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Abstract

Over the last decade the classical Chorin-Témam projection method has been utilized to address
fluid-structure interaction in a semi-implicit manner. In previous studies the fluid projection step is
fully coupled with the structural motion due to the divergence-free constraint. A set of simultaneous
equations thus have to be iteratively solved. To overcome this difficulty, a simple and accurate parti-
tioned semi-implicit coupling method is proposed based on the artificial compressibility (AC) in this
paper. The iterated AC parameter decouples the pressure, end-of-step velocity and structural motion
within the characteristic-based split scheme. The present approach is completely matrix-free and has
unlimited access to the finite elements. Its performance is demonstrated for an oscillating bluff body
subjected to uniform flows.

Keywords: Fluid-structure interaction, Semi-implicit coupling, Artificial compressibility, Projection
method, CBS

1. Introduction

Since the breakthrough made by Chorin and Témam [1, 2] in the late 1960s for computational
fluid dynamics, the projection method has long been regarded as a powerful tool to simulate the time-
dependent, incompressible viscous fluid flows. The Chorin-Témam projection method is based upon
the Helmholtz-Hodge decomposition such that the initial fluid problem degrades into a sequence of5

decoupled elliptic equations solved for velocity and pressure variables. As expected, the projection
method widely serves as a fluid subsolver in partitioned fluid-structure interaction (FSI) simulations
under the arbitrary Lagrangian-Eulerian (ALE) description [3–6]. Logically, the method sheds light
on pressure segregation from the global FSI system [7].

By contrast, Fernández et al. [8] devised a smart use of the classical Chorin-Témam projection10

method for predicting hemodynamic FSI. The resultant method is referred to as the projection-based

partitioned semi-implicit coupling scheme which characterizes an intrinsic explicit-implicit treatment.
To be specific, the ALE advection-diffusion step is explicitly handled with a predicted mesh whereas the
fluid projection step is implicitly coupled with the structural motion on the mesh frozen temporarily.
In comparison with implicit coupling scheme, the semi-implicit coupling scheme improves numerical15

efficiency without affecting stability too much [8]. The semi-implicit concept has since been exploited
for a variety of FSI algorithms, refer to [9] for comprehensive literature survey. Basically, partitioned
semi-implicit coupling methods are grouped into two categories: projection-based and non-projection-
based schemes. The present attention is paid to the former that is somewhat distinguished from the
traditional three-field formulation [10].20

Despite decent progress, the projection-based semi-implicit coupling algorithm remains far away
from being perfect. In what follows, the relevant solution procedures are briefly recalled. A monolithic
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formulation of the fluid projection step and the structural motion is cast via iteratively solving a set of
linearized algebraic equations in [8]. Subsequently, a coupled pressure-interface system is established
after discretizing and linearizing the fluid-structure system [11]. As a matter of fact, the semi-implicit25

formulation is processed into the compact form at a partly monolithic level, seen from [8, 11]. To
construct the fraction-step semi-implicit scheme, the first author introduced a mass source term (MST)
[4] into the pressure Poisson equation (PPE) within the characteristic-based split (CBS) scheme for
those elements adhering to the interface [9, 12–14]. Notwithstanding easy-to-compute metrics, the MST
is rigorously derived from the three-node triangular (T3) element. In view of the above observation, the30

following limitations of the projection-based partitioned semi-implicit coupling method are encountered

• Complex mathematical management and increased numerical expenditure resulting from the
algebraic system;
• Heavy dependence on the finite element configuration while maintaining the fractional-step mod-
ularity.35

The artificial compressibility (AC) method [15] is found a fascinating option to overcome these dif-
ficulties. The AC method modifies the continuity equation through inserting a pseudo-time derivative
of pressure. The resulting perturbed equation has no physical meaning but numerical importance to
the steady-state solution. For unsteady flows, the requisite is a dual-time stepping procedure which
implants the pseudo-time loops into the real ones. The reader is referred to several published articles40

[16–18] regarding the AC-based fractional step method.
The application of the AC method to FSI is straightforward. The one-dimensional piston interacting

with the compressible Euler flow was dealt with in [19]. De Jouëtte et al. [20] investigated the dual-
time stepping algorithm for both physical ingredients, where the rigid-body resolution seems involved.
Teixeira and Awruch [21] utilized the explicit AC-based scheme to work out the slightly compressible45

fluid flows interacting with the flexible solid. Among these studies, the AC coefficient is constant
and even very large, probably rendering slow convergence rate and prohibitive time step size. For
this reason, the time-varying, finite AC coefficient is advocated in researches. The test load method
[22, 23] formulates analytical expressions of the AC coefficient for a straight tube. The idea behind [24]
rests with the persistent estimate of the AC coefficient near the wetted interface to produce superior50

convergence behavior. The interface AC method is easily extended to black-box solvers [24, 25] and
open-source codes [26]. On the other hand, the AC coefficient can be defined on the ground of flow
velocity in tandem with a user-specified parameter [27, 28]. Obviously, the pseudo-time iterations
incur expensive coupling algorithm and a tip to cure this issue contains the mergence of pseudo-time
iterations and coupling subiterations [29].55

In order to make possible the AC-type partitioned semi-implicit coupling algorithm, we must ac-
commodate the PPE at the implicit coupling stage and minimize numerical efforts on a general finite
element mesh. Here implicit subiterations between the fluid projection step and structural motion at
each time step are considered as the pseudo-time iterations. Then a suitable AC coefficient is dynam-
ically determined to refrain from the inferior results. The decoupled FSI system pursues a completely60

matrix-free, efficient computation because no couple pressure-interface system should be linearized.
Despite that the way of using the AC is standard, the application of the AC to the projection-type
partitioned semi-implicit coupling scheme is novel and new. The proposed approach takes advantage
of good features from both AC and semi-implicit schemes. Here we focus on a rigid body oscillating
in uniform flows for practical importance.65

The layout of this paper is organized as follows. Section 2 depicts governing equations of the
coupled FSI system. The AC-based semi-implicit coupling scheme is presented in Section 3. Numerical
examples are investigated in Section 4. Concluding remarks are drawn in the final section.

