
Visualizing ALC Using Concept Diagrams

Gem Stapleton1, Aidan Delaney1,2, Michael Compton3 and Peter Chapman4

1 Centre for Secure, Intelligent and Usable Systems,
University of Brighton, UK
g.e.stapleton@brighton.ac.uk

2 University of the South Pacific, Fiji
aidan@ontologyengineering.org

3 unaffiliated
4 Edinburgh Napier University, UK

p.chapman@napier.ac.uk

Abstract. This paper addresses the problem of how to visualize axioms
from ALC using concept diagrams. We establish that 66.4% of OWL ax-
ioms defined for ontologies in the Manchester corpus are formulated over
ALC, demonstrating the significance of considering how to visualize this
relatively simple description logic. Our solution to the problem involves
providing a general translation from ALC axioms into concept diagrams,
which is sufficient to establish that all of ALC can be expressed. However,
the translation itself is not designed to give optimally readable diagrams,
which is particularly challenging to achieve in the general case. As such,
we also improve the translations for a selected category of ALC axioms,
to illustrate that more effective diagrams can be produced.

1 Introduction

Ontology engineering requires a significant skill set as it involves domain mod-
elling and defining axioms using a formal notation, alongside refining and de-
bugging ontologies until the model is seen as accurate and fit-for-purpose. This
engineering task can involve many stakeholders, including domain experts who
need not be fluent in or, even, familiar with formal notations such as DL or
OWL which are typically used by ontology engineers. Communication problems
arise as a result. Thus, the use of symbolic notations is a particular obstacle,
with this mode of communication potentially leading to inaccurate ontologies be-
ing developed or increased time and effort. This is a shortfall because accurate
communication of knowledge is necessary for the production of ontologies.

Visualization techniques have been recognized as possible approaches to ad-
dressing accessibility problems associated with symbolic notations. Of the var-
ious ontology visualization techniques, the majority exploit node-link diagrams
(graphs), with OWLViz [13], OntoGraf [2] and CMap [12] being notable exam-
ples, but often they are not formalized. These graph-based visualizations exploit
the same syntactic element (arrows) to represent both class subsumption and
property restrictions. Consequently, the saliency of these two different types

Fig. 1. Description logic axioms converted to a concept diagram.

of information is significantly reduced. Similarity theory tells us saliency is an
important factor and, in particular, that different syntactic devices should rep-
resent different types of information [8]. This is because when visually searching
for particular types of information, increasing degrees of similarity between the
target syntax (which represents the required information) and distracter syntax
(which represents other information) leads to a corresponding increase in the
time taken to perform tasks. Another visualization technique is an adaptation
of existential graphs, which represent individuals, conjunction and negation us-
ing line segments, juxtaposition and closed curves respectively [7]. The resulting
notation is essentially a stylized form of first-order logic that uses only ∃, ∧ and
¬ to make statements and we are of the opinion that usability suffers as a result.

Concept diagrams were introduced for ontology engineering [14] and aid in-
formation saliency by avoiding the use of identical (or, even, similar) syntactic
types for different informational types: concepts (sometimes called classes) are
represented by closed curves and roles (sometimes called properties) by arrows.
Figure 1 shows a set of DL axioms, all from ALC, visualized using a single con-
cept diagram; these axioms correspond to a fragment of the SNN ontology [6].
The concept subsumption, concept disjointness and AllValuesFrom-style axioms
are represented by curve inclusion, curve disjointness and arrows respectively.

ALC is an important DL: ALC axioms form 64.4% of the Manchester cor-
pus [1], which contains over 4500 ontologies comprising nearly 3 million OWL
axioms. Whilst the example just given shows how to visualize 25 DL axioms

using one concept diagram, this paper demonstrates how to translate single DL
axioms into diagrams. Our first contribution is to establish concept diagrams
equivalent to ALC concepts. We then go on to establish how to visualize ABox
and TBox axioms. Thus, concept diagrams can be used to visualize a significant
proportion of the axioms from a large number of ontologies. We also show how
to simplify the resulting diagrams into arguably more readable forms.

2 The Description Logic ALC

Readers familiar with the formalization of ALC may choose to omit this section.
In ALC, as with all description logics, axioms are written over a vocabulary com-
prising a set of individuals, a set of atomic concepts and a set of roles, drawn
from the pairwise disjoint sets O, C, and R, respectively. There are two spe-
cial atomic concepts in C: ⊤ and ⊥. Individuals, concepts and roles represent
elements, sets and binary relations respectively; ⊤ represent Thing (the set con-
taining everything) and ⊥ represents Nothing (the empty set). The vocabulary
is used to form axioms in ALC. Firstly, we define concepts, which are built using
atomic concepts and roles along with logical operators and quantifiers.

Definition 1. The following are concepts in ALC:

1. Any atomic concept is a concept.
2. If C and D are a concepts and R is a role then the following are also (com-

plex) concepts: (C ⊓D), (C ⊔D), ¬C, ∃R.C, and ∀R.C.

In more expressive description logics, other types of concepts can be formed,
such as = nR.C, which is taken to be the set of things that are related to exactly
n things in the ‘set’ C under the ‘relation’ R. Moreover, roles can be made more
complex, too, such as by forming their composition, R1 ◦ R2, and by taking
inverses, R−. As we are focusing on visualizing axioms drawn from ALC, so
these more complex constructions are not permitted.

Definition 2. Given individuals a and b, concepts C and D, and role R the
following are axioms in ALC: C(a), R(a, b), and C ⊑ D. Axioms that involve
individuals are ABox axioms whereas those which do not are TBox axioms.

