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1. Description of the parameter tuning procedure

This supplementary material provides the study regarding the parameterisation applied together with
each algorithm considered in the paper. The parameter tuning procedure was performed for the first, second
and third experiments reported in Section 4 of the paper, later required to compare the best-performing
variants in subsequent experiments.

Particularly, parameterisations were defined by using a Taguchi’s Orthogonal Array factorial design of
four factors and three levels, with the aim of reducing the number of different configurations of a full-factorial
design with the same number of factors and levels. This results in 9 different parameterisations of e-mbo
and mbo, each of them using parameter values shown in Table 1.

Table 1: Parameter values for the different configurations of e-mbo and mbo

Configuration 0 1 2 3 4 5 6 7 8
Population size (n) 150 150 150 250 250 250 350 350 350
Neighbourhood size (k) 7 9 11 7 9 11 7 9 11
Number of iterations (m) 10 5 15 5 15 10 15 10 5
Number of neighbours to be shared (x) 1 2 3 3 1 2 2 3 1

To assess the performance of the different configurations of e-mbo and mbo, a ranking procedure was
used. It was calculated as follows. For a particular approach, the number of times it was able to statistically
outperform other configurations (↑), the number of times it was statistically outperformed by the remaining
configurations (↓), and the number of times it did not show statistically significant differences with other
configurations (↔), considering all functions, were calculated by applying the statistical procedure explained
at the beginning of Section 4. Configuration A statistically outperforms configuration B if there exists sta-
tistically significant differences between them, and if at the same time, A provides a lower mean and median
of the error with respect to the objective value than B, since we are dealing with minimisation problems.
For each function, every configuration was statistically compared to the remaining ones, thus performing
36 pairwise statistical comparisons. Therefore, a total number of 540 pairwise statistical comparisons were
carried out for each of both schemes e-mbo and mbo, considering all functions. Once statistical comparisons
were performed, the score assigned to a given configuration was calculated as the difference between the
number of schemes it was able to beat and the number of schemes that were able to beat it. Then, a ranking
was established by sorting strategies in descending order taking into account the scores assigned. Finally,
the configurations of e-mbo and mbo that obtained the highest scores are shown in boldface.
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Table 2: Ranking of e-mbo and mbo applying the neighbourhood operator based on de/rand/1/bin with fixed parameters
Configuration ↑ ↓ ↔ Score Ranking Configuration ↑ ↓ ↔ Score Ranking
E-MBO-0 63 17 40 46 2 MBO-0 61 6 53 55 1
E-MBO-1 64 16 40 48 1 MBO-1 61 11 48 50 3
E-MBO-2 60 17 43 43 4 MBO-2 61 9 50 52 2
E-MBO-3 68 24 28 44 3 MBO-3 48 25 47 23 4
E-MBO-4 50 34 36 16 5 MBO-4 44 29 47 15 6
E-MBO-5 46 33 41 13 6 MBO-5 47 28 45 19 5
E-MBO-6 7 75 38 -68 7 MBO-6 5 72 43 -67 8
E-MBO-7 7 75 38 -68 7 MBO-7 6 72 42 -66 7
E-MBO-8 6 80 34 -74 8 MBO-8 1 82 37 -81 9

1.1. First experiment

Table 2 shows the ranking resulting of studying mbo variants making use of the explorative neighbour-
hood operator based on de/rand/1/bin with fixed parameters. It can be observed that configurations of
e-mbo and mbo with a smaller population size performed better, i.e., obtained higher scores, than parame-
terisations making use of a larger population size. In fact, e-mbo-1 and mbo-0 obtained the highest scores,
both of them using a population of n = 150 individuals. Since the neighbour generation operator based
on de/rand/1/bin promotes exploration, using a very large population may be counter-productive as it can
lead to a reduction in the convergence speed. Hence, smaller populations are preferred.

In order to analyse the robustness of e-mbo with respect to the remaining parameters, we only considered
the results obtained in all functions by its configurations using n = 150 individuals (e-mbo-0, e-mbo-1, and
e-mbo-2), and repeated the ranking calculation. Significant differences among configurations with different
values for parameters k, m, and x did not appear in 34 out of 45 statistical tests, which represents more than
75% of the cases. The same fact was observed with the configurations of mbo using n = 150 individuals
(mbo-0, mbo-1, and mbo-2), but in this particular case, statistically significant differences did not arise
in 95.5% of the comparisons, which is even more noticeable. Taking into account the configurations of
e-mbo and mbo using n = 250 and n = 350 individuals, results were similar, where statistically significant
differences did not arise in 80% of the cases, with the exception of the configurations of e-mbo with n = 250
individuals, where statistical differences did not appear in more than 57% of the comparisons.