2. Mathematical models

2.1. Incompressible fluid flows70

Let ΩF
t ⊂ R

2 and (0, T ) be the fluid and temporal domains, respectively. ΩF
t is bounded by

ΓF
t which is decomposed into three complementary subsets, i.e., the Dirichlet-type boundary ΓF

D, the
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Neumann-type boundary ΓF
N and the fluid-structure interface Σ. The spatial and temporal coordi-

nates are denoted by x and t. The Navier-Stokes equations under the ALE description governing the
incompressible fluid flows on a moving domain may be written as

ρ

(
∂u

∂t
+ c · ∇u

)
−∇ · σ = 0 on ΩF

t × (0, T ), (1)

∇ · u = 0 on ΩF
t × (0, T ), (2)

where the primitive variables are the velocity u and the pressure p, ρ denotes the fluid density, c = u−w
is the convective velocity, w is the mesh velocity, σ is the fluid stress tensor and ∇ means the gradient
operator.

The constitutive equation for a Newtonian fluid is written as

σ = −pI+ 2µǫ and ǫ =
1

2

(
∇u+ (∇u)T

)
, (3)

where I indicates the identity tensor, µ is the fluid viscosity, ǫ is the rate-of-strain tensor and superscript
T indicates transpose.75

The fluid problem is completed by prescribing boundary and initial conditions below

u = g on ΓF
D, (4a)

σ · n = h on ΓF
N, (4b)

u(x, 0) = u0, p(x, 0) = p0 on ΩF
0 , (4c)

where n is the unit outward normal of ΓF
N.

In order to facilitate the fluid calculation, the following dimensionless scales are defined

x∗ =
x

D
, t∗ =

tU

D
, u∗ =

u

U
, c∗ =

c

U
, p∗ =

p

ρU2

based on the free stream velocity U and the characteristic length D. By employing these scales and
dropping all asterisks, the dimensionless version of the Navier-Stokes equations is obtained as follows

∂u

∂t
+ c · ∇u−∇ · σ = 0 on ΩF

t × (0, T ), (5)

∇ · u = 0 on ΩF
t × (0, T ), (6)

together with the constitutive relation

σ = −pI+ 1

Re

(
∇u+ (∇u)T

)
, (7)

where Re = ρUD/µ is the Reynolds number. Eqs. (5)–(7) are tackled by the projection strategy
below

Step 1: Calculate the auxiliary velocity

ũ− un

∆t
= −cn · ∇un +

1

Re
∇2un, (8)

Step 2: Update the pressure

∇2pn+1 =
1

∆t
∇ · ũ, (9)
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Step 3: Correct the velocity

un+1 − ũ

∆t
= −∇pn+1, (10)

where ∆t is the time step.
Necessary stabilization may be added into the above steps to suppress wiggles caused by the80

convection and to stabilize the pressure, such as [30, 31]. The CBS scheme [6, 32] is adopted for
the fluid problem since (i) it allows for the equal velocity-pressure interpolation; (ii) its stabilization
parameter is independent of the local element size; and (iii) it can work in a matrix-free way. After
the temporal discretization, the standard Galerkin finite element method is employed to discretize
Eqs. (8)–(10) in space.85

2.2. Structural motion

We consider ΩS
t ⊂ R

2 a structural domain with the boundary ΩS
t . A rigid structure immersed in a

fluid is modeled as a spring-damper-mass system under the isotropic assumption. d = {d1, d2, θ}T
signifies the structural displacement where all components are defined at the center of gravity G, and
subscripts 1, 2 and θ designates the horizontal, vertical and rotational directions (Fig. 1). Along
with proper boundary and initial conditions, the equation of structural motion is formulated in the
Lagrangian kinematics below




m1

m2

mθ



 d̈+




c1

c2
cθ



 ḋ+




k1

k2
kθ



d = F, (11)

where the dot illuminates the time derivative, mi, ci and ki stand for the mass, damping and stiffness
of the structure, F = {FD, FL, FM}T is the fluctuating fluid force, FD, FL and FM mean the drag,
lift and pitching moment, respectively.

The compatibility condition [33] must be satisfied between the center of gravity G and the surface
point P. As pictured in Fig. 1, the geometric relation between d and dP is written in the component
form as follow

{
dP1
dP2

}
=

{
d1
d2

}
+

[
cos θ − 1 − sin θ
sin θ cos θ − 1

]{
xP
1

xP
2

}
, (12)

where dP is the displacement of P and {xP
1 , xP

2 }T is the coordinates of P.90

By differentiating Eq. (12) with respect to t, the velocity relation is expressed as

{
ḋP1
ḋP2

}
=

{
ḋ1
ḋ2

}
+ θ̇

[
− sin θ − cos θ
cos θ − sin θ

]{
xP
1

xP
2

}
=

[
1 0 −LP

2

0 1 LP
1

]


ḋ1
ḋ2
θ̇



 , (13)

where LP
1 = xP

1 cos θ − xP
2 sin θ and LP

2 = xP
1 sin θ + xP

2 cos θ are the angle-dependent coefficients.
Similarly, the following acceleration relation is obtained by differentiating Eq. (13) in terms of time

{
d̈P1
d̈P2

}
=

{
d̈1
d̈2

}
+ θ̈

[
− sin θ − cos θ
cos θ − sin θ

]{
xP
1

xP
2

}
+ θ̇2

[
− cos θ sin θ
− sin θ − cos θ

]{
xP
1

xP
2

}

=

[
1 0 −LP

2

0 1 LP
1

]



ḋ1
ḋ2
θ̇




−
[
LP
1

LP
2

]
θ̇2. (14)