We note here that C ≡ D is also sometimes considered an axiom. For the
purposes of this paper, we consider C ≡ D to be a pair of subsumption axioms:
C ⊑ D and D ⊑ C.

Our attention now turns to semantics. Individuals are interpreted as ele-
ments, concepts as sets and roles as binary relations.

Definition 3. An interpretation is a pair, I = (△I , ·I), where

1. △I is a non-empty set, and
2. the function ·I maps

(a) each individual, a, in O to an element of △I , that is aI ∈ △I ,

(b) each concept, C, in C to a subset of △I, that is CI ⊆ △I, such that
⊤I = △I and ⊥I = ∅, and

(c) each role, R, in R to a binary relation on △I , that is RI ⊆ △I ×△I .

The function ·I can then be extended to interpret all concepts as follows:

1. (C ⊓D)I = CI ∩DI,
2. (C ⊔D)I = CI ∪DI,
3. ¬CI = △I\CI ,
4. ∃R.CI = {x ∈ △I : ∃y (y ∈ CI ∧ (x, y) ∈ RI)}, and
5. ∀R.CI = {x ∈ △I : ∀y ((y ∈ △I ∧ (x, y) ∈ RI) ⇒ y ∈ CI)}.

Definition 4. For each axiom, A, an interpretation, I, models A under the
following conditions:

1. If A = C(a) for some concept C and individual a, I models C(a) whenever
aI ∈ CI .

2. If A = C ⊑ D for some concepts C and D then I models C ⊑ D whenever
CI ⊆ DI.

3. If A = R(a, b) for some role R and individuals a and b then I models R(a, b)
whenever (aI , bI) ∈ RI .

3 Concept Diagrams

Here we present the formalization of a first-order fragment of the concept dia-
gram logic that is able to express all of ALC. We adapt the formalization given
in [23], removing unnecessary second-order, and some first-order, syntax. Firstly,
we note that concept diagrams allow the use of inverse roles. So, for every role,

R, in R, R− is a role and we define R−I
= {(y, x) : (x, y) ∈ RI}. Whilst inverse

roles are not permitted in ALC, we make use of them in our translation.
An example of a concept diagram is given in figure 2. It comprises two unitary

diagrams, β1 and β2; unitary diagrams are extended with additional syntax and
are called class and object property diagrams in [18]. Each of β1 and β2 is enclosed
by a boundary rectangle which represents the universal set, △I . Each of β1 and
β2 contain a single spider ; in β1 the spider is the graph with two nodes joined
by an edge whereas in β2 the spider comprises just a single node. The first

Fig. 2. A concept diagram.

spider represents the existence of an anonymous individual whereas the second
spider represent the individual a. The labelled (resp. unlabelled) curves represent
atomic (resp. anonymous) concepts and shading is used to place upper bounds on
set cardinality: in shaded regions, all elements must be represented by spiders.
So, in β2, the only element in the anonymous set is a. Within each unitary
diagram, the spatial relationships between the curves and the spiders convey
meaning. In β1, for instance, we can see that C2 ⊑ C1, through curve inclusion,
and the anonymous individual represented by the spider is in C1. The shading
and spider labelled a in β2 tell us that the only element in the anonymous set is
the individual a.

The arrow joining the two unitary diagrams, thus forming a concept diagram,
asserts that the elements in C2 (the arrow’s source) are, between them, related
to all and only the elements in the anonymous set represented by the arrow’s
target which, in turn, is subsumed by C3. More informally, the arrow tells us
that elements in C2 can only be related to elements in C3; in ALC, the arrow ex-
presses C2 ⊑ ∀R.C3. In general, arrows can be sourced and targeted on boundary
rectangles, curves and spiders. In addition, arrows can also be dashed to express
partial information. In figure 2, if the arrow was dashed then the diagram would
instead assert that the elements in C2 are, between them, related to at least all
of the elements in the anonymous set represented by the arrow’s target.

Our formalization of concept diagrams is at an abstract syntax level. Spiders
and closed curves are chosen from countably infinite sets S and K respectively;
note that these are not closed curves in the mathematical sense. Lastly, arrows
represent roles – or, rather, role restriction – are of the form (s,R, t, ◦). Here, s
is the arrow’s source, R is the arrow’s label which is a role or inverse role, t is the
target and ◦ is either → or 99K. As the boundary rectangle in unitary diagrams
can be the source or target of an arrow, but is not in S or C, it will be denoted
by �, formally written as (�, β) to identify the diagram, β, in question. Thus,
an arrow of the form ((�, β), R, t,→) indicates that a solid arrow is sourced on
the diagram β’s boundary rectangle, labelled R with target t.

Definition 5. A unitary diagram, β = (Σ,K, λ, Z, Z∗, η, A) has components
that are defined as follows.

1. Σ = Σ(β) ⊂ S is a finite set of spiders.
2. K = K(β) ⊂ K is a finite set of curves.
3. λ = λβ = λΣ ∪ λK is a partial function such that

(a) λΣ : Σ → O is a partial function that labels spiders with elements O and
(b) λK : K → C is a partial function that labels curves with elements of C.

4. Z = Z(β) is a set of zones such that Z ⊆ {(in,K\in) : in ⊆ K}.
5. Z∗ = Z∗(β) ⊆ Z is a set of shaded zones.
6. η = ηβ : Σ → PZ\{∅} is a function that returns the location of each spider.
7. A = A(β) is a finite set of arrows such that for all (s,R, t, ◦) in A, s and t

are in Σ ∪K ∪ {(�, β)}.