As a result, we can conclude that both e-mbo and mbo are very robust from the point of view of
their parameters when they are applied together with an explorative neighbourhood operator based on
de/rand/1/bin. By modifying the values of parameters k, m, and x, the performance of both approaches
does not change in a significant manner. A suitable selection of the population size, however, must be
carried out. By applying this particular neighbourhood operator, e-mbo and mbo provide better results
with smaller populations.

1.2. Second experiment

Table 3 shows the ranking of the different configurations of e-mbo and mbo applying the explorative
neighbourhood operator based on the adaptive (jade) de/rand/1/bin. Similar conclusions to those stated
in previous section can be drawn regarding the analysis of the population size n. It can be observed that
configurations e-mbo-0 and mbo-0 obtained the highest score: both contain n = 150 individuals, i.e., the
lowest population size and get the first position in the ranking. Furthermore, in general terms, configurations
with larger population sizes performed worse than approaches with lower populations, with the exception
of schemes e-mbo-4 and e-mbo-5, as well as mbo-4 and mbo-5. The above configurations, which were
applied with n = 250 individuals, achieved similar scores than those attained by e-mbo-0 and mbo-0
respectively, which used n = 150 individuals. In fact, e-mbo-5 obtained the same score than e-mbo-0.
Since the neighbour generation operator applied in this experiment is based on an adaptive version of de,
the population size might be a more robust parameter in this case. Using adaptation sustains the superior
performance of e-mbo and mbo in some cases, even though the population size is increased. However, we
note that the adaptive neighbour generation operator is based on the the explorative variant de/rand/1/bin.
As a result, the usage of a very large population, such as n = 350, which promotes even more the exploration
ability of the optimisation scheme, might significantly decrease the performance of e-mbo and mbo, as it
also happened in the first experiment.
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Table 3: Ranking of e-mbo and mbo applying the neighbourhood operator based on the adaptive de/rand/1/bin (jade)
Configuration ↑ ↓ ↔ Score Ranking Configuration ↑ ↓ ↔ Score Ranking
E-MBO-0 43 21 56 22 1 MBO-0 48 24 48 24 1
E-MBO-1 27 33 60 -6 5 MBO-1 39 30 51 9 4
E-MBO-2 31 31 58 0 3 MBO-2 37 33 50 4 5
E-MBO-3 28 35 57 -7 6 MBO-3 33 36 51 -3 6
E-MBO-4 44 26 50 18 2 MBO-4 44 28 48 16 3
E-MBO-5 46 24 50 22 1 MBO-5 42 24 54 18 2
E-MBO-6 32 40 48 -8 7 MBO-6 25 47 48 -22 8
E-MBO-7 31 36 53 -5 4 MBO-7 27 41 52 -14 7
E-MBO-8 30 66 24 -36 8 MBO-8 31 63 26 -32 9

Another explanation to the above fact might be the following. Observing Algorithm 1 and how the
method by which the control mechanism provided by jade is integrated into e-mbo and mbo (explained
at the end of Section 3.2), we note that the mechanism responsible for updating the mean µCR is executed
m times at each generation of both algorithms, with m being the number of iterations. The larger the
number of iterations m, the larger the number of updates of µCR per generation, and therefore leading to
more accurate control of CR depending on the current moment of the search process. At the same time,
Equation 1 shows the number of neighbours S generated at each of those m iterations of e-mbo and mbo

depending on their parameters, which corresponds to the number of times that the distribution responsible
for providing values for CR is sampled at each iteration m.

S = k + (n− 1) · (k − x) (1)

With a larger number of samples S, the variability of CR values, and consequently, the variability of potential
successful CR values is also larger. It is important to recall, from Section 3.2, that successful values of CR

are used by the mechanism provided by jade to update µCR. Therefore, with larger values of S, the control
of the crossover rate CR might be much more accurate. However, by increasing S, the number of generations
performed by e-mbo and mbo decreases, as also observed when increasing the number of iterations (or µCR

updates) m. This is depicted in Equation 2, which shows the number of generations g of a given run
depending on the values of its parameters and its total number of evaluations numEvals.

g =

⌈

numEvals

m · S

⌉

(2)

