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Abstract 27 

Foodborne illness resulting from the consumption of contaminated fresh produce is a common 28 

phenomenon and has severe effects on human health together with severe economic and social 29 

impacts. The implications of foodborne diseases associated with fresh produce have urged 30 

research into the numerous ways and mechanisms through which pathogens may gain access to 31 

produce, thereby compromising microbiological safety. This review provides a background on 32 

the various sources and pathways through which pathogenic bacteria contaminate fresh 33 

produce; the survival and proliferation of pathogens on fresh produce while growing and 34 

potential methods to reduce microbial contamination before harvest. Some of the established 35 

bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ 36 

wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation 37 

of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria 38 

have been introduced into the growing environment, they can colonize and persist on fresh 39 

produce using a variety of mechanisms. Overall, microbiological hazards are significant; 40 

therefore, ways to reduce sources of contamination and a deeper understanding of pathogen 41 

survival and growth on fresh produce in the field are required to reduce risk to human health 42 

and the associated economic consequences.  43 

 44 
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1. Introduction 52 

Foodborne diseases are rife in many regions of the world, with at least 1 in 10 people 53 

falling ill yearly from consumption of contaminated food and 420, 000 deaths occurring as a 54 

result, according to the World Health Organisation (WHO) (2015). Foodborne diseases have 55 

exerted pressure on medical services, contributed to economic and political distress, 56 

exacerbated malnutrition and led to human suffering. There are several agents such as 57 

chemicals, pathogens, and parasites, which may adulterate food at different points in the food 58 

production and preparation process (Allos et al., 2004). Many of these agents have been 59 

extensively characterized and investigated by numerous studies (Farber & Peterkin, 1991; Zhao 60 

et al., 2001; Le Loir et al., 2003; Ehling‐Schulz et al., 2004; Adzitey et al., 2013; Botana, 2014). 61 

Strategies and protocols to prevent occurrence (and outbreak) of foodborne diseases have been 62 

devised and implemented by many researchers, regulatory bodies, and governments. However, 63 

despite the considerable progress achieved scientifically, foodborne diseases continue to occur, 64 

representing a significant cause of morbidity and mortality globally (Mead et al., 1999; Murray 65 

et al., 2013). Although foodborne diseases are more common in developing countries 66 

particularly in Africa and South East Asia with specific groups of people such as children, the 67 

immunocompromised, pregnant and aged being particularly at risk, foodborne diseases are not 68 

limited to these regions or groups of people (WHO, 2007). For instance, according to the 69 

Centres for Disease Control and Prevention (CDC), between 2001 and 2009, there were 38.4 70 

million episodes of domestically acquired foodborne gastroenteritis caused by unspecified 71 

agents in the United States alone (CDC, 2009). Approximately 17.8 million acute gastroenteritis 72 

occurred, and there were at least 473,832 hospitalizations in the US each year and 215 779 73 

hospitalizations caused by the 24 known gastroenteritis pathogens. An estimated 5 072 persons 74 

died of acute gastroenteritis each year, of which 1 498 deaths were caused by the 24 known 75 
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foodborne pathogens (Scallan et al., 2011). Health Canada (2011) estimates that 11-13 million 76 

cases of foodborne illnesses occur in Canada every year. 77 

Although the conventional notion is that foodborne diseases typically originate from meat 78 

and poultry products, vegetables and fruits have been implicated in various foodborne outbreaks 79 

(Westrell et al., 2009; Lynch et al., 2009; [European Food Safety Authority (EFSA), 2013]. A 80 

significant increase in foodborne disease outbreaks or cases associated with consumption of 81 

fresh produce has been reported. This increase has been largely due to a general increase in 82 

produce consumption, globalization of the produce industry and more effective surveillance 83 

(Tauxe et al., 1997; Lederberg et al., 2003; Havelaar et al., 2010). Increased consumption of 84 

fresh produce is likely due to global government efforts to promote healthy eating, the 85 

associated health-promoting benefits of consuming fresh produce and ease of access to fresh 86 

local produce (Pollack 2001; Regmi, 2001; Berger et al., 2010; Painter, 2013). Since fresh 87 

produce is mostly eaten raw or after minimal processing, pathogen contamination constitutes a 88 

potential health risk (Callejón et al., 2015; Li et al., 2017). There are numerous factors capable 89 

of compromising the microbiological integrity of produce along the farm to fork continuum, all 90 

of which have potentially fatal outcomes. However, pre-harvest hazards to produce have been 91 

recognized as important because usually, once pathogen contamination is established in the 92 

field, it can be challenging to decontaminate produce. There are numerous circumstances that 93 

can undermine the safety of produce on farms. Many of these arise because agriculture has 94 

grown more intensive over the years, and produce fields are often located near animal 95 

production zones thus entwining the ecological connections between wild animals, livestock 96 

and produce (Strawn et al., 2013 a, b). This, in many cases, predisposes fruits and vegetables 97 

to pre-harvest hazards. Some important pre-harvest hazard sources to produce include the use 98 

of contaminated soil, irrigation water and manure for produce cultivation. Wild animals and 99 

insects have also been implicated as vehicles of pathogens to produce. 100 
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To ensure produce safety on a sustainable scale, it is imperative to correctly understand 101 

the routes of entry, fate, transport, establishment, and survival of pathogens in the agricultural 102 

environment such as soil, irrigation water and manure. The knowledge gap in this regard is 103 

being filled rapidly, as many studies have attempted to explain the behavior of foodborne 104 

pathogens in agricultural media and describe the associations among pathogens, produce and 105 

the agrarian environment. In this review, the extent of the produce contamination problem is 106 

discussed as well as the sources and routes of contamination of soil, irrigation water, fruits, and 107 

vegetables. Also, the various mechanisms and strategies through which bacterial pathogens 108 

become established on fruits and vegetables are briefly examined.  109 

 110 

2. Overview of outbreaks associated with fresh produce 111 

The nutritional and health benefits of consuming fruits and vegetables have been 112 

recognized and widely publicized. This has elicited changes in human dietary habits, with many 113 

consumers incorporating more fruits and vegetables into their meals. Consequently, the global 114 

production of fruits and vegetables has surged exponentially in recent decades. The increased 115 

demand for produce has led to modifications such as increased use of soil amendments, 116 

utilization of alternative water sources and increased imports and exports in agriculture- 117 

spanning across agronomic practices, processing, preservation, packaging, distribution, and 118 

marketing (Beuchat, 2002). Some of these modifications, however, have great potential to 119 

compromise the safety of fruits and vegetables. The biological hazards that are most relevant 120 

to fresh produce safety are either zoonotic or human in origin and can be classified into spore-121 

forming bacteria, non-spore forming bacteria, viruses, parasites and prions (James, 2006). Most 122 

studies/surveillance efforts have identified bacterial contaminants in produce-borne illness 123 

outbreaks. There is, therefore, a disproportionately higher abundance of information regarding 124 

bacterial contamination in the literature. This may be because bacterial species have in fact 125 
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caused many more outbreaks, but other microbial groups- viruses and parasites have been 126 

understudied. The most commonly implicated etiologic agents are presented in Table 1. 127 

Although data and information available on outbreaks associated with fresh produce are diverse 128 

and patchy, the available research evidence indicates that the foodborne illness burden due to 129 

contaminated produce has increased, in recent decades. In the United States, between 1996 and 130 

2010, approximately 23% of total foodborne illness outbreaks were produce related (Jung et 131 

al., 2014). In Europe, from 2007 to 2011, produce was linked with 10% of the outbreaks, 35% 132 

of the hospitalizations and 46% of the deaths (EFSA, 2017). In Australia, fresh produce was 133 

linked to 4% of all foodborne disease outbreaks informed from 2001 to 2005 (Lynch et al., 134 

2009). Specific produce items are more commonly linked to foodborne illness incidents; for 135 

example, leafy greens such as lettuce and spinach, as well as fresh herbs such as parsley and 136 

basil are conventional sources of bacterial infections (WHO, 2008; Berger et al., 2010; Denis 137 

et al., 2016). Berries, green onions, melons, sprouted seeds, and tomatoes are similarly high-138 

level priority produce items (Olaimat & Holley, 2012; Denis et al., 2016). In the US, between 139 

2006 and 2014, 16 of 68 multistate foodborne outbreaks were associated with vegetables (CDC, 140 

2014). A list of recent produce-related outbreaks is presented in Table 2.  141 

Most industrialized nations especially the United States have extensive and exhaustive 142 

datasets indicating the magnitude of outbreaks, the extent of severity and casualties incurred, 143 

the implicated pathogen and produce item as well as documented preventive protocols to avoid 144 

future outbreaks. Unfortunately, however, the same is not true of many other countries 145 

especially African Countries, the majority of which are still grappling with other challenges and 146 

hence, lack the resources to efficiently track and trace foodborne illness incidents (WHO, 2000).  147 

Many conventional foodborne detection methods are time consuming and laborious, and 148 

advanced techniques have therefore been developed and optimized as alternatives to or for use 149 

in combination with these traditional techniques. Many of these are rapid, sensitive, reliable 150 
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and standardized. They can be categorized into nucleic acid based, biosensor-based and 151 

immunological based methods (Croci et al., 2008; Adzitey et al., 2013; Law et al., 2014). 152 

Typical examples include simple polymerase chain reaction (PCR), multiplex PCR, real-time 153 

PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal 154 

amplification (LAMP) and oligonucleotide DNA microarray. Other examples are optical, 155 

electrochemical and mass-based biosensors, and enzyme-linked immunosorbent assay (ELISA) 156 

and lateral flow immunoassay (Law et al., 2014; Gilchrist et al., 2015). These advances in 157 

epidemiological investigation approaches and techniques have made it possible to explore the 158 

crucial associations between produce and pathogens. In spite of this, however, prompt 159 

identification of implicated produce vehicles, location or point of contamination in fresh 160 

produce associated outbreaks is still a significant challenge. One prime constraint is the 161 

relatively short shelf life of fresh produce, which is often discarded by the time an outbreak is 162 

identified (Strausbaugh and Herwaldt, 2000; Lynch et al., 2009). Therefore, most of the time, 163 

the real source of contamination is not ascertained causing investigators to speculate or assume 164 

a source. This is, however, dangerous because, in addition to the possibility of being wrong, 165 

there is empirical evidence that once a particular transmission pathway is identified, repeated 166 

investigations are bound to be biased in causation (Lynch et al., 2009). Another important 167 

consideration is that usually, outbreaks receive widespread attention if the event (i) has severe 168 

public health impacts (ii) is unusual or sudden (in that the etiological agent and/produce type 169 

are unanticipated; making the circumstances of the outbreak unique and (iii) poses a significant 170 

risk of international spread with consequences for international travel or trade. Invariably, the 171 

smaller, ‘less significant' outbreaks are never investigated. More importantly, foodborne illness 172 

incidents occur sporadically in populations, and these cannot be captured in routine 173 

epidemiological surveillance or outbreak investigations (Scallan et al., 2011). This means that 174 
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the data available may not be a valid representation of the problem. It is likely that the foodborne 175 

illness burden related to consumption of contaminated produce is still largely underestimated.  176 