A spider or curve that does not map to a label under λ is called unlabelled. A
set of zones is called a region.

Briefly, β1 in figure 2 has Σ = {σ}, K = {κ1, κ2}, λ(κ1) = C1, and λ(κ2) = C2.
There are three zones (the regions in the plane to which the drawn curves give
rise), so Z = {(∅, {κ1, κ2}), ({κ1}, {κ2}), ({κ1, κ2}, ∅)} and none of them are
shaded. The function η maps σ to the region η(σ) = {({κ1}, {κ2}), ({κ1, κ2}, ∅)}.
As β1 does not contain any arrows (but does contains an arrow source), A = ∅.

Definition 6. A concept diagram is a tuple, B = (D, A), where

1. D is a finite set of unitary diagrams such that for any pair of distinct unitary
diagrams, β1 and β2, in D we have Σ(β1)∩Σ(β2) = ∅, and K(β1)∩K(β2) =
∅.

2. A = A(B) is a finite set of arrows such that for all (s,R, t, ◦) in A, s, t ∈
Σ(B) ∪K(B) ∪ ({�} × D) where

Σ(B) =
⋃

β∈D

Σ(β), and K(B) =
⋃

β∈D

K(β)

and for all unitary diagrams, β, in D it is not the case that s ∈ Σ(β) ∪
K(β) ∪ {(�, β)} and t ∈ Σ(β) ∪K(β) ∪ {(�, β)}.

The last condition above ensures that arrows in the set A(B) go between different
unitary diagrams. This condition can be removed without causing any theoretical
problems. It might, however, be counterintuitive if arrows in A(B) simply placed
an arrow into one of the unitary parts of the concept diagram. Concept diagrams
make use of standard logical connectives to build more complex expressions [23]
but these are not needed when focusing on ALC.

Turning our attention to the semantics, the meaning of a unitary diagram
is determined by how its individual pieces of syntax are related to each other.
We start by translating a unitary diagram into a set of semantic conditions.
These conditions capture the constraints, provided by the diagram, on the rela-
tionships between the represented individuals, concepts, and roles. We start by
identifying the elements and sets represented by the labelled spiders and labelled
curves. This identification allows us to treat labelled and unlabelled spiders and,
respectively, curves, in the same way in our semantic conditions.

Definition 7. Let β be a unitary diagram and let I be an interpretation. Let s
be a labelled spider and c be a labelled curve in β. We define sI = λ(s)I and
cI = λ(c)I .

Definition 8. Let B = (D, A) be a concept diagram and let I = (△I , ·I) be an
interpretation, extended so that (�, β)I = △I, for any β. Then I is a model for
B, and I satisfies B, provided there exists an extension of I to the unlabelled
spiders and unlabelled curves in the unitary parts of B, mapping spiders to ele-
ments and curves to sets, ensuring the conjunction of the following conditions,
called the semantic conditions, hold:

1. For each unitary diagram, β, in B the following are true.

(a) The Curves Condition. The union of the sets represented by the zones
is equal to △I:

⋃

(in,out)∈Z(β)

(in , out)I = △I

where
(in , out)I =

⋂

κ∈in

κI ∩
⋂

κ∈out

(△I\κI).

(b) The Shading Condition. Every shaded zone contains only elements
represented by spiders:

∧

(in,out)∈Z∗(β)

(in, out)I ⊆ {σI : σ ∈ Σ}.

(c) The Spiders’ Location Condition. Each spider, σ, represents an el-
ement that lies in one of the sets represented by the zones in its location:

∧

σ∈Σ(β)

σI ∈
⋃

(in,out)∈ηβ(σ)

(in , out)I .

(d) The Spiders’ Distinctness Condition. Any two distinct spiders, σ1

and σ2, represent distinct elements:

∧

σ1,σ2∈Σ(β)

(σ1 6= σ2 ⇒ σI
1 6= σI

2).

(e) The Arrows Condition. For each arrow with source s, label R and
target t:

∧

(s,R,t,→)∈A(β)

{y ∈ △I : ∃x (x ∈ s
I ∧ (x, y) ∈ R

I)} = t
I and

∧

(s,R,t,99K)∈A(β)

{y ∈ △I : ∃x (x ∈ s
I ∧ (x, y) ∈ R

I)} ⊇ t
I
.

where we are treating sI and tI as singleton sets, rather than elements,
in the cases when s and t, respectively, are spiders.

2. For each arrow, with source s, label R and target t, in A(B), the arrows
condition as just given above holds.

An extension of I that makes the above conditions true is called appropriate.
Moreover, given a region, r, we define rI =

⋃

z∈r

zI.

4 Building Diagrams for Concepts

Here we provide an inductive construction of concept diagrams forALC concepts.
The general construction relies on merging unitary diagrams. For this operation,
as well as other parts of the construction, we rely on diagrams having disjoint

Fig. 3. Merging two diagrams.

curve sets. This reliance is not significant since we can always perform curve
substitution, akin to variable substitution in symbolic logics, ensuring that the
diagram’s components, such as arrow sources and targets and the zones, are
updated in the appropriate way; for zones, when substituting κ1 with κ2, the zone
(in , out) becomes ((in\{κ1})∪{κ2}, out) when κ1 is in in, with the substitution
operating similarly when κ1 is in out . We point out that the construction we
give is intended to establish that ALC axioms can all be visualized using concept
diagrams. It does not necessarily yield the most effective diagrams, a point to
which we return in section 6.