The dimensionless scales

x∗ =
x

D
, t∗ =

tU

D
, d∗1 =

d1
D

, d∗2 =
d2
D

,
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CD =
2FD

ρU2D
, CL =

2FL

ρU2D
, CM =

2FM

ρU2D2
,

m∗

1 =
m1

ρD2
, m∗

2 =
m2

ρD2
, m∗

θ =
mθ

ρD4

and the reduced parameters

ξ1 =
c1

2
√
m1k1

, ξ2 =
c2

2
√
m2k2

, ξθ =
cθ

2
√
mθkθ

,

fR1 =
fN1D

U
, fR2 =

fN2D

U
, fRθ =

fNθD

U
,

fN1 =
1

2π

√
k1
m1

, fN2 =
1

2π

√
k2
m2

, fNθ =
1

2π

√
kθ
mθ

are computed to nondimensionalize Eq. (11), where the drag coefficient CD, the life coefficient CL and
the moment coefficient CM are the dimensionless applied forces, the mass ratio m∗

i is the dimensionless
mass, ξi is the damping ratio, fRi is the reduced natural frequency, and fNi is the natural frequency. By
considering the above variables without superscript asterisks, the dimensionless equation of structural
motion is written as

d̈+ 4π




fR1ξ1

fR2ξ2
fRθξθ



 ḋ+ 4π2




(fR1)

2

(fR2)
2

(fRθ)
2



d =





CD

2m∗

1
CL

2m∗

2
CM

2m∗

θ





. (15)

The time marching scheme utilizes the Generalized-α method [34] to advance the structural move-
ment in time. For this reason, the semi-discrete Eq. (15) is applied to a general mid-point within the
time interval, implying that the following modified equation holds

Md̈n+1−αm +Cḋn+1−αf +Kdn+1−αf = Fn+1−αf , (16)

where

d̈n+1−αm = (1 − αm)d̈n+1 + αmd̈n, (17a)

ḋn+1−αf = (1− αf )ḋ
n+1 + αf ḋ

n, (17b)

dn+1−αf = (1− αf )d
n+1 + αfd

n, (17c)

Fn+1−αf = (1− αf )F
n+1 + αfF

n. (17d)

To set dn+1 as the single unknowns in Eq. (16), the Newmark approximations [35] to the acceler-
ation and velocity at new time step are stated as

d̈n+1 =
1

β∆t2
(dn+1 − dn)− 1

β∆t
ḋn − 1− 2β

2β
d̈n, (18)

ḋn+1 =
γ

β∆t
(dn+1 − dn)− γ − β

β
ḋn − γ − 2β

2β
∆td̈n. (19)

Accordingly, the generalized mid-point acceleration and velocity are given by

d̈n+1−αm =
1− αm

β∆t2
(dn+1 − dn)− 1− αm

β∆t
ḋn − 1− αm − 2β

2β
d̈n, (20)
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ḋn+1−αf =
(1− αf )γ

β∆t
(dn+1 − dn)− (1− αf )γ − β

β
ḋn − (γ − 2β)(1− αf )

2β
∆td̈n. (21)

The time integration parameters β, γ, αm and αf are defined as functions of the spectral radius ρ∞
[34], and the optimal expressions are specified by

β =
1

4
(1− αm + αf )

2, γ =
1

2
− αm + αf , αm =

2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, (22)

where 0 6 ρ∞ 6 1 for the desired level of numerical dissipation. In accordance with [36], ρ∞ = 0.1 is
prescribed throughout this paper.

2.3. Mesh deformation method

Our mesh deformation method adopts a blend of the moving submesh approach (MSA) [37] and
the ortho-semi-torsional spring analogy method (OST-SAM) [38]. Its fundamental principle comprises95

two steps below

• The OST-SAM assimilates the triangle submesh to the structural motion;
• The MSA creates a mapping between the deformation of the coarse submesh and that of the fine
fluid mesh.

Interested readers are recommended to refer to [6, 39, 40] for thorough implementation. It is worth100

pointing out that the present approach is capable of significantly depressing time consumption of
OST-SAM, as will be shown later.

2.4. Interface conditions

In partitioned FSI calculation, the interplay between the fluid and the structure is accomplished
via separately enforcing the velocity continuity and the traction equilibrium on Σ as follows

u = ḋ and tF = tS, (23)

where tF = σ
F · nS and tS = σ

S · nS are the fluid and structural tractions respectively, nS represents
the unit outward normal of Σ pointing from the structure to the fluid and nF = −nS. Note that the
external force acting on a rigid body by its surrounding fluid is a concentrated load vector. Hence the
stress equilibrium on Σ becomes

∫

Σ

tFdΓ =

∫

Σ

tSdΓ and

∫

Σ

∆x× tFdΓ =

∫

Σ

∆x× tSdΓ, (24)

where ∆x is the distance between the surface point and the center of gravity, see Fig. 1 for reference.
The geometric continuity should be supplemented owing to the dynamic mesh motion

x = d and w = ḋ. (25)

Besides, Eq. (23)–(25) may be imposed by adding interfacial corrections to eliminate the time lag
effect [41, 42].105

2.5. PPE-based partitioned semi-implicit coupling algorithm

Following the approach proposed in [8], the projection-based partitioned semi-implicit coupling
algorithm based on the PPE is described in the following fractional-step sense

Step 1: Initialize all variables
Step 2: Perform the explicit coupling phase110

2.1: Extrapolate the position of the interface [43]

x̃n+1
Σ = xn

Σ +∆t

(
3

2
ẋn
Σ −

1

2
ẋn−1
Σ

)
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2.2: Renew the fluid mesh
2.3: Compute the intermediate velocity

ũ− un

∆t
+ cn · ∇un − 1

Re
∇2un = 0

Step 3: Perform the implicit coupling phase

3.1: Update the pressure

∇2pn+1 − 1

∆t
∇ · ũ = 0

3.2: Correct the end-of-time-step velocity

un+1 − ũ

∆t
+∇pn+1 = 0

3.3: Solve the structural equation

Md̈n+1−αm +Cḋn+1−αf +Kdn+1−αf = Fn+1−αf

It is clearly seen that, Step 3.1 is excluded from the implicit coupling stage because the pressure update
explicitly relies on the auxiliary velocity. As stated in Section 1, the previously published works do
not only deprive the projection method of the modularity but also demand further mathematical115

managements. Besides, the transplant of the scalar term [4] into the PPE within the CBS scheme is
heavily confined to the T3 element. To circumvent these deficiencies, a simple and efficient alternative
algorithm is provided in the next section.