3. Sources and Routes of Produce Contamination  177 

The possible routes and sources of produce contamination are numerous, and intensive 178 

efforts have been made to accurately understand the exact mechanisms through which 179 

pathogens are introduced into fresh produce (Kotzekidou, 2016). Sources and routes of produce 180 

contamination vary for different production zones. This is because each farm has a distinct 181 

combination of environmental risk factors such as topography, land-use interactions, and 182 

climate. Combinations of these peculiar environmental risk factors influence the frequency and 183 

transmission of foodborne pathogens and subsequently impact the risk of produce 184 

contamination (Strawn et al., 2013 b). Primarily, pathogens may contaminate produce ‘on-field’ 185 

via various routes including; atmospheric deposition, uptake from contaminated soils and 186 

groundwater (Harris et al. 2003; Lynch et al., 2009; Mei Soon et al., 2012), use of raw (or poorly 187 

treated) manure and compost, exposure to contaminated water (irrigation or flooding), transfer 188 

by insects, or by fecal contamination generated by livestock or wild animals (Cooley et al., 189 

2007; Uyttendaele et al., 2015). A schematic representation of the main entry points for 190 

pathogens to humans via produce is provided in Figure 1.  191 

 192 

3.1. Introduction of pathogens into soil via manure/compost application  193 

The use of organic materials such as livestock excreta, slurries, abattoir wastes, sewage 194 

sludge as well as municipal and industrial waste treatment residuals as soil amendments is 195 

widespread (Avery et al., 2005; Goss et al., 2013). Although these serve as a cost-effective 196 

source of nutrients for agricultural purposes, research demonstrates that raw manure as well as 197 

contaminated (or improperly treated) manure constitute a significant risk of pathogenic 198 

contamination for produce (James, 2006; Manyi-Loh et al., 2016). Public health relevant 199 
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bacteria, viruses and parasites such as E. coli O157:H7, Salmonella spp., L. monocytogenes, 200 

Campylobacter spp., porcine enteroviruses, bovine coronavirus, bovine virus diarrhoea 201 

Cryptosporidium parvum and Giardia have been isolated from raw/poorly treated manure 202 

(Derbyshire, 1973; Derbyshire & Brown, 1978; Sellers, 1981; Strauch 1991; Pell, 1997; Grewal 203 

et al., 2006). Pathogens may be spread through direct interaction of vegetable surfaces with 204 

manure, or by splashing of (contaminated) soil/manure particles from the soil on vegetables via 205 

rainfall and/overhead irrigation or by vectors. Additionally, manure piles stored next to growing 206 

areas may constitute contamination risk due to run-off (James, 2006; Warriner et al., 2009). 207 

Manure application could be by broadcasting as a solid, semi-solid or liquid throughout 208 

the field or by the introduction of livestock or wildlife feces at distinct locations (Jung et al., 209 

2014). In many parts of the world, organic cultivation systems use more manure than 210 

conventional growers, and chemical treatment against pathogens is prohibited in organic 211 

farming. There have thus been some assertions that organic produce represents a more 212 

significant safety risk than its non-organic counterpart, although, there is no unequivocal 213 

research evidence supporting this claim (Johannessen et al., 2005; Loncarevic et al., 2005; 214 

Warriner et al., 2009; Ivey, 2011; Maffei et al., 2016).  215 

The survival of pathogens in manure and biosolids depends on factors such as the manure 216 

source, production process, and characteristics, treatment technique applied, physicochemical 217 

factors like pH and relative humidity, incidence of antagonists or predators, weather conditions, 218 

desiccation, aeration, soil type, degree of manure incorporation, amongst others (Ingham et al., 219 

2004; Wood, 2013) (Table 3). The manure composition, which is determined in large part, by 220 

the feed formulation, dictates the profile of pathogens occurring in manure as well as their 221 

ability to persist even post-treatment (Franz et al., 2005). Certain workers have proposed that 222 

cattle diet may influence the incidence of representative bacterial species; E. coli O157:H7 and 223 

Salmonella in manure. These pathogens have been reported to persist longer in manure obtained 224 
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from cattle fed diets rich in energy but low in fiber content such as high digestible grass silage 225 

and maize silage compared to animals that received diets with low energy and higher fiber 226 

content such as straw (Franz & van Bruggen, 2008). It has also been suggested that feeding 227 

cattle with hay may significantly reduce shedding of acid-resistant E. coli (Diez-Gonzalez et 228 

al., 1998; Franz & van Bruggen, 2008). How effective these strategies are in reducing pathogen 229 

load in (animal-derived) manure, is however not clear.    230 

Manure treatment techniques such as composting, aerobic and anaerobic digestion, 231 

pelleting, alkaline stabilization, conditioning, dewatering and heat drying have been used to 232 

treat manure before application as fertilizer for a long time. While many of them are reasonably 233 

efficient, concerns have been raised about their ability to satisfactorily eliminate pathogenic 234 

bacteria (Day & Funk, 2002; Lu et al., 2012; Lorin et al., 2016). Tailing of pathogen inactivation 235 

curves, as well as apparent regrowth or recontamination of bacteria after treatment, have been 236 

reported. Many pathogens have been shown to be capable of withstanding manure treatment 237 

processes, thereby, constituting a major risk of contamination (Brackett, 1999). Composting is 238 

a popular manure treatment and composting temperatures that exceed 55ºC for three days are 239 

considered sufficient to kill most pathogens (Grewal et al., 2006). However, few studies have 240 

demonstrated that the heat-induced death of bacteria in composted materials is a complex 241 

phenomenon (Ingham et al., 2004; Gupta, 2012). Bacterial regrowth and recontamination in 242 

cooled compost have been reported (Hassen et al., 2001; Ingham et al., 2004). Pelletizing is 243 

another common treatment available and is commonly applied to chicken manure (chicken 244 

manure pellets). Pelletizing the manure reduces the off-odor and facilitates transport and 245 

storage. Although the process usually involves a thermal procedure, more studies are required 246 

to validate whether the process efficiently inactivates clinically relevant pathogens (Chen & 247 

Jiang, 2014; Jung et al., 2014). The use of a fish emulsion as fertilizer has raised similar 248 
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concerns; although most preparation methods available include a thermal process, the ability of 249 

this to inactivate enteric bacteria and viruses needs to be rigorously validated (Jung et al., 2014).  250 

Due to the diverse range of variables associated with manure composition, treatment, pre-251 

application storage, application and incorporation, regulatory bodies have stipulated minimum 252 

manure-to-harvest time intervals necessary to ensure microbiological safety. The United States 253 

Department of Agriculture (USDA) ‘Organic production and handling’ specifies that unless 254 

composted, raw animal manure must be incorporated into the soil not less than 120 days prior 255 

to harvest of a product whose edible portion has direct contact with the soil surface or soil 256 

particles, or 90 days if there is no direct contact (USDA, 2015). Canadian authorities specify 3, 257 

15 and 12 months for tree fruits and grapes, small fruits and vegetables respectively as the 258 

minimum time delay between manure application and harvest for these crops (Olaimat & 259 

Holley, 2012).  260 

 261 

3.2. Irrigation water  262 

Irrigation water has been identified as a potential source of produce contamination 263 

(Benjamin, 2013; Uyttendaele et al. 2015; Faour-Klingbeil et al. 2016). Being a common and 264 

essential requirement for crop production, water must be supplied to plants when necessary, 265 

and irrigation water sources are used to supplement limited rainfall in many areas (Kirby et al. 266 

2003). Epidemiological investigations of food poisoning outbreaks, experimental studies 267 

examining pathogen contamination of fruits and vegetables as well as observations of increased 268 

incidence of disease in areas practicing wastewater irrigation with little or no wastewater 269 

treatment indicate that contaminated irrigation water might indeed be a source of foodborne 270 

pathogens on fresh produce (Norman & Kabler, 1953; Hernández et al., 1997; Steele & 271 

Odumeru, 2004). For example, Hepatitis A outbreaks associated with lettuce (Seymour & 272 
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Appleton, 2001) and spring onions (Josefson, 2003) were linked to sewage-contaminated 273 

irrigation water (Heaton and Jones, 2008). 274 

Various factors including irrigation regime (method and timing of irrigation), irrigation 275 

water sources, type of crop and land use practices in the farm influence the extent and frequency 276 

of pathogenic contamination of produce (Figure 3) (Pereira et al. 2002; Pachepsky et al. 2011; 277 

Olaimat & Holley 2012). Other factors such as pathogen concentration, pathogen strain, 278 

weather patterns, plant state, and physiology also have significant implications for produce 279 

safety (Marvasi et al., 2013; Uyttendaele et al., 2015; Decol et al., 2017) (Table 4).  280 

3.2.1. Relationship between irrigation regime and contamination potential of produce 281 

There are several types of irrigation systems available, each of which is typically complex 282 

and has its own drawbacks. Most irrigation systems create complicated ecological 283 

environments with multiple potential sources and routes of pathogenic contamination 284 

(Pachepsky et al., 2011). Each irrigation subsystem: collection, replenishment, storage, 285 

conveyance, distribution off and on-farm, as well as on-farm application involve processes that 286 

have great potential to compromise the microbiological integrity of the irrigation water in 287 

unique ways.  During transportation from the source to the field, water is susceptible to 288 

significant microbiological depreciation (Pachepsky et al., 2011). The prevailing deterioration 289 

dynamic will depend on the transportation mode. For instance, irrigation water transport via 290 

irrigation ditches and canals involves interaction with microbial reservoirs of bottom sediments, 291 

bank soils, algae and periphyton, whereas water transport via pipes involves interactions with 292 

biofilms in the transport pipes (Jjemba et al., 2010; Pachepsky et al., 2014). This sort of 293 

contamination is particularly prominent in reclaimed water distribution systems (Jjemba et al., 294 

2010; Weinrich et al., 2010). The method of storage for irrigation water can have a profound 295 

effect on pathogen transmission. For example, certain studies have demonstrated that water 296 

quality is rapidly degraded in storage ponds and tanks due to inputs from avian species or other 297 
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wildlife (Field & Samadpour, 2007; McLain & Williams, 2008; Higgins et al., 2009). Other 298 

storage systems such as check dams, impoundments, inter-basin transfer schemes, abstraction 299 

schemes and reservoirs have been identified as places where indicator and pathogenic 300 

microorganisms can survive and proliferate (Abbasi, 2001; Kirubel, 2015). The mode of 301 

application also has significant impacts on the risk of microbiological contamination (Berger et 302 

al., 2010). Compared with furrow and subsurface drip irrigation systems, sprinkler irrigation 303 

poses a higher risk of microbiological contamination (Kisluk & Yaron, 2012; Pachepsky et al., 304 

2014). Surface furrow and drip irrigation systems minimize contact between edible portions of 305 

certain plants (leafy vegetables provide larger surface area for contact and possible microbial 306 

attachment) and irrigation water (Directorate, 2002; Fonseca et al., 2011; Mei Soon et al., 2012; 307 

Uyttendaele et al., 2015). Hydroponic growing systems also offer this advantage (Jung et al., 308 

2014; Allende & Monaghan, 2015).  309 

The irrigation application method has been determined to influence the internalization of 310 

some pathogens in produce such as spinach plants. According to some studies, the likelihood 311 

of internalizing pathogens increases when the organisms are introduced by water sprinkling 312 

systems as opposed to when the water is directly applied to the soil (Solomon et al., 2002; Stine 313 

et al., 2005; Mitra et al., 2009; Warriner et al., 2009; Erickson et al., 2010a; Kisluk & Yaron, 314 

2012; Zheng et al. 2013). More details on pathogen internalization are provided in section 4 315 