4.1 Merging Diagrams

In order to build diagrams to represent concepts, we need to be able to merge
two unitary diagrams that do not contain spiders. An example can be seen in
figure 3, where β1 and β2 are merged into the single diagram β1 + β2.

In order to identify the zones of the merged diagram we use the notion of an
expansion of a region. To illustrate the idea, in figure 3, suppose that the curves
in β1 are κ1 and κ2 and in β2 the curves are κ′

1 and κ. The region {({κ1}, {κ2})}
in β1 can be expanded, without changing the set represented, to a four-zone
region:

{({κ1}, {κ2, κ
′
1, κ}), ({κ1, κ

′
1}, {κ2, κ}), ({κ1, κ}, {κ2, κ

′
1}), ({κ1, κ

′
1, κ}, {κ2})}.

Definition 9. Let r be a region and let K be a set of fresh curves (that is no
zone in r includes any curve in K). The expansion of r given K is the region

EXP(r,K) = {(in ∪K ′, out ∪ (K\K ′)) : (in, out) ∈ r ∧K ′ ⊆ K}.

Lemma 1. Let r be a region and let K be a set of fresh curves. In any inter-
pretation, I, rI = EXP(r,K)I , under any extension of I mapping curves to
sets.

When merging two diagrams, we can start the process by expanding their
zone sets using the curves in the other diagram. The zones in the merged dia-
gram will be the intersection of these two expansions, thus not including zones
that represent empty sets. For instance, considering the four-zone expansion of
({κ1}, {κ2}) given above, the zone ({κ1, κ}, {κ2, κ

′
1}) represents the empty set

and is not included in β1 + β2. We are now in a position to define how to merge
two unitary diagrams that do not contain any spiders.

Definition 10. Given unitary diagrams β1 = (Σ1,K1, λ1, Z1, Z
∗
1 , η1, A1) and

β2 = (Σ2,K2, λ2, Z2, Z
∗
2 , η2, A2), containing no spiders and with disjoint curve

sets, their merger is a unitary diagram, β = β1+β2, whose (possibly) non-empty
components are: K(β) = K1 ∪K2, λβ = λ1 ∪ λ2,

Z(β) = EXP(Z1,K2)∩EXP(Z2, K1), Z
∗(β) = Z(β)∩(EXP(Z∗

1 ,K2)∪EXP(Z∗

2 ,K1)),

and A(β) = A1 ∪ A2.

Lemma 2. Let β1 and β2 be unitary diagrams with no spiders and disjoint curve
sets. Interpretation I models β1 and β2 iff I models β1 + β2.

Proof (Sketch). Follows readily from lemma 1.

4.2 Translating Concepts into Diagrams

The diagrams we build for concepts express no information, just as the lefthand
side and righthand side of an ALC axiom contain no information when consid-
ered in isolation; complex concepts merely describe sets, but do not place any
constraints on them (which is done through the use of ⊑ in an axiom, for ex-
ample). The important feature of diagrams for concepts is that they contain a
region that represents the same set as the concept. In what follows, this region
is identified diagrammatically by the inclusion of × as an annotation. The con-
struction is inductive and we begin by defining diagrams for atomic concepts,
together with regions that represents the same set as the concept.

Definition 11. Let C be an atomic concept. The concept diagram for C,
denoted DIAG(C), and the region for C, denoted REG(C), are as follows:

where κ is the curve labelled C. Moreover, the unitary part of DIAG(C) is called
the merging diagram for C, denoted MER(C).

Strictly speaking, the translation of an atomic concept to a diagram returns
the abstract syntax of the concept diagram but our definition presents a drawing
of DIAG(C) for readability.

Lemma 3. Let C be an atomic concept. In any interpretation, I, CI = REG(C)I .

Using this simple base case, we can now build diagrams for complex con-
cepts. In these diagrams, we need to build anonymous concepts using arrows
for concepts that involve quantifiers. To facilitate this, we need to add curves
inside regions, since arrows cannot be sourced or targeted on the regions which

Fig. 4. Translating ∃R.(C1 ⊔ C2).

represent concepts. To illustrate, figure 4 shows a diagram for ∃R.(C1 ⊔ C2).
Here, the unlabelled curve in β1 represents the same set as C1 ⊔ C2. The arrow
labelled R− constructs the set of elements that are related to by some element
in C1 ⊔ C2 and, thus, the unlabelled curve in β2 represents ∃R.(C1 ⊔ C2).

Definition 12. Let β be a unitary diagram containing no spiders and let r be
a region in β. Let κ be a fresh curve. The diagram obtained by adding κ inside
r, denoted β + (r, κ) has the same components as β except that the curves are
K(β) ∪ {κ}, the zones are

Z(β + (r, κ)) = {(in , out ∪ {κ}) : (in, out) ∈ Z(β)\r} ∪ EXP(r, {κ})

and the shaded zones are

Z∗(β + (r, κ)) = {(in, out) ∈ Z(β + (r, κ)) : (in\{κ}, out\{κ}) ∈ Z∗(β)} ∪

{(in, out ∪ {κ}) : (in , out) ∈ r}.

Lemma 4. Let β be a unitary diagram containing no spiders and let r be a
region in β. Let κ be a fresh curve. Let I be an interpretation. Then

1. rI = κI under any appropriate extension of I for β + (r, κ), and
2. I models β iff I models β + (r, κ).