3. AC-based partitioned semi-implicit coupling algorithm

3.1. Quasi-incompressible fluid flows120

Let us consider the quasi-incompressible viscous fluid flows. To utilize our in-house code with
minimal revision, the non-iterative AC [16] is adopted for the fluid model. Specifically, the continuity
equation (2) is modified by inserting a pressure time derivative such that

1

c2
∂p

∂τ
+∇ · u = 0 on ΩF

t × (0, T ), (26)

where c is the AC coefficient (c→∞ for incompressible fluid flows) and τ designates the pseudo-time
variable. Note that c is a variable which connects the fluid projection step to the implicit coupling
phase. Here we make the pseudo-time step ∆τ equal to the physical time step ∆t. The triple loops
are thus avoided in the partitioned iterative coupling scheme.

3.2. AC-CBS scheme125

The AC-CBS scheme is technically a non-projection variant as the incompressibility constraint is
not fulfilled. However, it is rather similar to the classical Chorin-Témam projection method and offers
the footstone of our semi-implicit coupling technique. It is straightforward to elaborate the procedure
of the AC-CBS scheme [32] as follows

Step 1: Calculate the auxiliary velocity

ũ− un = ∆t

(
−cn · ∇un +

1

Re
∇2un +

∆t

2
cn · ∇(cn · ∇un)

)
, (27)

Step 2: Update the pressure

(
1

c2

)n

(pn+1 − pn) = −∆t
(
∇ · ũ−∆t∇2pn

)
, (28)
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Step 3: Correct the velocity

un+1 − ũ = −∆t

(
∇pn − ∆t

2
cn · ∇2pn+φ

)
, (29)

where φ = 1 is selected to stabilize the last step via the updated pressure.130

Further to c, it is natural to make use of the formula suggested by Nithiarasu [32, 44]. However,
Nithiarasu’s formula may underestimate the numerical results on this occasion as recovering real tran-
sient solution is not organized in the momentum equation. It is found that the better performance is
achieved via the value locally determined from [27]

c2 = max(ε2, 2.5|u|2), (30)

where ε is typically chosen to 1. In addition, the following inequality may be respected

c2 ≫
(
1 +

4D

Re

)2

− 1, (31)

for low-speed incompressible flows [18].
The boundary conditions are treated in compliance with [17, 45]: no velocity boundary condition

is enforced in Step 1 while the rest are handled as usual.

3.3. The proposed algorithm

The AC-CBS-based partitioned semi-implicit coupling algorithm is suggested in the fashion similar135

to [9, 14]. Fixed-point iteration is carried out to couple the fluid projection step and the structural
motion, which may be accelerated by Aitken’s ∆2 technique [46] owing to its attractive simplicity and
efficiency. The procedure of the proposed semi-implicit algorithm is particularized in the following.

Step 1: Initialize all variables and set k = 0
Step 2: Perform the explicit coupling phase140

2.1: Extrapolate the position of the interface

(x̃Σ)
n+1

k = xn
Σ +∆t

(
3

2
ẋn
Σ −

1

2
ẋn−1
Σ

)

2.2: Rearrange the fluid mesh
2.3: Calculate the mesh velocity and other geometric quantities

wn+1
k =

x̃n+1
k − xn

∆t

2.4: Compute the intermediate velocity

un+1
k − un = ∆t

(
−cn · ∇un +

1

Re
∇2un +

∆t

2
cn · ∇(cn · ∇un)

)

Step 3: Perform the implicit coupling phase

3.1: Set k ← k + 1
3.2: Assess the AC coefficient cn+1

k−1

3.3: Update the fluid pressure

(
1

c2

)n+1

k−1

(pn+1
k − pn) = −∆t

(
∇ · un+1

0 −∆t∇2pn
)
,

3.4: Correct the fluid velocity

un+1
k − un+1

0 = −∆t

(
∇pn − ∆t

2
cn · ∇2pn+1

k

)
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3.5: Solve the structural equation
(
1− αm

β∆t2
M+

(1− αf )γ

β∆t
C+ (1− αf )K

)
dn+1
k = (1− αf )F

n+1
k + αfF

n+

M

(
1− αm

β∆t2
dn +

1− αm

β∆t
ḋn +

1− αm − 2β

2β
d̈n

)
+

C

(
(1− αf )γ

β∆t
dn +

(1− αf )γ − β

β
ḋn +

(1 − αf )(γ − 2β)

2β
∆td̈n

)
−Kαfd

n

3.6: Estimate the interfacial residuals

gk =
∣∣ (xΣ)

n+1

k − (x̃Σ)
n+1

k−1

∣∣

3.7: Check the convergence and the maximum number of subiterations:145

if not convergent, then go ahead; otherwise, proceed to the next time step
3.8: Relax the interface’s position

(x̃Σ)
n+1

k = λ (xΣ)
n+1

k + (1− λ) (x̃Σ)
n+1

k−1

3.9: Calculate the mesh velocity as the boundary condition of the fluid projection step

(wΣ)
n+1

k =
(x̃Σ)

n+1

k − xn
Σ

∆t

3.10: Return

Since the mass matrices are lumped for all three steps of the AC-CBS scheme, the resulting solution
procedure retains completely matrix-free. The algorithm is free from the requirement for finite element,
without incorporating the MST [4, 9]. Besides, the geometric conservation law may be automatically150

satisfied by the stabilized finite element method, provided that the mid-point rule is applied to the mesh
velocity [47]. As seen above, multiple convergence standards [5, 29] are never required for various field
quantities because of the AC coefficient iterated in the implicit part. The flowchart of the developed
algorithm is displayed in Fig. 2.