(below). Depending on the geographical location, the irrigation regime with respect to time of 316 

day, season and harvest time may influence the likelihood of pathogenic contamination. For 317 

example, Kisluk & Yaron, (2012) in a study conducted in Haifa, Israel demonstrated that night-318 

time irrigation and irrigation during the winter season is more likely to contaminate plants with 319 

enteric bacteria. Contaminated irrigation water poses the most significant risk when crops are 320 

irrigated close to harvest time, because harvesting of produce containing viable pathogens is 321 



14 
 

more likely. Therefore, an adequate time interval between irrigation and harvest should be 322 

conscientiously followed.   323 

The microbial quality of irrigation water depends mostly on the source of the water. In 324 

order of increasing risk of microbial contamination hazard, irrigation water sources can be 325 

ranked as follows: potable or rainwater, deep groundwater, shallow groundwater, wells, surface 326 

water and raw or inadequately treated wastewater (James, 2006; Leifert et al., 2008; Pachepsky 327 

et al., 2011). The microbial quality of rainwater or rain-harvested water is relatively good. The 328 

quality and safety of use, however, depends largely on the collection, transportation and storage 329 

means. This can be illustrated with roof-harvested rainwater, which may become contaminated 330 

with pathogenic bacteria and protozoan parasites because of the occurrence of animal droppings 331 

on roofs, particularly immediately after relatively long periods of drought (Uyttendaele et al., 332 

2015). Groundwater (or borehole water) is usually microbiologically safe, except if it has been 333 

contaminated with surface runoff or other sources of contamination close to the aquifer. Certain 334 

farm operations such as intensive dairying and border-strip irrigation (a type of surface 335 

irrigation, which is a hybrid of level basin and furrow irrigation) (Valipour et al., 2015) lead to 336 

leaching of pathogens such as E. coli and Campylobacter to shallow groundwater, thereby 337 

contaminating it (Close et al., 2008). Water from wells that are free from leaks and have sound 338 

casing are expected to be microbiologically safe. Factors such as the design of wells, nature of 339 

the substrate, depth to groundwater and rainfall may affect the microbial quality of good water 340 

(James, 2006; Gerba, 2009). Surface waters; which are the predominant source of irrigation 341 

waters in many countries, including open canals, ponds, lakes, rivers and streams are much 342 

more susceptible to pathogenic contamination compared to groundwater (Allende & 343 

Monaghan, 2015; Uyttendaele et al., 2015). Sewage discharges, septic tank contamination, 344 

storm drains, wild and livestock defecation, run-off from contaminated fields, industrial and 345 

municipal effluents can all potentially contaminate surface waters (Steele & Odumeru, 2004; 346 
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James, 2006). Wastewater is usually of poor chemical and microbiological quality. Therefore, 347 

it requires extensive treatment before it can be safely used to irrigate crops. Water sources (other 348 

than rain) used to irrigate produce is usually only minimally treated or untreated in many cases 349 

(Steele & Odumeru, 2004; Jung et al., 2014). It is expensive and time-consuming to treat 350 

irrigation water up to drinking water standards, which is the ideal recommendation (Crook & 351 

Surampalli, 1996; Forslund et al., 2010). 352 

3.2.2. Pathogen survival in irrigation water  353 

Although awareness of the potential dangers of using microbiologically compromised 354 

water for irrigation has increased in recent times, scarcity of water resources in certain regions 355 

has contributed enormously to the use of sub-optimal supplementary irrigation water sources. 356 

In such cases, irrigation water represents a greater microbiological risk to produce (Sundström, 357 

et al., 2014). One of the most frequent pathogens implicated in water-related outbreaks is E. 358 

coli O157:H7 (CDC, 1999; Hilborn et al., 1999). The organism can survive for a protracted 359 

period in water (even in deionized water) depending on temperature conditions (Chalmers et 360 

al., 2000; Islam et al., 2004a). It also exhibits a remarkable ability to withstand extreme 361 

environmental conditions such as high acidity and extremely low-temperature conditions. 362 

The ability of a pathogen to survive (or persist) in the environment (and on produce) is 363 

an essential determinant in the risk of human infection. The actual risks associated with 364 

pathogens occurring in irrigation water depend on numerous variables including environmental 365 

conditions such as temperature, pH and UV light (Sant'Ana et al., 2014). Other factors such as 366 

the excreted load of the pathogen, its latency period before it becomes infectious, its ability to 367 

efficiently multiply outside a mammalian host, its infectious dose for humans, inhibitory 368 

competition from the indigenous microflora as well as host response also play a relevant role 369 

(Steele & Odumeru, 2004). Bacteria and viruses survive for lengthier periods in groundwater 370 

compared to surface water because groundwater tends to be cooler, offers protection from 371 
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sunlight, and has less biological activity (Steele & Odumeru, 2004). These groups of microbes 372 

only typically last no longer than 45 and 15 days in surface water and sewage, respectively. 373 

Conversely, parasites (eggs/cysts) may survive for as long as 60 days or even several months 374 

in surface water and wastewater (Lefler & Kott, 1974; Sagik et al., 1978; Bihn, 2011). This 375 

suggests that pathogenic microorganisms are capable of surviving for extended periods, which 376 

constitutes a profound threat to produce safety. Regardless of the source or route of exposure, 377 

one potentially fatal consequence of pathogen contamination of irrigation water is the repeated 378 

inoculation of plants with the pathogens. The fate and transport of these pathogens once 379 

introduced into the produce vary widely (Table 4). Some pathogens are capable of adhesion to 380 

surfaces of produce while some others can rapidly internalize into plant tissues under certain 381 

conditions, translocate and persist until consumed (Warinner et al., 2003; Bernstein et al., 382 

2007a; Doyle & Erickson, 2008). This has rendered many conventional processing and 383 

chemical sanitizing methods ineffectual (Hong & Moorman, 2005) and is a growing public 384 

health concern. 385 

 386 

3.2.3. Irrigation water and pathogens: a summary 387 

Although the potential for produce contamination via irrigation water has been identified, 388 

it is difficult to estimate the magnitude of the problem (Groves et al., 2002; Antwi-Agyei et al., 389 

2015). Despite the fact that numerous studies have linked poor microbiological quality of 390 

irrigation water with the incidence of human pathogens on fruits and vegetables, direct evidence 391 

of irrigation water causing foodborne disease is relatively rare (Harris et al., 2012). This is 392 

because a substantive “cause-effect” relationship is yet to be established as it is required that 393 

the same pathogenic strain is isolated from the patient, produce, and irrigation sources 394 

(Pachepsky et al., 2011). Furthermore, there must be a clear sequence of events connecting 395 

patient, produce, and irrigation source (Steele & Odumeru, 2004). This is difficult to achieve 396 
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due to certain limitations such as an inability to promptly identify the locations associated with 397 

produce contamination and delays inherent in foodborne outbreak investigations (Pachepsky et 398 

al., 2011). In the absence of direct confirmation, the “cause-effect” relationship can only be 399 

deduced based on circumstantial or subjective evidence (Pachepsky et al., 2011). Also, it is 400 

apparent that there is no valid link between detected pathogen levels in irrigation waters and 401 

disease risk. Some studies have demonstrated a lack of correlation between pathogen 402 

prevalence in waters used for irrigation and disease incidence due to consumption of irrigated 403 

produce (Cooley et al. 2007; McEgan et al., 2013; McEgan et al., 2014). There is an abundance 404 

of laboratory studies elucidating potential mechanisms of produce contamination from 405 

waterborne pathogens. However, field studies showing the exact process of produce 406 

contamination via this medium are relatively scarce. It is thus expedient to generate more field 407 

data in this regard. 408 

 409 

3.3. The soil environment as a natural habitat for (potential) bacterial pathogens 410 

Soils typically harbour an abundant consortium of microorganisms, some of which are 411 

human pathogens such as B. cereus, Clostridium botulinum, C. perfringens, Listeria 412 

monocytogenes and Aeromonas (Nicholson et al., 2005; Warriner et al., 2009; Jay, 2012). They 413 

may, therefore, serve as a medium of plant contamination through seeds, roots or surfaces. 414 

Many soil resident pathogens have adapted to survival in soil with spores persisting indefinitely. 415 

However, since many agricultural soils are predisposed to point and non-point sources of 416 

pathogenic contamination, allochthonous pathogens may continuously be introduced into soil 417 

environments (Santamaria and Toranzos, 2003). Some of the primary sources of pathogens into 418 

soil include the use of contaminated irrigation water and manure, animal grazing, municipal 419 

solid wastes and other effluents (Santamaria and Toranzos, 2003; Sant'Ana et al., 2014).  420 

 421 
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3.3.1. Effect of soil properties and environmental variables on the incidence of pathogens 422 

in soils 423 

The fate, survival and recalcitrance of pathogens in soil depend on factors such as soil 424 

type, soil moisture, pH, temperature, nutrient availability, agronomic practices, as well as soil 425 

biological interactions (Table 5). Soil matric potential (moisture levels) is determined by soil 426 

properties and water inputs through precipitation and/irrigation and has been demonstrated to 427 

be one of the most critical factors influencing microbial transport and survival in soil (Leifert 428 

et al., 2008). Cool, moist environments are favorable for the survival of bacteria and viruses. 429 

Under dry soil conditions, a reduction in bacterial and viral population densities are usually 430 

observed (Santamaria and Toranzos, 2003; Ghorbani et al., 2008). Escherichia coli survival has 431 

been reported to be highest in organic soils under flooded conditions, and peak populations 432 

recorded after a rise in the water-table accompanying significant rainfall events (Tate, 1978; 433 

Hagedorn et al., 1978; Rochelle-Newall et al., 2016). Some pathogens such as Streptococcus 434 

faecalis have been proven to thrive poorly under low soil moisture conditions (Kibbey et al., 435 

1978; Jamieson et al., 2002; Cabral, 2010). Increased rates of virus inactivation at low soil 436 

moisture levels have been demonstrated (Yeager & O’Brien 1979). Also, decreased recovery 437 

of viral (poliovirus type 1 and coxsackievirus B1) infectivity in dried soils was attributed to 438 

evaporation of soil water in the same study by Yeager & O’Brien (1979). In addition, 439 

experimentation by Hurst et al., (1978) correlated inactivation of enteroviruses [echovirus type 440 

7 (strain Wallace), coxsackievirus B3 (strain Nancy) and poliovirus type 1 (strain LSc)] in 441 

sludge-amended soils with moisture loss in the sludge piles.  442 

Soil pH influences microbial diversity and the biogeochemical processes, which they 443 

mediate (Fierer & Jackson, 2006; Nicol et al., 2008). Optimum pH for bacterial survival seems to 444 

be neutral, but fungi are known to be more tolerant of acidic conditions, compared to bacteria 445 

(Leahy & Colwell 1990).  Amino acids (most viruses behave as proteins) have different pK 446 
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values and so the ratio of positive to negative charges on proteins vary with pH (Yates et al., 447 

1985). In an experiment that lasted 170 days using poliovirus type 1, echovirus 7, echovirus 9 448 

and coxsackie B3, viruses were detected up till the 110th – 170th day at pH 7.5 while at pH 5.0, 449 

the viruses died off between the 25th and 60th day depending on virus type (Bagdasaryan, 1964).   450 