Hence, the performance of e-mbo and mbo combined with this particular adaptive neighbour generation
operator may be significantly altered depending on the values assigned to their parameters n, m, k, and
x, which are related to the mechanism provided by jade to control the crossover rate CR used by the
neighbourhood operator1. This would explain, on the one hand, the fact that configurations with different
values for their parameters are able to perform in a similar manner, such as e-mbo-0 and e-mbo-5, and on
the other hand, the fact that configurations sharing some values for their parameters perform significantly
different, like mbo-3 with respect to mbo-4 and mbo-5, all of them applied with n = 250 individuals.
For instance, in the first case, both e-mbo-0 and e-mbo-5 were applied with m = 10 iterations, and
therefore, both of them updated m = 10 times per generation the value of µCR. Nevertheless, the value of S
considered by e-mbo-0 was lower (S = 901) than the value used by e-mbo-5 (S = 2252), while the number
of generations of the former (g = 333) was higher than the number of generations of the latter (g = 134). As
a result, e-mbo-0 was able to provide similar performance than e-mbo-5 by carrying out a higher number
of generations, in spite of adapting CR in a more inaccurate manner.

In summary, the population size n of e-mbo and mbo, making use of a neighbour generation operator
based on an adaptive version of de/rand/1/bin, becomes a more robust parameter, since altering its value
does not significantly change the performance of both approaches. The usage of a very large population,
however, might be counter-productive. In addition, it is important to properly set the remaining parameters

1All the observations made in the current section in regard to the control mechanism provided by jade for adapting the
crossover rate CR are also extensible to the control mechanism responsible for adapting the mutation scale factor F .
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Table 4: Ranking of e-mbo and mbo applying the neighbourhood operator based on the adaptive de/current-to-p-best/1/bin
(jade)

Configuration ↑ ↓ ↔ Score Ranking Configuration ↑ ↓ ↔ Score Ranking
E-MBO-0 9 74 37 -65 7 MBO-0 13 68 39 -55 7
E-MBO-1 3 84 33 -81 9 MBO-1 1 78 41 -77 8
E-MBO-2 1 81 38 -80 8 MBO-2 1 81 38 -80 9
E-MBO-3 40 41 39 -1 6 MBO-3 39 38 43 1 6
E-MBO-4 59 15 46 44 3 MBO-4 63 13 44 50 3
E-MBO-5 44 30 46 14 5 MBO-5 41 31 48 10 5
E-MBO-6 72 8 40 64 2 MBO-6 66 8 46 58 2
E-MBO-7 57 18 45 39 4 MBO-7 50 17 53 33 4
E-MBO-8 81 15 24 66 1 MBO-8 75 15 30 60 1

of e-mbo and mbo. A suitable balance between the number of generations g, the number of times m that
the updating mechanisms provided by jade are executed at each of those generations, and the number of
neighbours S produced at each iteration, should be established in order to properly control the parameters
of the neighbour generation operator, and consequently, to improve the performance of the approaches.

1.3. Third experiment

In Table 4, the resulting ranking of the different configurations for e-mbo and mbo using the exploitative
neighbourhood operator based on the adaptive (jade) de/current-to-p-best/1/bin is reported. As it can
be observed, in opposition to previous experiments, the configurations of e-mbo and mbo with a larger
population size provided better overall performance than schemes using a smaller population. In fact,
approaches e-mbo-8 and mbo-8, both of them applied with n = 350 individuals, obtained the highest scores
in the ranking. Since the neighbourhood operator is based on the more exploitative version de/current-
to-p-best/1/bin, the usage of very small populations may produce a negative effect, due to a significant
inclination towards exploitation, which drives the algorithm to prematurely converge to local optima. In
contrast, using larger populations allows the exploration and exploitation capabilities of the algorithms to
be balanced properly.

As an exception to the above however, we note that configurations e-mbo-4 and mbo-4, both of them
applied with n = 250 individuals obtained better scores than e-mbo-7 and mbo-7, respectively, which
were executed considering n = 350 individuals. As in the case of the second experiment, parameters of the
neighbourhood operator were also updated during the execution, with the only difference being that not only
CR, but also F , were adapted by the control mechanisms provided by jade. As a result, the population
size may be a more robust parameter, as previously stated in the second experiment. Controlling both
parameters of this particular neighbourhood operator through jade allows the performance of e-mbo and
mbo to be retained, or even improved, for some cases, although the population size is decreased. However,
the application of a very small population, like n = 150, which further promotes the exploitation ability of
e-mbo and mbo, could significantly reduce their performance. With respect to the analysis carried out in
the second experiment regarding the remaining parameters of e-mbo and mbo, the same conclusions can
be drawn here, as both parameters F and CR are adapted by the control mechanisms provided by jade.
Thus, it is also important to properly set those parameters when both approaches are combined with the
neighbourhood operator based on the adaptive de/current-to-p-best/1/bin.
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