Before we present a definition of the concept diagram for an arbitrary non-
atomic concept, we illustrate the key features of the translation by considering
∃R1.¬C1⊓∀R2.(C2⊔C3). The construction, being inductive, starts by translating
the atomic concepts C1, C2 and C3 as in definition 11. The next stage is to form
diagrams for ¬C1 and C2 ⊔C3. In fact, the diagram for ¬C1 is the same as that
for C1, but the region for ¬C1 differs: it is the complement of the region for
C1. The diagram for C2 ⊔C3 is the merger of the diagrams for C2 and C3 with,
roughly speaking, the associated region being the ‘union’ of the regions for C2

and C3. The diagrams for ¬C1 and C2 ⊔C3 are β1 and β2 respectively, figure 5,
with their associated regions indicated by ×.

We can now build diagrams for ∃R1.¬C1 and ∀R2.(C2 ⊔ C3). Considering
∃R1.¬C1, we obtain the concept diagram ({β3, β4}, {(κ3, R

−
1 , κ4,→)}), where

κ3 and κ4 are the unlabelled curves in β3 and β4 respectively. Here, the dia-
gram which contains the region representing the concept ∃R1.¬C1 is β4; this

Fig. 5. Translating ¬C1, C2⊔C3, ∃R1.¬C1, ∀R2.(C2⊔C3) and ∃R1.¬C1⊓∀R2.(C2⊔C3).

is the merging diagram. For ∀R2.(C2 ⊔ C3), we obtain the concept diagram
({β5, β6}, {(κ5, R

−
2 , κ6,→)}), where β6 is the merging diagram. Here, the ar-

row, together with its source, is used to construct the set of things related to
by something not in C1 ⊔ C2. Thus, the complement of this set – represented
by region outside the curve in β6 – contains exactly the elements that are in
∀R2.(C1 ⊔ C3). The last step is to form a diagram for the entire concept of
interest: ∃R1.¬C1 ⊓ ∀R2.(C2 ⊔C3). We merge β4 and β6, leaving β3 and β5 un-
changed, with the result being the concept diagram ({β3, β5, β7}, {(κ3, R

−
1 , κ4,→

), (κ5, R
−
2 , κ6,→)}), again with the region representing the entire concept indi-

cated with the inclusion of ×.

Definition 13. Let C be a non-atomic concept. The concept diagram for

C, denoted DIAG(C), the region for C, denoted REG(C), and the merging

diagram for C, denoted MER(C), are defined as follows:

1. If C = C1 ⊓ C2 then
(a) MER(C1 ⊓ C2) = MER(C1) +MER(C2),
(b) DIAG(C1 ⊓ C2) = (D, A1 ∪ A2) where

D = (D1\{MER(C1)}) ∪ (D2\{MER(C2)}) ∪ {MER(C1 ⊓ C2)},

and
(c) REG(C1 ⊓C2) = EXP(REG(C1),K2) ∩ EXP(REG(C2),K1).

2. If C = C1 ⊔ C2 then
(a) MER(C1 ⊔ C2) = MER(C1) +MER(C2),
(b) DIAG(C1 ⊔ C2) = (D, A1 ∪ A2) where

D = (D1\{MER(C1)}) ∪ (D2\{MER(C2)}) ∪ {MER(C1 ⊔ C2)},

and
(c) REG(C1⊔C2) = Z(MER(C1⊔C2))∩(EXP(REG(C1),K2)∪EXP(REG(C2),K1)).

3. If C = ¬C1 then
(a) MER(¬C1) = MER(C1),
(b) DIAG(¬C1) = DIAG(C1) and

(c) REG(¬C1) = Z(MER(C1))\REG(C1).
4. If C = ∃R.C1 then

(a) MER(∃R.C1) is a unitary diagram containing a fresh curve, κt:

(b) DIAG(∃R.C1) = (D, A1 ∪ {(κs, R
−, κt,→)}) where

D = (D1\{MER(C1)}) ∪ {MER(C1) + (REG(C1), κs),MER(∃R.C1)}

and κs is a fresh curve, and
(c) REG(∃R.C1) = {({κt}, ∅)}.

5. If C = ∀R.C1 then
(a) MER(∀R.C1) is a unitary diagram containing a fresh curve, κt:

(b) DIAG(∀R.C1) = (D, A1 ∪ {(κs, R
−, κt,→)}) where

D = (D1\{MER(C1)}) ∪

{MER(C1) + (Z(MER(C1))\REG(C1), κs),MER(∀R.C1)}

and κs is a fresh curve, and
(c) REG(∀R.C1) = {(∅, {κt})}.

where DIAG(C1) = (D1, A1), DIAG(C2) = (D2, A2), and K1 and K2 are the
sets of curves in MER(C1) and MER(C2) respectively.

An important property of diagrams for concepts is that they are satisfied
in every interpretation. This allows us to readily use them when constructing
diagrams for ALC axioms.

Lemma 5. Let C be a concept. Then DIAG(C) is satisfied by all interpreta-
tions, that is DIAG(C) is valid.

Corollary 1. Let C be a concept. Then all unitary parts of DIAG(C) are valid.

We now establish the crucial result that REG(C) represents the same set as C.

Theorem 1. Let C be a concept. For all interpretations, I, CI = REG(C)I

under any appropriate extension of I for DIAG(C).