Soil types vary depending on organic matter content, water release characteristics, 451 

particle size distribution and moisture retention capacity. These variations significantly 452 

influence the survival of enteric pathogens in soil (Jamieson et al., 2002; Atkinson et al., 2010). 453 

Clay soils support the adsorption of microorganisms onto soil particles, and this reduces 454 

microbial die-off rates (Reddy et al., 1981). Clays protect bacterial cells, and possibly viral 455 

particles, by creating a barrier against microbial predators and parasites (Santamaria & 456 

Toranzos, 2003).Viruses, which are mostly large proteins possessing various charges, are 457 

capable of forming numerous bonds with clay minerals (Stotzky 1986).  For example, the 458 

survival of E. coli is prolonged in clay soils where adsorption of cells to the soil particles 459 

protects it against protozoa (Mosaddeghi et al., 2009). Escherichia coli can persist for up to 25 460 

weeks in clay and loam soils, but for much less (8 weeks) in sandy soils (Lang and Smith, 461 

2007). Results of a study that compared Rotavirus survival in three soil fractions (whole soil, 462 

sand and clay) at temperatures 4, 25 and 37ºC for 18 days showed least survival in sand fractions 463 

(Davidson et al., 2013). In the absence of soil particles, Rotavirus survived best at 4 ºC with 464 

survival decreasing, with an increase in temperature, except in whole soil, where it survived 465 

better over the entire temperature range and for more than a week at 37 ºC, indicating that whole 466 

soil offered some protective effect (Davidson et al., 2013). Conversely, though, there is a report 467 

of shorter survival duration of enteroviruses (poliovirus type 1, echovirus 7, echovirus 9 and 468 

coxsackie B3) in loamy soil than in sandy soil (Bagdasaryan, 1964).  469 

A link between higher organic matter content and enteric pathogen persistence has been 470 

established (Jamieson et al., 2005; Williamson et al., 2005; Leifert et al., 2008). There is 471 
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overwhelming research evidence in this regard, seeing that many of the studies that compared 472 

the persistence of enteric pathogens in top and sub-soils recorded higher survival rates in topsoil 473 

(Zhai, 1995; Wang et al., 2004; Nyberg et al., 2010). Research has also shown higher pathogen 474 

levels in organic soils after manure application compared to sandy soils (Tate, 1978; Jamieson 475 

et al., 2002). Therefore, the rates of pathogen survival are lower in sandy soils, which have a 476 

low water-holding capacity (Mubiru et al., 2000; Erickson et al., 2014a).  477 

Lower temperatures are more suitable for bacterial and viral survival. The ultraviolet 478 

radiation from the sun inactivates viruses on the surface of the soil, but viruses in deeper soil 479 

strata are protected from this (Rodríguez-Lázaro et al., 2012; Zablocki et al., 2016). In loamy 480 

soil samples, at pH 7.5, poliovirus and echovirus were recovered after 110 – 130 days at 3 - 10 481 

ºC compared to recovery 40 – 90 days at 18 - 23 ºC (Bagdasaryan, 1964). Similarly, Poliovirus 482 

Type 1 and coxsackievirus B 1 pfu were recovered for up to 12 days at 37 ºC whereas pfu were 483 

recovered from soil for up to 180 days at 4 ºC (temperature profiles tested were 4, 22 and 37 484 

ºC) (Yeager & O’Brien, 1979). The persistence of poliovirus in sludge-amended soil was 485 

assessed in a field study where appropriately cultivated and irrigated plots were treated with 486 

virus-spiked effluents by flooding. This was done for 123 days spanning through spring, 487 

summer and winter seasons. Poliovirus survived best during winter (when it was detected after 488 

96 days), but during summer, the longest survival period was 11 days (Tierney et al., 1977). 489 

Parasites seem to prefer warm temperature conditions. Prevalence of hookworms have been 490 

correlated to warm temperatures, relatively high rainfall and low clay content (sandy soils with 491 

clay content of less than 15%) (Mabaso et al., 2003). 492 

 Nutrient availability is essential for the survival of microbes in the soil. The presence of 493 

organic matter promotes the survival, and in many cases, the regrowth of enteric bacteria 494 

(Jamieson et al., 2002; Looney et al., 2010). Organic matter improves nutrient retention, serves 495 
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as carbon sources for bacterial species and enhances moisture retention (Gerba et al., 1975; 496 

Schoonover & Crim, 2015).  497 

Apart from environmental stress responses, foreign enteric bacteria must compete with 498 

the endogenous microflora to become established in the soil environment (Jiang et al., 2002). 499 

Some autochthonous soil organisms have been shown to be resistant to newly introduced 500 

microorganisms in their environment (Ellis and McCalla, 1976). Also, certain bacteriophage, 501 

some protozoa, nematodes and free-living soil organisms such as Bdellovibrio can parasitize 502 

non-indigenous pathogens, thereby limiting their survival (Klein & Cassida, 1967; Goss & 503 

Richards, 2008). Additionally, increased pathogen survival, and regrowth in some instances, in 504 

sterile soils and soils with relatively low biological activity has been reported (Gerba et al., 505 

1975; Tate, 1978). There is some research evidence that alien enteric pathogens compete poorly 506 

for nutrients and are thereby susceptible to inhibition by soil-borne bacteria (Jiang et al., 2002). 507 

The effects that this has on the persistence of pathogens (especially pathogens introduced via 508 

contamination) in soil is however not yet fully understood. The impacts that soil edaphic and 509 

biotic conditions have on the occurrence, fate and persistence of microorganisms in soils should 510 

not be underestimated. These factors can collectively or independently stifle or encourage 511 

foreign pathogens. For instance, members of Listeria possess advantageous intrinsic factors 512 

such as an extensive repertoire of transport systems (like phosphotransferase system and 513 

transcriptional regulators) which makes them capable of successfully persisting in the soil 514 

ecosystem (Newell et al., 2010). However, these species are highly sensitive to extrinsic factors 515 

and this affects their ability to survive in soil environments (Newell et al., 2010; Locatelli et al., 516 

2013). Although studies have been conducted on the occurrence of L. monocytogenes in various 517 

ecological niches, including soil, more emphasis has been placed on the occurrence of Listeria 518 

spp. in fresh vegetables under storage conditions, food processing and packaging environments. 519 

The expression of genes and induction of proteins such as cold shock and cold acclimation 520 
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proteins, as well as tolerance for low pH and high salt concentration in these environments have 521 

received much research attention. There is however, need for more research to understand the 522 

dynamics of Listeria survival in soils.   523 

3.3.2. Other factors affecting survival of pathogens in soil  524 

Agronomic practices such as soil improvement and manure application method influence 525 

the survival of pathogens in the soil (Table 5). Soil improvement strategies (inorganic and 526 

organic fertilizer, compost, biosolids and other residuals application), significantly enhance the 527 

nutrient loads of soils (Diacono & Montemurro, 2010). In varying degrees, these are important 528 

sources of primary nutrients such as N and P as well as secondary nutrients such as Ca, Mg and 529 

S to the soil. A ready supply of essential nutrients encourages the growth of pathogens. Compost 530 

application modifies the long-term soil conditions by increasing the pH steadily, this, therefore, 531 

affects pathogen survival in soil (Weller, 1988; Sharma & Reynnells, 2016). Bacteria tend to 532 

decline more rapidly when manure is applied superficially as opposed to when incorporated 533 

into the soil immediately after application (Solomon et al., 2002; Islam et al., 2004a). This is 534 

probably due to the elimination of drying conditions and exposure to UV at the soil surface 535 

(Schulze-Makuch & Irwin, 2006) or because incorporation of manure disrupts macropores and 536 

boosts soil-bacteria contact (Jamieson et al. 2002).  537 

After manure application on land, if applied manure is contaminated, it is probable that 538 

the pathogens will move through the soil matrix, either vertically or horizontally. Vertical 539 

movement of pathogens through the soil is influenced by the amount and intensity of rainfall, 540 

climatic conditions as well as the season of application. Horizontal movement is known to be 541 

influenced by soil type, moisture levels, temperature, microbial activity, transport through plant 542 

roots, rainfall patterns, soil pH amongst other biophysical factors. It is, however, apparent that 543 

water flow is the most important dispersal factor for percolation of manure-derived pathogens 544 

in soils, regardless of type and structure although more quantitative information regarding this 545 
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is desirable (Mawdsley et al., 1995; Jiang et al., 2002; Jamieson et al., 2002; Islam et al., 2004b; 546 

You et al., 2006; Leifert et al., 2008; Semenov et al., 2009).  547 

The extent of movement will affect the distribution and eventual fate of the pathogens. 548 

Some will spread in soil and attach to roots. Others may be washed off to surface waters or 549 

percolate to aquifers, potentially contaminating irrigation water sources (Figure 2) (Jamieson 550 

et al. 2002; Vinten et al. 2002; Avery et al. 2004 a, b; Islam et al. 2004b). Pathogens occurring 551 

in contaminated manure, therefore, can be rapidly transported within soil systems (Gagliardi 552 

and Karns, 2000; Kisluk & Yaron 2012). The success of conveyance and distribution, however, 553 

further depends on inherent survival capabilities of the pathogen as well as the presence and 554 

structure of plant root systems (Figure 2) (Kemp et al., 1992; Mubiru et al., 2000; Avery et al., 555 

2004a; Franz et al., 2008; Arthurson et al., 2010).  556 

There is some evidence that pathogens may indeed survive longer in manure-amended 557 

soils than actual manure samples, and this has been illustrated for enteric species such as S. 558 

Typhimurium and E. coli O157:H7. Salmonella Typhimurium, has, however, exhibited superior 559 

persistence capabilities compared to E. coli O157:H7 in manure-amended soils (Islam et al., 560 

2004b; You et al., 2006; Franz et al., 2008; Fremaux et al., 2008; Pornsukarom & Thakur 2016). 561 

There is a paucity of data on the persistence of pathogens in manure amended-soils in the tropics 562 

(Ongeng et al. 2015). One interesting study provides an insight into the survival of E. coli 563 

O157:H7 and Salmonella Typhimurium under tropical climatic conditions (Ongeng et al., 564 

2011). The study showed that survival periods were mostly shorter than the observed record in 565 

temperate regions indicating that biophysical conditions in the tropics may be more injurious 566 

to these pathogens. It is, therefore, not prudent to predict the survival of E. coli and S. 567 

Typhimurium in tropical soils from data obtained in temperate locations.  568 

The soil is the most important cultivation medium and represents a relevant risk for 569 

produce contamination. A myriad of studies regarding the behavior of pathogens in various 570 
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kinds of soil ecosystems is available. However, validated consensus protocols for conducting 571 

and interpreting experimental studies as well as for evaluating the effects of environmental and 572 

soil characteristics on fate of pathogens in soils are not yet available. It is important to further 573 

understand the effects of soil types, environmental factors, biological processes and 574 

interactions, cultivation and management practices on the behavior of (indigenous and foreign) 575 

enteric pathogens in agricultural soils. 576 

3.4. Animals and Insects 577 

Apart from farm animals, whose roles as reservoirs of enteric pathogens has been 578 

established, wild animals such as birds, reptiles, rodents, amphibians, some helminths, and 579 

insects like flies and beetles can also serve as vehicles of pathogens to contaminate cultivation 580 

media and produce (Beuchat, 2006; Lim et al., 2014). Livestock and wild animals may gain 581 

access to cultivation areas either because of adjacent land use (livestock rearing) or by intrusion 582 