4. Test problems155

4.1. Efficiency examination of mesh updating

This subsection carries out a simple test to disclose the efficiency of our mesh deformation method.
An square box with a small block inside is meshed into 55702 T3 elements and 28251 points in Fig. 3.
The box is of size 1 × 1 while the block’s geometry is 0.2 × 0.2. The block is moving towards the
right with a given speed of 1/200 until any T3 elements penetrates. Two submeshes with and without160

interior nodes are also displayed in Fig. 3.
Comparison is made among different mesh moving schemes. Fig. 4(a) indicates that the present

mesh moving technique saves the considerable CPU time. Though MSA-M1 invokes the OST-SAM, its
cost is nearly equal to that of MSA-M2. In Fig. 4(b) only 9 iterations per time step occur on MSA-M1
and even no iterations on MSA-M2. Moreover, the OST-SAM demands more than 440 iterations per165

time step and the number will mount up with the increase in time and scale.

4.2. Vortex-induced vibration of a circular cylinder

In this example an elastically mounted circular cylinder is allowed to transversely oscillate in the
laminar flow region. The problem settings are schematically demonstrated in Fig. 5 where D is the
diameter of the circular cylinder. The system properties are consistent with [48]: the mass ratio170

m∗

2 = 116.37, the damping ratio ξ2 = 1.237× 10−3, the reduced natural frequency fR2 = 17.961/Re
and 90 6 Re 6 140.

For the sake of efficiency, the computational domain is divided into the Eulerian subdomain A1,
the ALE subdomain A2 and the Lagrangian subdomain A3. The size of A2 is 6D × 6D while that of
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A3 is 1.2D × 1.2D. The points in A1 keep fixed at all time while those in A3 move along with the175

cylinder. In A2 the points are continuously updated. In Fig. 6(a) the finite element mesh constitutes
8092 T3 elements and 4141 points, and the corresponding submesh is shown in Fig. 6(b). The time
step is ∆t = 1.0× 10−2 and the convergence tolerance is tol = 1.0× 10−6.

Two sets of finite element meshes, M1 (8092 T3 elements and 4141 points) and M2 (15856 T3
elements and 8033 points), are utilized for the mesh sensitivity evaluation. The computed results180

of the flow past the vibrating cylinder at Re = 105 are listed in Table 1, including the amplitude
of vertical amplitude dMAX2, the mean value of drag coefficient CD,MEAN and its root mean square
(RMS) CD,RMS, the amplitude of lift coefficient CL,MAX and its RMS CL,RMS, the Strouhal number
St and the ratio of vortex-shedding frequency fV to natural frequency fN2. An excellent agreement is
observed between both meshes in Table 1. After examining the obtained data, the deviation is even185

0.45% for the maximum amplitude in transverse oscillation. This preliminary study establishes the
adequacy of M1 in computing flow past the oscillating cylinder at various Re. Similar tests are not
repeated elsewhere for brevity.

The convergence behavior of the present algorithm is assessed in Fig. 7. It is seen from Fig. 7(a) that
the interfacial residuals estimated by the AC-based method are quite tiny when converged, and they190

are slightly smaller than those from the PPE-based method. A fast convergence history is graphically
plotted in Fig. 7(b). Typically, 2 ∼ 3 subiterations per time step are sufficient to reach convergence.
Furthermore, Table 2 investigates the impact of convergence criterion on the Re = 105 flow. The
convergence due to tol = 1.0× 10−9 is monitored in Fig. 8 for a typical time step when the fluid flow
fully develops. An excellent agreement is revealed between the two sets of converged solutions, although195

a more stringent tolerance asks for more subiterations at each time step. Therefore, tol = 1.0×10−6 is
the better option for further computations. The comparable numbers of subiterations are reported by
Baek and Karniadakis [49] in similar cases. This is because the oscillating bluff body is heavier than
its surrounding fluid.

Fig. 9 further examines the residual of the pseudo-time pressure term in the modified continuity
equation based on the L2 norm [32]

Error =

√√√√ 1

np

np∑

i=1

(
1

c2i

pn+1
i − pni

∆t

)2

, (32)

where np is the number of nodes and subscript i designates the i-th node. Fig. 9 discloses that the200

residual of the quasi-incompressibility is rather small in the L2 norm, though the finite AC coefficient is
dynamically evaluated at each subiteration. In this sense, the incompressibility condition is successfully
recovered when the converged solution is achieved for the transient flows. In consideration of Figs. 7–9,
the present AC-based semi-implicit coupling method possesses the good convergence behavior in the
vibrating cylinder problem.205

In Fig. 10 the amplitude dMAX2 and the frequency ratio fV/fN2 of the oscillating cylinder are
inspected at various Re. For comparison, Fig. 10 is also overlaid with the Re− St function [50]

St = 0.212× (1.0− 21.2

Re
), (33)

for a rigid circular cylinder. It is noticed that, a narrow lock-in range computed by [9] covers 98 6

Re 6 108, which is nearly coincident with our early work [6, 12, 39, 51] and those of [36, 52–54].
On the contrary, the present method produces the widened lock-in range and the larger amplitudes
during resonance. Specifically, the lock-in phenomenon starts at Re = 99 and ends at Re = 115. Key
aerodynamic indicators evaluated at Re = 100 are listed in Table 3, exposing that the obtained data are210

in better agreement with the experimental research [48]. Note that at this Re lock-in is not aroused in
[54]. The cylinder oscillation is very faint when Re steps out of the lower end of the lock-in region. At
this point, the vortices are shedding at the Strouhal frequency lower than its natural frequency. Within
the lock-in region, the frequency ratio fV/fN2 roams around unity, implying the synchronization of
the oscillation and vortex-shedding frequencies. Such a synchronization is responsible for large-scale215

and strong motions of the cylinder. Different from [6, 12, 39], the smooth rise in amplitude is seen
in Fig. 10. The amplitude abruptly descends once Re migrates outside the upper end of the lock-in
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region. With the growth of Re, the cylinder keeps on imperceptibly oscillating and fV reaches a high
level.