Proof (Sketch). The proof proceeds by induction with the base case provided by
lemma 3. We include the remainder of the proof for the ∃R.C1 and ∀R.C1 cases.
In the first of these two cases the curve, κt, in DIAG(∃R.C1) that is the target
of the arrow represents the image of R− when its domain is restricted to C1.
Formally, we have

κ
I

t = {x ∈ △I : ∃y (y ∈ C
I

1 ∧ (y, x) ∈ R
−I

)}, by definition 8

= {x ∈ △I : ∃y (y ∈ C
I

1 ∧ (x, y) ∈ R
I)} = ∃R.C

I

1 .

Fig. 6. (∃R1.¬C1 ⊓ ∀R2.(C2 ⊔ C3))(a).

It is straightforward to verify that REG(∃R.C1)
I = {({κt}, ∅)}

I = κI
t and we

are done.
For the ∀R.C1 case, we must show that REG(∀R.C1) = {(∅, {κt})} represents

the same set as ∀R.C1. Consider MER(C1)+(Z(MER(C1), κs)\REG(C1)). We
can show that κs, which is the source of the arrow labelled R−, represents the set
△I\CI

1 , using the inductive assumption. Therefore in MER(∀R.C1) the curve,
κt, which is the target of the arrow labelled R−, represents the set

κ
I

t = {x ∈ △I : ∃y (y ∈ △I\CI

1 ∧ (x, y) ∈ R
I)} = ∃R.¬C1.

Thus, △I\κI
t contains precisely the elements in △I that are related only to

things in the set CI
1 under RI . More formally,

△I\κI
t =

{

x ∈ △I : ∀y
(

(y ∈ △I ∧ (x, y) ∈ RI) ⇒ y ∈ CI
1

)}

= ∀R.CI
1 .

Since REG(∀R.C1) = {(∅, {κt})}, we readily see that REG(∀R.C1)
I = △I\κI

t ,
by definition, and we are done. Hence, in all cases, CI = REG(C)I , as required.

5 Visualizing Axioms

In this section we show how to visualize ALC axioms using concept diagrams.

5.1 ABox Axioms

The Manchester OWL corpus [1] contains over 1.5 million ABox axioms of which
64.3% are in ALC5. Using the diagrams constructed for concepts, we are now
readily able to establish that all A-box axioms in ALC can be visualized us-
ing concept diagrams. The basic principle for ABox axioms of the form C(a)
is to place a spider labelled a in REG(C). To illustrate, the ABox axiom for
(∃R1.¬C1 ⊓ ∀R2.(C2 ⊔ C3))(a) is visualized in figure 6.

Definition 14. The ABox diagram for ALC axiom C(a), denoted DIAG(C(a)),
is obtained from DIAG(C) by adding a spider labelled a to REG(C) in MER(C).
5 To count axioms, we used OWL API’s DL expressiveness checker. Each axiom is
extracted and provided to the OWL API which determines whether the axiom is
syntactically in ALC. This approach is somewhat crude, in that some OWL non-
ALC axioms can be reduced to a set of axioms including some in ALC; we count
such OWL axioms as not being in ALC. Of the ontologies in the corpus, we could
parse 4019. Our counting software is an extension of an existing ontology statistics
processing package [11] and can be found at https://github.com/hammar/OntoStats.

Theorem 2. Let C(a) be an ABox axiom in ALC and let I be an interpretation.
I satisfies C(a) iff I satisfies DIAG(C(a)).

Proof. Suppose I satisfies C(a). Lemma 5 tells us that I satisfies DIAG(C).
Moreover, corollary 1 tells us that I satisfies MER(C), the unitary part of
DIAG(C) into which the spider, σ say, labelled a has been placed. The only
difference between the semantic conditions for DIAG(C) and DIAG(C(a)) arise
from the inclusion of this spider, whereby DIAG(C(a)) asserts:

σI ∈
⋃

(in,out)∈REG(C)

(in , out)I = REG(C)I (*).

By theorem 1, REG(C)I = CI . Since I satisfies C, we know that aI ∈ CI . By
definition, σI = aI , so (*) is true and we conclude that I satisfies DIAG(C(a)).
The proof for the converse, if I satisfies DIAG(C(a)) then I satisfies C(a), is
similar. Hence I satisfies C(a) if and only if I satisfies DIAG(C(a)).

The remaining ABox case is for axioms of the form R(a, b). These are trivially
expressed using concept diagrams:

Hence, concept diagrams can express all of ALC’s ABox axioms.

Theorem 3. All ABox axioms in ALC can be visualized by a semantically equiv-
alent concept diagram.

5.2 TBox Axioms

The Manchester OWL corpus [1] contains over 1.3 million TBox axioms of which
66.3% are in ALC. Using the diagrams constructed for concepts, we can estab-
lish that all TBox axioms in ALC can be visualized, although the process is
not as straightforward as for ABox axioms. To illustrate, the TBox axiom for
∃R1.¬C1 ⊑ ∀R2.(C2⊔C3) can be seen in figure 7 (the diagrams for ∃R1.¬C1 and
∀R2.(C2 ⊔ C3) are in figure 5). The first step in the construction process is to
merge the two merging diagrams for the two sides of the subsumption relation-
ship. This is followed by shading the appropriate zones in order to obtain the
correct subsumption relationship. In this example, there is one zone inside the
region for ∃R1.¬C1 but not in the region for ∀R2.(C2 ⊔C3); this zone is shaded
to assert that no elements can be in the corresponding set. Formally, the zones
which require shading are captured by considering expansions of the regions for
REG(∃R1.¬C1) and REG(∀R2.(C2 ⊔ C3)).