(Jay-Russel, 2013). Birds such as gulls, pigeons, chickens, starlings, Canada geese, migratory 583 

ducks and sandhill cranes (Pacha et al., 1998; Hald et al., 2004; Ekdahl et al., 2005; Humphrey 584 

et al., 2007) have been determined to be carriers of pathogens such as E. coli, Salmonella and 585 

Campylobacter (Wallace et al., 1997; Schmidt et al., 2000; Wani et al., 2004). Insects are 586 

typically ubiquitous in cultivation fields, and hence, have unrestricted access to produce. They 587 

are usually found in manure piles, feedlots and other habitats near cultivation fields, and so 588 

farms practicing mixed farming represent a more significant risk (Martínez-Vaz et al., 2014). 589 

Many bacterial species have evolved to exploit insects as hosts or vectors. Filth flies, fruit flies, 590 

cockroaches and other insects act as mechanical and biological vectors to contaminate fruits 591 

and vegetables on the field (Sasaki et al., 2000; Mpuchane et al., 2004; Alam & Zurek, 2004; 592 

Humphrey et al., 2007).  Many pathogens use flies as vectors for cross-transmission. For 593 

example, the transient survival of Pectobacterium carotovorum subsp. carotovorum in the gut 594 
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of the fruit fly Drosophila and subsequent transmission to other plants has been observed 595 

(Nadarasah & Stavrinides, 2011; Lim et al., 2014). 596 

Under laboratory environment, direct bacterial transfer from contaminated flies to fruits 597 

or plant leaves was shown to occur (Sela et al., 2005; Talley et al., 2009; Lim et al., 2014). 598 

Members of Muscidae and Calliphoride which are usually abundant in production fields 599 

adjacent to cattle rearing lots have been associated with the transmission of E. coli O157:H7 600 

(Talley et al., 2009). Insects that feed on plants also play significant roles in produce 601 

contamination by providing direct routes for internalizing pathogens from manure to plants in 602 

the field (Talley et al., 2009). Insect deterioration creates openings that aid the ingress of 603 

pathogens into inner plant tissues, thereby enhancing colonization of spoilage and pathogenic 604 

bacteria on produce (Warriner & Namvar, 2010; Lim et al., 2014). A seasonal trend to 605 

contamination by insects has been identified. There is increased insect and animal activity 606 

during the warmer months of the year. Moreover, peak incidences of pathogens have been 607 

reported during the warmer months (Liang et al., 2015). 608 

Reptiles including snakes, lizards, chameleons, turtles, as well as other ophidians, 609 

saurians and chelonians have been found harboring enteric bacteria like Salmonella (Corrente 610 

et al., 2004; Beuchat, 2006). Many wild rodents are asymptomatic carriers of pathogens like 611 

Salmonella and Campylobacter. The occurrence of rodents on farms are often associated with 612 

infrastructural impairment, and although their destructive tendencies have been widely 613 

recognized, their zoonotic risks are often primarily underestimated. They are capable of 614 

amplifying the number of pathogens in the environment and transferring them to other farm 615 

animals and produce (Meerburg & Kijlstra, 2007). Commensal rodents (house mice and rats) 616 

pose a particular threat because of their ecology (they live close to livestock) and high fecundity 617 

(Brooks & Jackson, 1973; Witmer et al., 2014). 618 

4. Survival of pathogens on and within fresh produce 619 
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Foodborne illness resulting from the consumption of contaminated produce is dependent 620 

on specific factors. First, the produce must be contaminated with a pathogen, which must 621 

survive until the time of consumption at levels sufficient to induce illness (Harris et al., 2003). 622 

The dose required to cause illness in many cases, is very low, which indicates that the 623 

microorganism needs only to contaminate the food to survive without necessarily reproducing. 624 

For instance, pathogenic parasites and viruses are not capable of multiplying outside a human 625 

or animal host and only need to survive in sufficient numbers to cause illness (Harris et al., 626 

2003). The survival and or growth of pathogens is influenced by the kind of organism, produce 627 

type, on-field environmental conditions, as well as the physiological state of the plant and 628 

pathogen. The possible routes of entry into plant tissues include: natural apertures (such as 629 

stomata, lenticels, sites of lateral root emergence), wounds caused by biotic or abiotic 630 

circumstances and following the flow of water from roots to leaves, where pathogens can 631 

efficiently survive and multiply (Steele & Odumeru, 2004; Deering et al., 2012; Hirneisen et 632 

al., 2012). The popular opinion is that pathogens will survive but not thrive on intact (uninjured) 633 

outer surfaces of produce, primarily due to the protective effects of natural plant barriers (such 634 

as cell walls and wax layers) (Mathews 2006; Heaton & Jones, 2008). Survival and proliferation 635 

of enteric pathogens on produce is significantly enhanced if the protective barrier becomes 636 

compromised either by physical or biological damage (such as punctures or bruising), insect 637 

ruination or through degradation by plant pathogens. It is vital to understand the microbe-638 

microbe and plant-microbe interactions that occur in the phyllosphere and rhizosphere which 639 

influence the adaptation, colonization, survival, growth, and persistence of foodborne 640 

pathogens on produce. 641 

 642 

4.1. Access to and establishment of pathogens in produce  643 

4.1.1.  Attachment  644 
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Attachment is pre-requisite for the colonization and subsequent transmission of enteric 645 

pathogens throughout plants including the edible portions (Berger et al., 2010). It is important 646 

to note that attachment onto the surface of intact produce is limited in contrast to the attachment 647 

on other food commodities such as processed meat tissues (Erickson, 2010). However, the 648 

attachment does indeed occur and is facilitated by stomata, lenticels, broken trichomes, as well 649 

as bruises and cracks occurring on produce surfaces. The incidence of scars and cracks (which 650 

may set in late in the growing season while the fleshy portion is enlarging rapidly) in certain 651 

fruits also aids pathogen attachment (Bhagat et al., 2010). Cracks tend to occur in or on the 652 

weak areas on plant surfaces such as around lenticels and trichomes, and hence, these areas are 653 

more susceptible to invasion by pathogens. Cavities within the epidermis may also develop 654 

from cuticular cracks as the fruit develops, thereby entrapping pathogens and shielding them 655 

from desiccation and disinfection. The initial phase of bacterial attachment is a rapid process 656 

initiated once the bacteria establishes contact with the plant surface (phyllosphere) (Sant’Ana 657 

et al., 2014). The phyllosphere, also known as the aerial parts of plants pose challenges for 658 

microbial survival. Exposure to high UV doses, temperature and relative humidity fluctuations 659 

sabotage viability (Brandl et al., 2004; Heaton & Jones, 2008). Epiphytes that exist within the 660 

phyllosphere have, however, evolved specialized mechanisms to improve stress tolerance and 661 

nutrient acquisition. For instance, Pseudomonas spp. produce pigments to insulate against UV 662 

and pectolytic enzymes to gain nutrients (Heaton & Jones, 2008). The ability of the pathogen 663 

to persist on the phyllosphere improves the chances of a viable or infectious dose remaining 664 

post cultivation (Heaton & Jones, 2008). The successful attachment on the phyllosphere also 665 

depends on the crop and pathogen type. A classic illustration is Salmonella invasion of lettuce 666 

and tomatoes. Salmonella contamination of lettuce and tomatoes via soil is usually quite low, 667 

implying that Salmonella does not readily attach to or grow in the phyllosphere of these crops 668 

(Critzer & Doyle, 2010). Also, attachment of Salmonella and E.coli O157:H7 is observed more 669 
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frequently with Brassicaceae compared to lettuce, carrots, and tomatoes, which has generated 670 

the theory of selective attachment, suggesting that certain produce types are more prone to 671 

contamination than others (Warriner & Namvar, 2010). Specific pathogens such as Salmonella 672 

have surface epitopes that can bind to plant structures such as stomata to aid attachment 673 

(Warriner & Namvar, 2010). Some also have higher capabilities to metabolize nutrients 674 

contained within the apoplastic fluid of plants (Warriner & Namvar, 2010). These traits 675 

significantly enhance their attachment abilities. Finally, hydrophobic interactions between a 676 

plants' epidermal layer and microbial cells are believed to play a major role in facilitating this 677 

initial phase of attachment (Burnett & Beuchat, 2001).  678 

Surface colonization is the final phase of attachment during which biofilms may be 679 

formed. Biofilms are microbial colonies, which form when single microorganisms attach and 680 

aggregate on a hydrated surface and undergo a "lifestyle switch," giving up life as a single cell 681 

to live on a surface in an adhesive cell matrix with other microorganisms (Lemon et al., 2007). 682 

Cells in a biofilm have a better chance of adaptation and survival (especially during periods of 683 

stress) as they are protected within the matrix (Decho, 2000) and are usually resistant to 684 

antimicrobial agents (Lemon et al., 2007). Naturally occurring biofilms are present in many 685 

fruits and vegetables, but the ability of foodborne pathogens to associate with them and persist 686 

is not yet fully understood (Brackett, 1999; Ferreira et al., 2014; Larsen et al., 2014). Pathogen 687 

serovars that are strong biofilm producers have been shown to attach better to both intact and 688 

injured produce surface compared to strains that are weak biofilm producers (Lindow & Brandl, 689 

2003; Kroupitski et al., 2009). The occurrence of biofilms improves the chances of transient 690 

occupants of leaf surfaces such as enteropathogens of becoming effectively incorporated into 691 

phyllosphere biofilms (Heaton & Jones, 2008). Bacterial appendages such as curli, pili, 692 

fimbriae, and flagella, as well as proteins in outer membranes and genes, may also facilitate the 693 

surface colonization by pathogens. Increases in the expression of fliC, flagellin-encoding gene 694 
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have been observed in certain produce contamination studies. After attachment, it becomes very 695 

difficult to remove the pathogens from produce by surface washing (Beuchat & Scoutten, 696 

2002). Overall, enteric soil pathogens may reach the edible portions of fruits and vegetables via 697 

numerous mechanisms and routes and these have been elucidated by several studies (Natvig et 698 

al. 2002; Johannessen et al. 2005; Barak and Liang, 2008; Tyler and Triplett, 2008). Some of 699 

these routes include germination of seeds in contaminated soils, which leads to bacterial 700 

colonization of roots and edible parts, direct transfer of pathogens within the soil to crops when 701 

heavy rain or water gun irrigation causes leaf splash, bacterial infiltration through roots, 702 

amongst others. 703 

 704 

4.1.2. Internalization 705 

Attached pathogens can reach the interior of fruits and vegetables via a variety of 706 

pathways. The extent of internalization depends on factors such as the route and mechanism of 707 

entry, the type and age of the plant, the aerial and/ or root morphology and exudates, the soil 708 

type and biology and the strain and/serovar of bacteria (Hirneisen, 2012; Brandl, 2013; Lim et 709 

al., 2014). The mechanism could be either passive or active (Sant’Ana et al., 2014). Passive 710 

internalization involves the uptake of bacteria mainly through roots and seeds. Mechanistically 711 

though, enteric pathogens may be internalized via the root system and transported to edible 712 

tissues, but the risk of contamination by this route is likely low (Matthews et al. 2014). This is 713 

because in the environment, particularly areas that are not prone to contamination events, the 714 

levels of enteric pathogens are likely to be extremely low (Cooley et al. 2007; Matthews et al. 715 