Providing that Re is outside the lock-in region, fV deviates from fN2 and thus it becomes unlocked.220

The cylinder amplitude is modulated, forming the beating phenomenon. Figs. 11(a) and 11(b) depicts
time histories of the cylinder displacement at Re = 97 and 120. Different from [6], the beating
phenomena are obviously modulated at both Reynolds numbers. The time history of the cylinder
displacement atRe = 105 is displayed in Fig. 11(c) where lock-in is clearly observed. The corresponding
vorticity fields for these Reynolds numbers are illustrated in Fig. 12. The cylinder undergoes low-225

amplitude oscillations at Re = 97 and 120, whereas high-amplitude oscillations are perceived at Re =
105. It is apparent that, compared to Re = 105, the vortex spacing is reduced at the other two Re.
Unlike [55], the three vortex-shedding modes behind the cylinder wake are of the 2S type [56]. The
associated mode seems closer to the standard 2S mode for a rigid circular cylinder. The explanation
is given as follow: since the cylinder motion is very faint at these Reynolds numbers, the structural230

oscillation hardly alters the flow pattern as well as the vortex-shedding frequency. Hence the frequency
ratio almost tallies with the Roshko curve outside the lock-in region, as shown in Fig. 10.

Another issue of interest is the numerical efficiency of our approach. The Re = 100 flow is chosen as
the reference case. We can quantify time consumption of the PPE-based and AC-based semi-implicit
coupling techniques with reference to Fig. 13. The figure fairly reports that the latter technique costs235

roughly 87% run time of the former one.

4.3. Flutter of a bridge deck

As an ideal example to illustrate the flutter failure of Tacoma Narrows Bridge in 1940, we present in
this subsection the numerical simulation of an H-profile bridge deck. The deck model is mounted with
the vertical and rotational springs so that it experiences a coupled motion of vertical translation and240

rotation. The representation of this problem is graphically illustrated in Fig. 14 with D being the deck’s
width. The system parameters are taken from [57]: the mass ratios m∗

2 = 16.667 and m∗

θ = 0.976, the
damping ratios ξ2 = 2.041×10−2 and ξθ = 3.458×10−2, the reduced natural frequencies fR2 = 0.1559
and fRθ = 0.2401 and the Reynolds number Re = 1500.

The domain decomposition is plotted in Fig. 14 as well. The size of A2 is 4D×4D, while that of A3245

is 2×0.95D×0.0875D comprising two rectangular parts. In the first panel of Fig. 15 the finite element
mesh consists of 6486 T3 elements and 3329 points, and the corresponding submesh is demonstrated
in the second panel. ∆t = 1.0× 10−2 and tol = 1.0× 10−6 are utilized here.

Similarly, the convergence analysis is preformed for the oscillating deck in Fig. 16. Fig. 16(a)
discloses the minute residuals of interfacial displacement within the semi-implicit coupling process. In250

the figure the residuals of the AC-based method are obviously smaller than those of the PPE-based
method. The residuals versus the number of subiterations required to converge is drawn in Fig. 16(b).
Only 2 ∼ 3 subiterations per time step are required for the stable coupling of interacting fields under
the specific criterion. Seen from Table 4, the present method is insensitive to the tolerance in the deck
problem. The diagram of residual reduction using tol = 1.0× 10−9 is displayed in Fig. 17 as well. As255

a result, tol = 1.0× 10−6 is the proper level of tolerance for terminating the subiterations. Compared
to last example, the amount of subiterations slightly increases at each time step due to the coupled
motion of two degrees of freedom.

To demonstrate the applicability of the chosen AC coefficient, the L2-norm residual based on
Eq. (32) is estimated in Fig. 18. Seen from the figure, the obtained residual sharply decreases to260

a very small value and maintains such a desirable level when the flow fully develops. This reality
clearly explains that the incompressibility condition is indeed satisfied by the proposed method once
the convergence is gained. As observed from Figs. 16–18, the solution convergence history is very good
in the deck flutter as well.

The simple geometry of this problem does not mean that the comparable data can be easily ac-265

quired. We are aware that the data from [12, 36, 58–60] significantly vary in the case of zero damping.
For example, Cebral and Löhner [60] gave a rather small rotation whereas a large amplitude is seen
in [36]. The simulation is even terminated at t = 55s in [58]. However, the difference in computed
data is usually acceptable due to the demonstrated complexity of the deck flutter. Table 5 reports
the vertical amplitude dMAX2, the vertical oscillation frequency fO2, the rotational amplitude dMAXθ270

11



and the rotational oscillation frequency fOθ. It is noticed that, the relative error from this paper is
minimum in rotation while larger values are obtained by our previous work [9, 40]. In spite of smaller
vertical amplitude, the vertical vibration is extremely weak and plays little role in the torsional flutter.
The present results are reasonable, given the dominant structural rotation. We also notice that, the
vertical oscillation frequency coincides with its rotational counterpart when the flutter occurs. The275

relevant power spectra is shown in Fig. 19 by using a fast Fourier transform on the time history of
rotation.