Definition 15. Let C1 ⊑ C2 be a TBox axiom in ALC where DIAG(C1) =
(D1, A1) and DIAG(C2) = (D2, A2). The TBox diagram for C1 ⊑ C2, denoted
DIAG(C1 ⊑ C2), is obtained from the concept diagram

(

(D1\{MER(C1)}) ∪ (D2\{MER(C1)}) ∪ {MER(C1) +MER(C2)}, A1 ∪A2

)

Fig. 7. ∃R1.¬C1 ⊑ ∀R2.(C2 ⊔ C3).

by shading the zones in

EXP(REG(C1),K(MER(C2)))\EXP(REG(C2),K(MER(C1)))

in MER(C1) +MER(C2).

Lemma 6. Let C1 and C2 be ALC concepts. Let I be an interpretation. The
following statements are equivalent.

(1) CI
1 ⊆ CI

2

(2) REG(C1)
I ⊆ REG(C2)

I .

(3) EXP(REG(C1),K(MER(C2)))
I ⊆ EXP(REG(C2),K(MER(C1)))

I .

Theorem 4. Let C1 ⊑ C2 be a TBox axiom in ALC and let I be an interpre-
tation. I satisfies C1 ⊑ C2 iff I satisfies DIAG(C1 ⊑ C2).

Proof. Suppose that I satisfies C1 ⊑ C2. Since DIAG(C1) and DIAG(C1) are
valid, by lemma 5, we only need to show that I satisfies the merged unitary
diagram MER(C1)+MER(C2) with the shading added to it as in definition 15;
call this diagram β. First, by corollary 1, MER(C1) and MER(C2) are both
valid. By lemma 2, MER(C1)+MER(C2) is also valid. Therefore, we only need
to consider the shading condition for β. This condition reduces to

Z
∗(β)I =

(

EXP(REG(C1),K(MER(C2)))\EXP(REG(C2),K(MER(C1)))
)I

= ∅ (*)

since there are no spiders. Now, since C1 ⊑ C2 is satisfied by I, we know that
CI

1 ⊆ CI
2 . Lemma 6 tells us, therefore, that

EXP(REG(C1),K(MER(C2)))
I ⊆ EXP(REG(C2),K(MER(C1)))

I

from which (*) follows, as required. Thus, I satisfies DIAG(C1 ⊑ C2). The
converse, omitted for space reasons, is similar. Hence I satisfies C1 ⊑ C2 iff I
satisfies DIAG(C1 ⊑ C2).

Theorem 5. All TBox axioms in ALC can be visualized by a semantically equiv-
alent concept diagram.

Theorems 3 and 5 establish that ALC can be visualized using concept dia-
grams.

Fig. 8. C1 ⊑ C2 ⊓ C3 ⊓ C4. Fig. 9. ∃R1¬C1 ⊑ ∀R2.(C2 ⊔ C3).

6 Improving the General Translations

The translations just defined sometimes return diagrams involving shaded zones.
It is possible to simplify these diagrams by removing the shaded zones. An
example is given in figure 8, where removing shaded zones reduces clutter. John
et al. [15] defined a clutter score for Euler diagrams (which are concept diagrams
that do not include any spiders or arrows): the clutter score for Euler diagram,
β, denoted CS(β) is

CS(β) =
∑

(in,out)∈Z(β)

|in|.

In figure 8, the clutter score reduces from 31 to 16 when removing the shaded
zones. All diagrams arising from TBox axioms involve shading and can be simpli-
fied in this way. Moreover, axioms involving quantifiers also give rise to diagrams
that include shading.

Lemma 7. Let A be an ALC axiom. Removing shaded zones from DIAG(A)
reduces the clutter score.

It is known that diagrams with a higher clutter score are harder for people
to interpret [4] and it has further been shown that Euler diagrams without
shading are easier to interpret [5]. Indeed, removing shaded zones makes the
resulting diagram exploit spatial relations to assert information, making them
well-matched to their semantics [10].

We can also simplify the translation of axioms of the form C1 ⊑ ∀R.C2,
where C1 and C2 are arbitrary concepts. For instance, in figure 7 the diagram
unnaturally uses R−

2 in order to produce a region in β6 that represents ∀R2.(C2⊔
C3). In fact, whilst helpful for a general translation mechanism, this construction
step can be eliminated, instead making direct use of β2. An alternative diagram
can be seen in figure 9. Here, we have added a curve to β2, figure 5, representing
a subset of C2 ⊔ C3. This curve represents the set of all elements that things
in ∃R1.¬C1 are related to under R2, though the use of the arrow targeting it.
Thus, the diagram expresses ∃R1.¬C1 ⊑ ∀R2.(C2 ⊔ C3). This process readily
generalizes to axioms of the form C1 ⊑ C2 where C2 involves top-level universal
quantifiers. We note here that the use of inverse roles for existentially quantified
concepts can also be avoided, see [14, 21] for examples.

7 Conclusion

This paper shows how to use concept diagrams to visualize ALC axioms. Our
approach was to build diagrams for concepts and then use these diagrams to

express ABox and TBox axioms. A substantial proportion of axioms from OWL
ontologies are drawn from ALC, establishing that concept diagrams can visualize
a significant proportion of ontology axioms that have been developed. We view
the contribution in this paper to be an important foundational step towards
producing usable visualizations of description logic. Whilst our general transla-
tion from ALC may not produce ideal diagrams from a usability perspective,
we have demonstrated some improvements can be readily achieved. Further im-
proving the resulting diagrams is a key future ambition. For this, it is likely that
extensive empirical studies will be required, to establish how to choose between
semantically equivalent, yet syntactically different, concept diagrams. This was
started in [3], where diagrams for common styles of axioms where empirically
compared to ascertain their relative usability.