2014). In contaminated zones, however, human pathogens may indeed invade root tissues and 716 

subsequently translocate to edible portions (Solomon et al., 2002; Solomon & Matthews, 2005). 717 

Depending on the age of the plant, pathogens may invade external root surfaces (main and side 718 

roots, as well as root hairs) and subsequently internalize. The developmental stage of plant root 719 
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systems when contamination occurs influences the capability of pathogens to interact with, 720 

penetrate plant roots and migrate to other tissues (Mootian et al., 2009). The physiological 721 

characteristics of the roots may also determine the success of internalization; for example, some 722 

root vegetables possess antimicrobial properties, which limits the growth and internalization of 723 

enteric bacteria (Hirneisen et al., 2012). Pathogens like E. coli O157:H7 have been 724 

demonstrated to survive longer in the soil in the presence of rye and alfalfa roots (Gagliardi & 725 

Karns 2002).   726 

Other work has demonstrated that pathogens enter root tissues at sites of lateral root 727 

emergence or through damaged roots (Mendes et al., 2013). Salmonella and E.coli O157:H7 728 

have penetrated Arabidopisis and lettuce plants’ roots, while Klebsiella pneumoniae have been 729 

detected on numerous plants’ roots (Tyler & Triplett, 2008). Other examples include the 730 

invasion as well as (endophytic and systemic) colonization of barley roots by S. Typhimurium, 731 

the shoots of black pepper stem cuttings by Pseudomonas aeruginosa, as well as roots and 732 

shoots of tomato seedlings by P. aeruginosa (Kutter et al., 2006; Kumar et al., 2013). It is, 733 

however, important to note that successful invasion of the root and shoot system may not 734 

guarantee translocation to the edible or foliar portions of produce. In some surveys, bacterial 735 

pathogens were detected in roots but not leaves of crops examined (Watchel et al., 2002; 736 

Warriner et al., 2003; Bernstein et al., 2007a; Mitra et al., 2009; Sharma et al., 2009). 737 

A growing body of evidence suggests that seeds may serve as primary inoculum source 738 

in produce contamination. In the case of vegetables, seed sprouts have been implicated as the 739 

initial inoculum source, severally (Warriner et al., 2003; Deering et al., 2012; Kumar et al., 740 

2013). In recent time, seeds have been recognized as a significant source of inoculum for 741 

foodborne illnesses associated with sprout consumption (Mahon et al., 1997; National Advisory 742 

Committee on Microbiological Criteria for Foods, 1999; Buck et al., 2003; Yang et al., 2013). 743 

It is possible that enteric bacteria may be transmitted from contaminated seeds to sprout to 744 



31 
 

mature plants, throughout entire plant life cycle up to consumption. The contamination may be 745 

transferred from seed again, thus persisting in produce cultivation cycles, for a long time.  There 746 

is a record of E. coli 0157:H7 adherence to outer surfaces and subsequent successful 747 

internalization of radish sprouts produced from contaminated seed during sprout growth (Itoh 748 

et al., 1998).  749 

Rate and efficiency of uptake also depends on the type of produce, and the level of 750 

internalization varies widely among plants and even among different species of the same crop 751 

due to variations in intrinsic factors, which affect pathogen survival and proliferation (Golberg 752 

et al., 2011; Erickson, 2012). For instance, certain produce items, like fully ripe tomatoes are 753 

typically in the pH range (3.9 – 4.5) which conventionally impedes growth of most enteric 754 

bacteria, whereas, the pH of numerous vegetables, melons, and soft fruits is usually 4.6 or 755 

higher, which is conducive for bacterial growth (Beuchat, 2002; Gagliardi et al., 2003). 756 

Therefore, Gram-negative bacteria are more commonly associated with vegetables while molds 757 

and certain yeasts mostly occur on fruits, due to the differences in pH requirements of the 758 

respective groups of microbes (Jay, 2012). Members of the Brassicaceae family (radish, turnip 759 

and broccoli) were demonstrated to have a higher prevalence of Salmonella contamination than 760 

lettuce, tomatoes and carrots when grown in contaminated soil (Barak et al., 2008). Among 761 

leafy greens, radicchio and endive may be more likely to be contaminated than lettuce, spinach, 762 

parsley or cilantro (Barak et al., 2008). Salmonella Typhimurium has been demonstrated to 763 

internalize more efficiently in iceberg lettuce and arugula leaves compared to romaine, red 764 

lettuce, fresh basil, parsley and tomato leaves, which displayed only marginal internalization. 765 

Listeria monocytogenes seems to exhibit a selective preference for certain vegetables like 766 

radishes and potatoes, as certain studies reported that although L. monocytogenes successfully 767 

invaded tissues of a wide variety of vegetables, radishes and potatoes appeared to be more often 768 

and severely contaminated (Beuchat, 1996). It is also apparent that L. monocytogenes does not 769 
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survive and internalize satisfactorily on fresh carrot, in fact, low doses of raw carrot juice have 770 

been demonstrated to inhibit the growth of the pathogen (Beuchat et al., 1990; Farber & 771 

Peterkin, 1991; Oh, 1993; Benkerroum, 2013). 772 

Internalization is believed to be a plant-pathogen specific interaction, and therefore, 773 

internalization success varies from pathogen to pathogen (Erickson, 2012). A comparison of 774 

the internalization of L. monocytogenes to S. Typhimurium on inoculated seeds of cress, radish, 775 

spinach, lettuce, mustard, carrots, and tomatoes showed significant variations in the rate and 776 

efficiency of internalization by the pathogens. Under identical experimental conditions, S. 777 

Typhimurium internalized into the roots of the vegetables, whereas, L. monocytogenes did not 778 

(Jablasone et al., 2005). Similarly, while S. Typhimurium was found to be associated with the 779 

internal portions of barley sprouts, L. monocytogenes, L. ivanovii and L. innocua were not 780 

(Kutter et al., 2006). Furthermore, the degree of internalization is contingent on the 781 

serovar/strain (Larsen et al., 2014). Gene expression, metabolic and antimicrobial capacities 782 

vary among strains. Certain strains manifest up-regulation of peculiar genes like the pdu, cob-783 

cbi, and out which improve carbon source utilization and may confer a competitive edge, 784 

thereby enhancing the survival and persistence of these strains (Fox et al., 2011). Some E. coli 785 

0157 strains possess metabolic capacities, which foster their survival in certain agroecosystems 786 

such as soils (Franz et al., 2011). In a bid to explain the strain-specific internalization dynamics, 787 

a five serovar Salmonella cocktail (Montevideo, Michigan, Poona, Hartford and Enteritidis) 788 

was inoculated into hydroponic growth substrates. Serotypes Montevideo and Michigan were 789 

most prevalent, while Enteritidis, Hartford and Poona were not detected in any of the tomato 790 

tissue samples (Guo et al., 2001). This is a quintessential illustration of internalization variation 791 

among serovars. Likewise, Salmonella serovars; Cubana, Infantis and Typhimurium exhibited 792 

varying capabilities to internalize and colonize alfalfa sprouts when seeds were inoculated 793 

under identical environmental conditions (Dong et al., 2003).  794 



33 
 

Some scholars have endeavored to compare the survival of two arguably most prominent 795 

foodborne pathogens: E. coli and Salmonella. Serovars of both can proficiently adapt to 796 

environmental stress; -numerous strains are known to become habituated to low pH conditions 797 

and subsequently manifest remarkable tolerance to stress conditions. Escherichia coli can 798 

perpetually evolve new varieties that have neither been previously reported nor characterized 799 

and which are capable of exploring and inhabiting previously unrecognized niches (Newell et 800 

al., 2010). Both seem to be capable of long-term survival in the agricultural environment and 801 

on produce, but it is quite apparent that Salmonella survives better than E. coli (Brandl, 2006; 802 

Mandrell, 2009; Newell et al., 2010; Schikora et al., 2012; Ongeng et al., 2015). Many 803 

Salmonella serovars bind to plants significantly better than E. coli strains. Escherichia coli’s 804 

inability to lower its metabolic rate to suit the low availability of accessible organic carbon and 805 

to competently cope with low nutrient conditions contributes significantly to its die-out in soils 806 

and on produce, and therefore, lowers its competitiveness (survival) compared to Salmonella 807 

(Beuchat, 2002; Franz et al., 2008; Franz & van Bruggen, 2008; Franz et al., 2011). 808 

Internalization has been correlated with motility and chemotaxis. Flagella mutants 809 

(fliGHI:Tn10, cheY) deficient in motility and chemotaxis respectively have exhibited reduced 810 

attachment and penetration of lettuce leaves (Kroupitski  et al., 2009; Lim et al., 2014). It has 811 

also been hypothesized that products of photosynthesis serve as nutrients to aid internalization 812 

of pathogens (Lim et al., 2014).  813 

Active internalization typically involves the penetration of bacteria through natural 814 

openings. The ability of foodborne pathogens to internalize in produce represents a significant 815 

public health risk because internalized pathogens are protected against optimized disinfection 816 

modes (Meireles et al., 2016) except irradiation which seems capable of reasonably eradicating 817 

internalized pathogens in produce. The technique penetrates produce tissues to eliminate 818 

internalized pathogens, and Gram-negative bacteria are very susceptible to even low doses 819 
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(Saroj et al., 2007; O’Bryan et al., 2008). However, treatment with irradiation may produce off 820 

flavors, colors and odors and may inactivate some of the nutrients (Fan & Sokorai, 2008). It is, 821 

therefore, not accepted and endorsed for produce treatment. There are other relatively new 822 

technologies such as modified atmosphere packaging, ozone, ultrasound and ultraviolet 823 

treatments, which seem promising in ensuring the microbiological safety of fresh fruits and 824 

vegetable products (Shayanfar & Pillai, 2014). However, limited commercial applications have 825 

been described for most of these new technologies. Electron beam technology is another up-826 

and-coming treatment option, which according to experts, can play a pivotal role in mitigating 827 

some of the contemporary microbiological risks facing the produce industry (Shayanfar & 828 

Pillai, 2014; Lung et al., 2015). It is an environment friendly, cost and time effective 829 

decontamination strategy that uses low-dose ionizing radiation to treat crops (-as well as other 830 

food items), to eliminate microbial contamination. It is capable of inhibiting the germination of 831 

crops and controls the rate of ripening of fruits and vegetables, thereby extending their shelf 832 

life (Lung et al., 2015). It inhibits a variety of enteric pathogens without compromising food 833 

sensory and nutritional qualities and can be used in combination with other traditional or non-834 

traditional food processing technologies (Lung et al., 2015). Regulatory authorities such as the 835 

US Food and Drug Administration have approved it, but the full import of the safety of use is 836 

not yet conclusive.  837 

Given the amount of evidence indicating that enteric pathogens (that are not plant 838 

pathogens) can invade and be internalized into plants, it is important to understand how such 839 

microbes establish access to plant tissues, as this may facilitate the development of strategies 840 

to reduce internalization. For successful colonization, major interactions take place between 841 

pathogens and their plant hosts that determine the success of the pathogenic attack (Warriner 842 

& Namvar, 2010). Many enteric pathogens have devised mechanisms to overcome plants’ basal 843 

defense mechanisms and innate immune responses (Lim et al., 2014). Plants first line of 844 
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response to foreign invasion is by the innate immune system. This consists of two main 845 

branches: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). In the first 846 

stage, microorganism associated molecular patterns (PAMPs or MAMPs such as flagellin, 847 

peptidoglycan, lipopolysaccharide) are identified by plant host receptors popularly known as 848 