Time histories of two displacement components of the deck are shown in Fig. 20. Apparently,
this study and the PPE-based implicit coupling solver [40] reach the steady solutions at almost the
same time. We notice from Table 5 and Fig. 20 that, the rotational oscillation frequency of the deck280

is quite close to its natural rotational frequency while the vertical oscillation is very feeble. Given
the observation, the flutter phenomenon is obviously exposed here. In fact, bluff bodies in oscillatory
motions shed wakes at both oscillation and Strouhal frequencies, but the deck rotation is the dominant
motion in this case. The same conclusion is drawn by Lee et al. [61]. A typical vorticity contour
is illustrated in Fig. 21. The vortex pattern over the oscillating deck agrees well with the early285

documented explanation [62]. Fig. 22 exhibits the numerical expenses spent by the two methods.
Again, the AC-based method is in possession of approximately 20% savings in CPU time.

5. Conclusions

This paper has reported the AC-CBS-based partitioned semi-implicit FSI coupling strategy within
the ALE finite element framework. The quasi-incompressible CBS scheme is used for the fluid problem290

whereas the structural equation is advanced in time by the Generalized-α method. The dynamic mesh
is efficiently updated by means of the combination of the MSA and OST-SAM. The partitioned semi-
implicit coupling algorithm is recast in terms of the AC-CBS scheme where the AC coefficient is
iterated within the implicit coupling phase. The main contributions are summarized as follows

• The fractional-step implementation is very simple, accompanied by minimal programming efforts;295

• The algorithm is entirely matrix-free, without solving a set of algebraic equations;
• Any finite elements are feasible for the proposed scheme.

The present method is validated against available data for two benchmark problems. Compared
with its PPE-based counterpart, the AC-based method holds the better convergence behavior, without
violating the incompressibility. In contrast with our earlier attempts, the predicted displacement agrees300

better with the well-documented data while the higher efficiency is gained in both examples. The lock-
in, beating and flutter phenomena are successfully detected. Despite this presentation, more work is
needed to develop the AC-based partitioned semi-implicit coupling method in the future.
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[18] L. Könözsy, D. Drikakis, A unified fractional-step, artificial compressibility and pressure-350

projection formulation for solving the incompressible Navier-Stokes equations, Communications
in Computational Physics 16 (5) (2014) 1135–1180.

[19] S. Piperno, C. Farhat, B. Larrouturou, Partitioned procedures for the transient solution of coupled
aroelastic problems Part I: Model problem, theory and two-dimensional application, Computer
Methods in Applied Mechanics and Engineering 124 (1) (1995) 79–112.355
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[36] W. Dettmer, D. Perić, A computational framework for fluid–rigid body interaction: Finite element
formulation and applications, Computer Methods in Applied Mechanics and Engineering 195 (13)400

(2006) 1633–1666.

[37] E. Lefrançois, A simple mesh deformation technique for fluid–structure interaction based on a
submesh approach, International Journal for Numerical Methods in Engineering 75 (9) (2008)
1085–1101.

14



[38] G. A. Markou, Z. S. Mouroutis, D. C. Charmpis, M. Papadrakakis, The ortho-semi-torsional405

(OST) spring analogy method for 3D mesh moving boundary problems, Computer Methods in
Applied Mechanics and Engineering 196 (4) (2007) 747–765.

[39] T. He, D. Zhou, Z. Han, J. Tu, J. Ma, Partitioned subiterative coupling schemes for aeroelasticity
using combined interface boundary condition method, International Journal of Computational
Fluid Dynamics 28 (6-10) (2014) 272–300.410

[40] T. He, On a partitioned strong coupling algorithm for modeling fluid–structure interaction, Inter-
national Journal of Applied Mechanics 7 (2) (2015) 1550021.

[41] R. Jaiman, P. Geubelle, E. Loth, X. Jiao, Transient fluid–structure interaction with non-matching
spatial and temporal discretizations, Computers & Fluids 50 (1) (2011) 120–135.

[42] T. He, K. Zhang, An overview of the combined interface boundary condition method for fluid–415

structure interaction, Archives of Computational Methods in Engineering 24 (4) (2017) 891–934.

[43] S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor and
fluid subcycling for 2D inviscid aeroelastic simulations, International Journal for Numerical Meth-
ods in Fluids 25 (10) (1997) 1207–1226.

[44] P. Nithiarasu, An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the420

characteristic-based split (CBS) scheme, International Journal for Numerical Methods in Fluids
48 (12) (2005) 1415–1428.

[45] R. Codina, M. Vázquez, O. C. Zienkiewicz, A general algorithm for compressible and incompress-
ible flows. Part III: The semi-implicit form, International Journal for Numerical Methods in Fluids
27 (1-4) (1998) 13–32.425

[46] D. P. Mok, W. A. Wall, Partitioned analysis schemes for the transient interaction of incompressible
flows and nonlinear flexible structures, in: W. A. Wall, K.-U. Bletzinger, K. Schweizerhof (Eds.),
Trends in Computational Structural Mechanics, CIMNE, Barcelona, Spain, 2001, pp. 689–698.

[47] M. Lesoinne, C. Farhat, Geometric conservation laws for flow problems with moving boundaries
and deformable meshes, and their impact on aeroelastic computations, Computer Methods in430

Applied Mechanics and Engineering 134 (1) (1996) 71–90.

[48] P. Anagnostopoulos, P. Bearman, Response characteristics of a vortex-excited cylinder at low
Reynolds numbers, Journal of Fluids and Structures 6 (1) (1992) 39–50.

[49] H. Baek, G. E. Karniadakis, A convergence study of a new partitioned fluid–structure interaction
algorithm based on fictitious mass and damping, Journal of Computational Physics 231 (2) (2012)435

629–652.

[50] A. Roshko, On the development of turbulent wakes from vortex streets, Technical Report NACA
TN 1191, National Advisory Committee for Aeronautics (1954).

