et al. (2002b) recommended

l1 ≥ (2h + grip distance) and Horgan and Simmonds (1994) recommended

l1 ≥ (1.8h − 3h), through numerical and analytical study respectively.

Arguably, there are more research support the depth of the specimen as a

reference dimension in specifying the decay length of the end effect, rather

than its thickness. It is beneficial for us to compile a comparison using

our test results to verify this assumption. Since the impact of end effect is
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considerably lower in segment two than that in segment one, the length of

segment one can be considered as the decay length of the end effect. The

length of segment one for each specimen with the different aspect ratios have

been collected and converted into the corresponding coefficients of depth and

thickness using equations 9 and 10. The results are presented in Figure 16.

Although the decay length of the end effect can be estimated using either

curve in Figure 16 when an aspect ratio is given, the coefficient of depth

is a better parameter when determining the upper bound of the coefficient.

Hence, it would be more appropriate to use the depth as the referencing

dimension in BS EN 408 (BSI, 2010) rather than the thickness.

Depth coefficient(z) =
Length of segment one

h
(9)

Thickness coefficient(x) =
Length of segment one

b
(10)

4. Conclusions and Recommendations

The following conclusions can be drawn:

1. This research has concluded that the distance between the gauge sec-205

tions and the supports as specified in the BS EN 408 for the torsion

test setup, is not sufficient. This distance is not far enough to avoid

the impact of the end effect, which will bring in unnecessary errors in

the measurement for the cross sections with high aspect ratio.

2. Contradicted to BS EN 408, our research has indicated that it is more210

appropriate to use the depth as the referencing dimension to specify

the required minimum distance.
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3. Look into the test results of this experimental research, a minimum dis-

tance of 1.5h can be observed. This agrees with the previous numerical

and analytical studies.215

4. The gauges and rotation measuring system illustrated in BS EN 408

are not well designed. The circular gauge may not rotate the same

angle as the specimen due to the possible warping in the cross-section.

In addition, the LVDTs used in the system will not be able to handle

a slightly larger rotations.220

5. The proposed non-destructive and non-contact photogrammetry tech-

nique has proven to be an efficient yet a precise way of measuring the

surface rotation in multiple locations simultaneously.
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