Pattern Recognition Receptors (PRRs) (Deering et al., 2012). These batteries of receptors 849 

deployed by the host are designed to curb the growth and spread of the pathogen (Ausubel, 850 

2005). PTI response is broad-spectrum; sensitive to molecules familiar to many classes of 851 

microorganisms including non-pathogens. Upon recognition, plant defense signal pathways are 852 

activated among which, jasmonate, salicylic acid and ethylene play essential roles.  853 

Virulent plant pathogens may through diverse strategies, such as the production and 854 

secretion of effectors, efficiently override PTI, for example, there are some ‘effectors' that can 855 

overcome PTI by interfering with MAMP detection and subsequent defense signaling (Kazan 856 

& Lyons, 2014). This results in effector-triggered susceptibility (ETS). For susceptible 857 

interactions, effectors produced and released by the microorganism are transferred into the plant 858 

cell through the TTSS (Type III Secretion System). Specific nucleotide-binding leucine-rich-859 

repeat (NB-LRR) proteins encoded by resistance genes, resulting in ETI and limitation of 860 

pathogen transmission to other tissues, recognize these effectors. While PTI is considered the 861 

first line of defense against pathogenic infection, ETI is an accelerated and amplified response, 862 

the outcome of which is often a hyper-sensitive response (HR) (Spoel & Dong, 2012).  863 

The ability of pathogenic bacteria to colonize a plant may also be influenced by their 864 

interactions with other microorganisms either positively or negatively (Deering et al., 2012). If 865 

other microorganisms supply carbon sources (via degradation of cell wall polymers or induced 866 

secretion of sugars), or sequester antimicrobials, this can enhance pathogen colonization (Bais 867 

et al., 2006; Warriner et al., 2009; Augimeri et al., 2015). Alternatively, plant pathogens that 868 

wound or destroy living tissue may create a microenvironment that is suitable for the survival 869 
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and/replication of human pathogens (Rashid et al., 2016). Pathogens are often associated more 870 

with plants whose tissues have been damaged by soft-rot pathogens compared to those with 871 

healthy tissues (Brandl, 2008). Before pathogenic bacteria can colonize the surface or interior 872 

of a plant host, they have to contend with the naturally occurring microflora that is already 873 

established (Deering et al., 2012). The ability of the indigenous bacterial community to inhibit 874 

the growth of introduced enteric pathogens has been demonstrated by numerous studies (Liao 875 

& Fett, 2001; Matos & Garland, 2005; Schuenzel & Harrison, 2002; Cooley et al., 2003; 876 

Johnston et al., 2009).  877 

There is direct evidence that the stomata play essential roles in internalization, host 878 

immunity and pathogen virulence of pathogens (Kroupitski et al., 2009; Zeng et al., 2010). 879 

Some researchers have reported that plant stomata close in response to plant pathogens and 880 

some human pathogens (Melotto et al., 2008; Roy et al., 2013). Escherichia coli O157:H7 has 881 

been reported to trigger stomatal closure even under high relative humidity, a stressful 882 

environmental condition that generally weakens plant defenses against bacteria in field and 883 

laboratory conditions (Roy et al., 2013).   884 

 Stomata closure could be triggered by certain peptides such as flg22 produced by 885 

bacterial flagellin and lipopolysaccharides which are recognized by PAMPs or MAMPs in a 886 

salicylic acid-dependent manner.  In the case of some plant pathogens such as Xanthomonas 887 

spp. and Pseudomonas syringae, virulence factors produced are capable of overcoming this 888 

innate immunity and counter stomata defense. For example, Pst DC3000 and several other 889 

pathovars of Pseudomonas syringae, produce coronatine (COR), a phytotoxin which can 890 

reverse stomatal closure induced by bacteria or MAMPs (Zeng et al., 2010). Stomatal immunity 891 

can diminish the penetration of human pathogens through the leaf epidermis, resulting in low 892 

bacterial titers in the plant apoplast (Roy et al., 2013). However, plant defense responses 893 

induced by pathogens vary and plants may recognize and respond to some human pathogens 894 
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more effectively than others (Roy et al., 2013). For example, comparison of plant defense 895 

responses induced by E. coli O157:H7 and S. Typhimurium SL1344 in Arabidopsis thaliana 896 

and lettuce (Lactuca sativa) revealed some variations. While E. coli O157:H7 triggered 897 

stomatal closure, SL1344 only induced a transient stomatal immunity. Also, PR1 gene 898 

expression was significantly higher in Arabidopsis leaves infected with E. coli O157:H7 899 

compared with SL1344 (Roy et al., 2013). 900 

Although, numerous studies have examined the intricacies of internalization in fresh 901 

produce, many of these are laboratory based. The few available field studies, which have mostly 902 

studied E. coli, indicate that internalization of pathogens may be not be very common in field 903 

settings (Zhang et al., 2009; Erickson et al., 2010b; Erickson et al., 2013; Erickson et al., 904 

2014b). More field studies are therefore, required to properly understand the 905 

potential/likelihood of enteric pathogens to internalize in fresh produce as well as the actual 906 

factors that influence the success of internalization.  907 

5. Precautions to reduce bacterial contamination of produce in the field. 908 

To successfully achieve an acceptable level of microbiological safety for fresh produce, 909 

it is essential to control environmental contamination in the field by taking appropriate pre-910 

harvest precautions. One fundamental factor to consider is the state or quality of the growing 911 

fields. Fields on which wild or domestic animals have been recently grazed that have been 912 

subjected to flooding or may have been previously contaminated with manure constitute an 913 

unacceptable microbiological risk (Turbé et al., 2010). Therefore, growers need to scrupulously 914 

investigate land history when selecting a location for produce cultivation (Islam et al., 2004a, 915 

b). Cultivation areas should be safeguarded from flooding, and fecal contamination and manure 916 

should be adequately treated (using popular methods like composting and aging) before 917 

application as fertilizer. Also, suitable buffer zones (physical barriers) such as mounds, 918 

diversion berms, vegetative buffers as well as ditches should be erected between animal grazing 919 
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regions and produce cultivation areas (James, 2006; Olaimat & Holley, 2012). Appropriate 920 

livestock waste disposal and farm general waste management should be adopted to ensure 921 

safety. 922 

Numerous experts have highlighted the need for monitoring, regulation and control of the 923 

microbiological quality of irrigation water. Several regional and international standards exist 924 

for irrigation water use and practices to prevent incidence of bacterial contamination. The use 925 

of potable water for irrigation (and other cultivation operations) is highly recommended. 926 

Certainly, this is not economical in many instances and may increase production costs, which 927 

will raise prices; it is however, pertinent to public health safety. In developing countries, a 928 

myriad of safety regulations exists such as cessation of irrigation prior to harvesting, lowering 929 

of watering cans to reduce splashes from (contaminated) soil, adoption of furrow irrigation 930 

system over the use of sprayers which expose edible portions of leafy vegetables directly to 931 

irrigation water, and so on (Keraita et al., 2010; Amoah et al., 2011; Uyttendaele, 2015). In 932 

cases where surface water is the irrigation water source, drainage of contaminated water into 933 

the surface water reservoir may be prevented by constructing ditches, buffer strips, as well as 934 

retention and drainage systems. Potential overflow points should be identified and eliminated. 935 

It is also important to determine (potential) points of contamination because control measures 936 

are bound to be more effective if focused on eliminating contamination at the source 937 

(Madramootoo et al., 1997; Pachepsky et al., 2011). Irrigation wells, functional septic, water 938 

and sewage systems should be installed and properly maintained especially during periods of 939 

excessive rainfall to prevent pathogen contamination (Buck et al., 2003; Olaimat & Holley, 940 

2013). Surface and groundwater resources should be protected from any potential sources of 941 

contamination including wildlife, animal waste, agricultural run-off, human activity, sewage, 942 

or industrial effluents. Other management practices like; removal of riparian areas, erection of 943 

fences, and treatment of irrigation water (for example, using UV treatment) can be considered 944 
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to enhance safety assurance of irrigation water. These precautions will minimize contamination 945 

risks on produce farms and should be applicable not just to supposed high-risk crops (such as 946 

leafy greens) but all produce (squash, and others) (Strawn et al., 2013 b). Implementing some 947 

of these may, however, be costly and have negative impacts on landscape health. Irrigation 948 

water sources should be routinely monitored to ensure microbiological safety (Brackett, 1999; 949 

Islam et al., 2004b). Ideally, there should be more regular reporting on the microbiological 950 

quality of irrigation waters in different world regions. Such surveys should reflect the true levels 951 

of actual pathogens rather than indicators, and bias should be avoided towards contaminated 952 

samples by intensively monitoring every irrigation source possible, and not just sites where 953 

extensive contamination has been known to occur (Stoeckel, 2009). 954 

As part of a total package of hygiene measures to prevent the transfer of foodborne 955 

pathogens, wild animals, birds, flies and rodents should be controlled in cultivation areas. 956 

Interventions to mitigate wildlife intrusion of a farm may be costly and not entirely effective, 957 

especially if not done properly, thereby allowing certain animals direct access to crops. In many 958 

cases, it is not economical to fence large farms, but small farms can be fenced to restrict wild 959 

animals (Jung et al., 2014). Other mechanical/biological control methods include the use of 960 

scarecrows, reflective strips, monitoring of animal tracks and field intrusion as well as gunshots 961 

to ward off pests and animals. Mechanical traps and baits can be used to control mice and 962 

rodents. Overall, practical, cost-effective methods should be adopted to mitigate wild sources 963 

and routes of produce contamination. 964 

Considering that, in many important outbreaks, vegetable seed sprouts have been 965 

implicated as the initial inoculum source, the elimination of bacteria from seeds before planting 966 

has become crucial (Buck et al., 2003). Chemical or physical treatment methods are usually 967 

used to decontaminate seeds, in a bid to reduce the risks of sprout borne disease outbreaks.  968 

However, this poses some challenges for growers, as the chosen decontamination method has 969 
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to fulfill certain conditions. One important consideration is the preservation of seed viability. 970 

Selected treatment dosage should be able to inactivate pathogens without adversely affecting 971 

seed viability (Buck et al., 2003). Also, the treatment must be able to penetrate and access 972 

bacteria that may be residing in protected seed tissues, and finally, certain treatments may be 973 

inactivated by seeds, rendering them less effective (Buck et al., 2003). Nevertheless, the 974 

efficacy of chemical seed treatments for sprout seed including chlorine compounds (commonly 975 

calcium and sodium hypochlorite), ethanol, hydrogen peroxide, calcium EDTA, 4-976 

hydroxybenzoic acid, ozonated water and other commercial disinfectants have been extensively 977 

documented. It is also possible to use gaseous chemicals and thermotherapy (e.g., hot water 978 

treatment), although excessively high temperatures may affect sprout vigor. Another potential 979 

issue with hot water treatment is that when treating large batches of seed, it is practically 980 

impossible to achieve temperature uniformity throughout the water bath. Therefore, while a 981 

portion of the seeds receives the appropriate temperature-time exposure, some will still contain 982 

viable bacteria after ‘treatment.' Also, there is a potent risk of cross-contamination with this 983 

technique. Other viable options include seed treatment with bacteriophage, combinations of 984 

thermotherapy with chlorine and the use of ionizing radiation. Radiation is particularly 985 

appealing because it can penetrate seed tissues and possibly eliminate bacteria localized within 986 

protected tissues (Buck et al. 2003). However, it has been postulated that high levels of 987 

irradiation may distort the physiology and organoleptic properties of seedlings, more research 988 

is therefore, needed to evaluate the prospects and risks of this approach. Other precautionary 989 

measures include testing seed lots for purity and germination rate prior to marketing, proper  990 

warehouse storage (in metal bins) until bagged, as well as ensuring general facility sanitation 991 

and employee hygiene (National Advisory Committee on Microbiological Criteria for Foods, 992 