There are a number of other exciting avenues for future work. We plan to
extend the translations to richer description logics, establishing that most, if not
all, ontologies can be visualized using concept diagrams. It will be a particular
challenge to produce improved versions of these visualizations, to ensure that
the results of translations are most usable. Indeed, we envisage a much more
general translation from DL axioms to concept diagrams, which identifies sets
of DL axioms that can be translated to single diagrams, as in figure 1. We plan
to automate the translation process, allowing the results to be readily used in
practice. This brings with it substantial diagram drawing and layout problems,
building on the body of work on Euler diagram generation [9, 16, 20, 22]. Work
towards a theorem prover for concept diagrams has already begun [17], where it
has been designed using empirical insights into what constitutes understandable
inference rules [19]. Our ultimate vision is to devise a framework that allows con-
cept diagrams to be used for ontology engineering, not merely as a visualization
aid, either as a stand-alone notation or fully integrated with existing symbolic
approaches.

Acknowledgement

Gem Stapleton was partially funded by a Leverhulme Trust Research Project
Grant (RPG-2016-082) for the project entitled Accessible Reasoning with Dia-
grams.

References

1. Manchester owl corpus. http://owl.cs.manchester.ac.uk/publications/supporting-
material/owlcorpus/ (accessed February 2014)

2. OntoGraf. http://protegewiki.stanford.edu/wiki/OntoGraf (accessed July 2013)
3. Alharbi, E., Howse, J., Stapleton, G., Hamie, A.: Reasoning with concept diagrams

about antipatterns in ontologies. In: 9th International Conference on the Theory
and Application of Diagrams. pp. 51–66. Springer (2016)

4. Alqadah, M., Stapleton, G., Howse, J., Chapman., P.: Evaluating the impact of
clutter in Euler diagrams. In: 8th International Conference on the Theory and
Application of Diagrams. pp. 108–122. Springer (2014)

5. Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., Blake, A.: Visualizing sets:
An empirical comparison of diagram types. In: 8th International Conference on the
Theory and Application of Diagrams. pp. 146–160. Springer (2014)

6. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz,
K., Kelsey, W.D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov,
A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C
semantic sensor network incubator group. Web Semantics: Science, Services and
Agents on the World Wide Web 17, 25 – 32 (2012)

7. Dau, F., Ekland, P.: A diagrammatic reasoning system for the description logic
ALC. Journal of Visual Languages and Computing 19(5), 539–573 (2008)

8. Duncan, J., Humphreys, G.: Visual search and stimulus similarity. Psychological
Review 96, 433–458 (1989)

9. Flower, J., Howse, J.: Generating Euler diagrams. In: Proceedings of 2nd Interna-
tional Conference on the Theory and Application of Diagrams. pp. 61–75. Springer,
Georgia, USA (2002)

10. Gurr, C.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages and Computing 10(4), 317–342 (1999)

11. Hammar, K.: Reasoning performance indicators for ontology design patterns. In:
4th Workshop on Ontology and Semantic Web Patterns (2013)

12. Hayes, P., Eskridge, T., Mehrotra, M., Bobrovnikoff, D., Reichherzer, T., Saavedra,
R.: Coe: Tools for collaborative ontology development and reuse. In: Knowledge
Capture Conference (2005)

13. Horridge, M.: Owlviz. www.co-ode.org/downloads/owlviz/ (accessed June 2009)
14. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: A case

study. In: International Semantic Web Conference. pp. 257–272. Springer (2011)
15. John, C., Fish, A., Howse, J., Taylor, J.: Exploring the notion of clutter in Eu-

ler diagrams. In: 4th International Conference on the Theory and Application of
Diagrams. pp. 267–282. Springer, Stanford, USA (2006)

16. Riche, N., Dwyer, T.: Untangling Euler diagrams. IEEE Transactions on Visual-
ization and Computer Graphics 16(6), 1090–1099 (2010)

17. Shams, Z., Jamnik, M., Stapleton, G., Sato, Y.: Reasoning with concept diagrams
about antipatterns. In: 21st International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning. pp. 27–42. Kapla Publications in Computing
(2017)

18. Shams, Z., Jamnik, M., Stapleton, G., Sato, Y.: Reasoning with concept diagrams
about antipatterns in ontologies. In: Intelligent Computer Mathematics. pp. 255–
271. Springer (2017)

19. Shams, Z., Sato, Y., Jamnik, M., Stapleton, G.: Accessible reasoning with dia-
grams: from cognition to automation. In: 10th International Conference on the
Theory and Application of Diagrams. Springer (2018)

20. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of over-
lapping sets. Computer Graphics Forum 28(3) (2009)

21. Stapleton, G., Compton, M., Howse, J.: Visualizing OWL 2 using diagrams. In:
IEEE Symposium on Visual Languages and Human-Centric Computing. pp. 245–
253. IEEE (2017)

22. Stapleton, G., Flower, J., Rodgers, P., Howse, J.: Automatically drawing Euler
diagrams with circles. J. of Visual Languages and Computing 23, 163–193 (2012)

23. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: Formaliz-
ing concept diagrams. In: 19th International Conference on Distributed Multimedia
Systems. pp. 182–187. KSI (2013)