[51] T. He, A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder,
International Journal of Computational Methods 12 (2) (2015) 1550012.440

[52] D. L. Young, J. T. Chang, T. I. Eldho, A coupled BEM and arbitrary Lagrangian–Eulerian
FEM model for the solution of two-dimensional laminar flows in external flow fields, International
Journal for Numerical Methods in Engineering 51 (9) (2001) 1053–1077.

[53] A. De Rosis, G. Falcucci, S. Ubertini, F. Ubertini, S. Succi, Lattice Boltzmann analysis of fluid-
structure interaction with moving boundaries, Communications in Computational Physics 13 (3)445

(2013) 823–834.

[54] C. Samaniego, G. Houzeaux, E. Samaniego, M. Vázquez, Parallel embedded boundary methods
for fluid and rigid-body interaction, Computer Methods in Applied Mechanics and Engineering
290 (2015) 387–419.

15



[55] M. H. Bahmani, M. H. Akbari, Effects of mass and damping ratios on VIV of a circular cylinder,450

Ocean Engineering 37 (5) (2010) 511–519.

[56] C. H. K. Williamson, A. Roshko, Vortex formation in the wake of an oscillating cylinder, Journal
of Fluids and Structures 2 (4) (1988) 355–381.

[57] G. Filippini, L. Dalcin, N. Nigro, M. Storti, Fluid-rigid body interaction by PETs-FEM driven
by Python, Mecánica Computacional XXVII (8) (2008) 489–504.455

[58] B. Hübner, E. Walhorn, D. Dinkier, Strongly coupled analysis of fluid–structure interaction using
space-time finite elements, in: Proceedings of the 2nd European Conference on Computational
Mechanics, Cracow, Poland, 2001, pp. 546–547.

[59] G. Fourestey, S. Piperno, A second-order time-accurate ALE Lagrange–Galerkin method applied
to wind engineering and control of bridge profiles, Computer Methods in Applied Mechanics and460

Engineering 193 (39) (2004) 4117–4137.
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Fig. 1. Schematic view of the generalized 2D rigid-body motion
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(a) System mesh (b) Submesh with interior nodes (MSA-M1)

(c) Submesh without interior nodes (MSA-M2)

Fig. 3. The mesh updating test

19



0

60

120

180

240

MSA-M2MSA-M1

C
P

U
 t

im
e 
(s
)

OST-SAM

(a) CPU time

0 20 40 60

0

10

440

460

480

 

 

it
er

at
io

n
s 

p
er

 t
im

e 
st

ep

time steps

 OST-SAM

 MSA-M1

 MSA-M2

(b) Number of iterations

Fig. 4. Comparison of different mesh moving schemes

20



no-slip conditionA3

3D

3D
A2

D

3D 3D

25.5D10D

10D

10D

u1 = free, u2 = 0 

u1 = free, u2 = 0 A1

p = 0

u1 = U

u2 = 0

Fig. 5. Sketch of geometry and boundary conditions for the transversely oscillating circular cylinder

21



(a) Finite element mesh for the fluid field

(b) MSA submesh for the ALE domain

Fig. 6. Mesh and submesh for the oscillating cylinder
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Fig. 9. Residual history of the modified continuity equation
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Fig. 10. Amplitude and frequency of the oscillating cylinder
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Fig. 11. Time histories of the cylinder displacement at different Re
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(a) Re = 97

(b) Re = 120

(c) Re = 105

Fig. 12. Vorticity contours of the oscillating cylinder at different Re
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Fig. 13. Time consumption of two semi-implicit methods for the cylinder
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(a) Finite element mesh for the fluid field

(b) MSA submesh for the ALE domain

Fig. 15. Mesh and submesh for the oscillating deck
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(b) Convergence history in a time step

Fig. 16. Convergence study for the deck problem
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Fig. 17. Convergence plot for a time step using tol = 1.0 × 10−9
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Fig. 18. Residual history of the modified continuity equation
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Fig. 19. Power spectra of the rotational time history
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Fig. 20. Time histories of the oscillating deck
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Fig. 21. Vorticity contour of the oscillating deck
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Fig. 22. Time consumption of two semi-implicit methods for the deck
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Table 1. Effect of mesh resolution on the oscillating cylinder at Re = 105

Mesh dMAX2 CD,MEAN CD,RMS CL,MAX CL,RMS St fV/fN2

M1 0.444 1.909 0.220 0.874 0.542 0.171 0.997
M2 0.446 1.921 0.215 0.800 0.540 0.171 0.997

Deviation 0.45% 0.63% 2.27% 8.47% 0.37% 0% 0%
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Table 2. Effect of convergence tolerance on the Re = 105 flow

Tolerance dMAX2 CD,MEAN CD,RMS CL,MAX CL,RMS St

1.0× 10−6 0.444 1.909 0.220 0.874 0.542 0.171
1.0× 10−9 0.444 1.906 0.221 0.874 0.542 0.171
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Table 3. Comparison of results for the oscillating cylinder at Re = 100

Reference dMAX2 St fV/fN2

Dettmer and Perić [36] 0.397 0.179 0.999
Samaniego et al. [54] 0.0042 0.155 0.862

He et al. [6] 0.407 0.181 1.01
He [9] 0.405 0.179 0.998

Present study 0.426 0.179 0.998
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Table 4. Effect of convergence tolerance on the oscillating deck

Tolerance dMAX2 fO2 dMAXθ fOθ

1.0× 10−6 0.0146 0.225 0.218 0.225
1.0× 10−9 0.0147 0.225 0.218 0.225
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Table 5. Comparison of results for the oscillating deck

Reference dMAX2 fO2 dMAXθ fOθ

Filippini et al. [57] 0.0325-0.035 – 0.271 –
He [40] 0.0407 0.214 0.385 0.214
He [9] 0.0406 0.214 0.383 0.214

Present study 0.0146 0.225 0.218 0.225
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