1999).  993 
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Safety criteria and regulations are mostly region specific, it is however, critical to enforce 994 

these regulations, ensure that growers adhere to such and there is a need to constantly improve 995 

standards; if new information becomes available, regulations should immediately be updated 996 

(Köpke et al., 2007). Most of the available data is from the developed world mainly from the 997 

US and certain parts of Europe. It is necessary to develop surveillance and tracking systems and 998 

generate robust databases for other regions as well. More studies should be conducted under 999 

field conditions, rather than laboratory or greenhouse simulations, as this will provide a better 1000 

understanding of how enteric pathogens behave in agricultural production environments.  1001 

Finally, and more importantly, it is necessary to ensure producers are mindful of their 1002 

roles in assuring food safety. Growers should be encouraged to adopt the best possible 1003 

agricultural practices to ensure produce safety. It is also important to enlighten consumers about 1004 

possible risks and appropriate mitigation strategies. There are wrong notions and 1005 

misconceptions, which have to be corrected promptly, for example, many people believe it is 1006 

not necessary to wash organically grown fruits and vegetables (Leifert et al. 2008).  1007 

 1008 

6. Research recommendations 1009 

6.1. Epidemiology 1010 

It is evident that epidemiologic investigations are worthwhile as public health directives 1011 

and policies based on investigation output have averted impending foodborne disease crises in 1012 

many cases. The relevance of epidemiological surveys globally and regionally, therefore, 1013 

cannot be overemphasized. This means that epidemiological investigation tools and systems 1014 

need to be objective, updated, precise, flexible and timely. While significant progress has been 1015 

achieved in the area of epidemiology, there are still certain cracks that need to be addressed. 1016 

The use of routine, optimized clinical pathogen identification techniques may mean that new 1017 

pathogens may likely be missed. This is a potentially grave issue, because periodically, since 1018 
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the development of foodborne disease surveillance, the list of foodborne pathogens has 1019 

continued to expand. Care should, therefore, be taken to avoid research bias since it is likely 1020 

that produce items that have been previously associated with foodborne illness outbreaks and 1021 

product recalls may receive particular scrutiny. New pathogens emerge due in part, to evolving 1022 

ecology and technology while already recognized strains continue to evolve, potentially 1023 

becoming smarter, evading and subverting detection, sanitization and plant host defenses. It is 1024 

important to further understand the evolution dynamics and emergence of new pathogens, as 1025 

well as develop and optimize methods to meet the emerging challenges. 1026 

6.2. Understudied pathogens 1027 

Awareness and surveillance of viral and parasitic enteric pathogens need to be more 1028 

robustly developed. Although Noroviruses, Hepatitis A, Rotaviruses as well as certain 1029 

emerging viruses such as SARS are well known, they are rarely routinely screened for in fresh 1030 

produce in most countries. Also, their ecology in fresh produce is poorly understood, for 1031 

instance, the knowledge of the stability and persistence of human Norovirus in foods has been 1032 

garnered mostly from the study of surrogate viruses. More importantly, their significance in 1033 

foodborne disease incidence remains undetermined. Parasitic pathogens like Ascaris, Giardia, 1034 

Entamoeba, Cyclospora, Cryptosporidia and Trichinella are recognized (Newell et al., 2010; 1035 

Robertson et al., 2014), but not all are routinely monitored in produce. 1036 

 1037 

6.3. A need for protocol consensus  1038 

The roles that livestock and wildlife play in pathogenic contamination of fruits and 1039 

vegetables as well as their epidemiology through the food chain is poorly understood. It is 1040 

difficult to compare the available studies because some have used naturally contaminated 1041 

animals, while others used experimentally inoculated animals. The exact transport/transfer 1042 

mechanisms of pathogens from animal fecal material or contaminated manure/soil to fruits and 1043 
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vegetables via splash are not yet properly understood. For example, it will be helpful to 1044 

understand the specific spatial factors that influence the transfer of pathogens from fecal pellets 1045 

to fruits and vegetables. The survival times for pathogens in fecal contaminants, manure, and 1046 

manure-amended soils are inconsistent, reflecting the varying conditions under which many of 1047 

the available studies have been conducted (These variations are demonstrated in Tables 3, 4 & 1048 

5). The fate of pathogens on the soil surface, the relationship between manure-derived 1049 

pathogens and soil particles, as well as the states in which pathogens occur in soil slurry or 1050 

manure mixtures, should be further explored. The exact mechanisms of uptake or (transmission) 1051 

of pathogens from contaminated manure or manure amended soils to plants, particularly in field 1052 

settings should be studied.  This will facilitate the design of scientifically sound produce safety 1053 

standards. The majority of studies available on pathogen transport in soils have been conducted 1054 

using homogenized natural soils in laboratory designed soil columns. These may not be a true 1055 

representation of field conditions and diversifying the experimental conditions will aid the 1056 

development of efficient, grower-level interventions that will effectively reduce the likelihood 1057 

of on-field contamination of produce.  1058 

There are dissenting opinions among experts on a variety of issues pertinent to produce 1059 

safety. With regards to the factors, mechanisms as well as principles that aid competent 1060 

internalization and persistence of pathogens on produce, there are many variations. The 1061 

available studies are difficult to compare largely because they have been conducted under 1062 

varying physicochemical circumstances, types of microcosms, experimental conditions and 1063 

used distinct strains (Shown in Tables 3, 4 & 5). Most studies were conducted under disparate 1064 

environmental conditions, and accurate weather data necessary to interpret results from the 1065 

varying sources is lacking. Study results for one crop variety may indeed not hold true for other 1066 

varieties, for instance, data for apples may not necessarily apply to all pome fruit and data for 1067 

romaine lettuce may not apply to all leafy greens. When possible, varieties exhibiting greater 1068 
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potential for pathogen survival should be selected for experimental investigations. Another 1069 

relevant consideration for crop selection is preference for varieties that are indigenous to the 1070 

region in question. Some other seemingly trivial controversial issues include whether outer 1071 

leaves are significantly more likely than inner leaves to become contaminated via splash and 1072 

whether or not the potential for survival on the abaxial side of leaves is higher than on the 1073 

adaxial side. The implications of dormant, non-dividing ‘persister’ cells occurring in certain 1074 

plant pathogens on the ability to withstand environmental stresses and extensive survival as 1075 

well as the issues surrounding linked resistance is still an important research debate. Also, even 1076 

though atmospheric deposition seems to be an uncommon route of pathogenic contamination 1077 

for produce, it has been documented as a potentially important route (Beuchat & Ryu, 1997; 1078 

Harris et al., 2003; Mei Soon et al., 2012). It will be worthwhile exploring how relevant this is 1079 

for produce safety.  1080 

While many of the available studies have made stringent efforts to simulate produce 1081 

cultivation circumstances, it is extremely challenging to create precise/accurate environmental 1082 

conditions in a laboratory setting. Most studies are conducted under controlled laboratory 1083 

conditions. Factors like the biological activity of the soil, manure, water and crops, soil and 1084 

water chemistries as well as meteorological elements such as wind, UV intensity, temperature, 1085 

rainfall are simply impossible to replicate under laboratory conditions. Laboratory scale model 1086 

systems may provide important details about the roles of environmental variables on pathogen 1087 

growth and survival in agricultural environments, but the slightest tweaks in experimental 1088 

protocols can affect pathogen survival in agroecosystems. Unfortunately, actual field-based 1089 

studies are subject to disruption from unforeseen environmental events such as weather 1090 

extremes and damage triggered by biological agents including insects or onset of plant diseases.  1091 

More field studies (where typical agricultural practices and conditions are closely 1092 

simulated) are therefore, highly desirable to further understand the persistence phenomenon. 1093 
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Safety and ethical issues however restrict the use of pathogens in the greenhouse and field-1094 

based research. Strategies to improve existing biocontainment and decontamination processes 1095 

should be developed and optimized as soon as possible. Another possible solution is to develop 1096 

and optimize strategies that will cater for the experimental variations in model system 1097 

development. An assessment and identification of environmental variables that influence the 1098 

fate of test organisms should be included in experimental designs. Despite meticulous planning 1099 

however, a field trial may fail to yield serviceable results due to factors that are out of the 1100 

researcher’s control. Consequently, more replicate trials may need to be conducted. 1101 

Furthermore, agronomic and farm management practices are not uniform in all regions, and 1102 

production practices significantly differ from region to region depending on seasons and 1103 

weather patterns within the same region. These often depend on operation scale, type of farming 1104 

practices et cetera. The risks associated with conventional cropping systems are bound to differ 1105 

from those of systems that combine intensive livestock farming with arable farming.  In addition 1106 

to general studies, a case-by-case approach should be considered where possible (if financial 1107 

and technical resources, as well as other circumstances, permit) because farming operations 1108 

vary widely from farm to farm and this influences the potential for pathogen occurrence, 1109 

survival, proliferation and dissemination.   1110 

 1111 

7. Conclusions 1112 

The potential of fresh produce to harbor pathogens is now well recognized, and fresh 1113 

produce has been established as a vehicle of foodborne disease. The diverse and complex 1114 

sources and routes of enteric pathogens to fruits and vegetables have been widely researched. 1115 

The interplay of land use, water management, weather patterns and specific pathogen properties 1116 

and sources have been illustrated to have significant consequences for the microbiological 1117 

safety of fresh fruits and vegetables. Attempts have been made to understand the general 1118 
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microbial profile of fresh produce, the behavior, fate and transport of pathogens, as well as their 1119 

location in and on plant parts. The facts gleaned from these studies have been the subject of 1120 

many extensive reviews. There is abundant information about the factors that affect the 1121 

contamination and persistence of pathogens on fresh produce. In light of the available evidence, 1122 

significant effort must be made to efficiently monitor and illustrate recent trends in the 1123 

occurrence of foodborne diseases associated with the consumption of fruits and vegetables. 1124 

Partnerships and collaboration among all relevant stakeholders; commercial growers, public 1125 

health practitioners, veterinary and food safety experts and field biologists is necessary in order 1126 

to ensure the safety of fruits and vegetables delivered to consumers.  1127 

On a final note, the need to control all potential pathogen entry pathways has been 1128 

established and is being continuously stretched by regulators and other specialists. There are 1129 

numerous other factors along the food production chain that may predispose produce to 1130 

microbial contamination. However, it is of utmost importance to avoid and control microbial 1131 

contamination of produce at the pre-harvest stage. This is because contaminated manure, water 1132 

and soil have been shown to indeed contaminate produce, and decontamination of produce, 1133 

polluted arable soil and groundwater has proven to be a very challenging and expensive 1134 

endeavour. 1135 
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Figure 1: Environmental risk factors for pre-harvest produce contamination. 2244 

Figure 2: The fate of pathogens in manure amended soil. 2245 

Figure 3: Factors affecting the survival of pathogens in produce cultivation media.. 2246 
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