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Abstract. The Quadratic Knapsack Problem (QKP) is a well-known
optimization problem aimed to maximize a quadratic objective function
subject to linear capacity constraints. It has several applications in differ-
ent fields such as telecommunications, graph theory, logistics, hydrology
and data allocation, among others. In this short paper, we propose the
application of a novel population-based metaheuristic, which exploits the
concepts of cooperation and communication along the search leading to
a collective learning, to solve a wide range of well-known QKP instances.

1 Introduction

The Quadratic Knapsack Problem (QKP) is a knapsack problem introduced by
Gallo et al. [4] that includes the relationship among the items within a quadratic
objective function. Formally, in the QKP, we are given a set of items N =
{1, ..., n} where each item i has a given weight wi > 0 and a n× n profit matrix
B that indicates the benefit obtained when an item is packed with respect to
itself and other items. In other words, if an item i is selected the profit obtained
is equal to bii +

∑
j∈N\{i} bij . We should note that matrix B is symmetric, i.e.,

bij = bji. The goal of the QKP is thus determining the items to be packed in the
knapsack taking into account the weight capacity c such that the total profit of
the items packed is maximized. The selection of the items is ruled by the binary
variable xi which is equal to 1 if item i is selected and 0 otherwise. The formal
definition of the QKP is as follows.

max z(QKP ) =
∑

i∈N

∑

j∈N

bijxixj (1)

∑

i∈N

wk
i xi ≤ c (2)

xi ∈ {0, 1}, i ∈ N (3)

As can be deduced from the above formulation, if bij = 0 for i 6= j then the
QKP can be reduced to the Knapsack Problem. Moreover, the Clique Problem
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can be obtained as a particular case of the QKP, where the Max Clique can be
solved by means of a QKP algorithm by using a binary search [1].

In this work, we propose the application of a novel population-based meta-
heuristic, called Multi-leader Migrating Birds Optimization (MMBO) [5]. This
approach exploits the communication among a population of individuals dur-
ing the search, thus enabling cooperative learning. We test our method for the
latest benchmark suite proposed for the QKP [2]. As it is shown in Section 3,
our proposal reports highly competitive results, in terms of the objective func-
tion value attained at the end of the runs, in comparison to the best-performing
state-of-the-art approaches that can be found in the related literature.

2 Multi-leader Migrating Birds Optimization

For solving the QKP, we propose the use of MMBO (Algorithm 1), which is
a decentralized cooperative search approach inspired by the flight formation of
migratory birds. In MMBO, the population is denoted as P = {1, 2, ..., p}, where
p is the number of individuals representing solutions of the optimization problem
at hand. During the search, individuals are distributed in a line formation, i.e.,
(1, 2, ..., p), where individual 1 is directly connected to individual 2, and individ-
ual 2 is connected to individuals 1 and 3, and so on. Based on that line formation,
a relationship structure is established according to a given relationship criterion,
for instance, in terms of the objective function value associated with each mem-
ber in the population. By means of that criterion, the role among each pair of
individuals is determined, i.e., which individual provides and which individual
receives information during the search. Starting from each individual in P , k
feasible neighbors are generated through a predefined neighborhood structure.
In this work, two decision variables of a given individual are uniformly selected
at random and their corresponding binary values are flipped in order to produce
a novel neighbor. Depending on the relationship criterion and how information
is shared among individuals, different roles arise:

– Leader. It is that individual with the best objective function value when
compared to its adjacent individuals. Therefore, it does not receive informa-
tion from any individual, but shares information, in the form of δ neighbors,
with its adjacent individuals. Furthermore, starting from a leader, k neigh-
bors are generated. Since the objective function value determines the position
within the relationship structure, a leader is the fittest individual. The set
of leaders is denoted as PL.

– Follower. It is that individual which explores the search space considering
its own information and the information received from the individuals in
front of it within the relationship structure. It generates k− δ neighbors and
receives δ neighbors from the adjacent individuals. The set of followers is
denoted as PF .

– Independent. It is that individual which is not included into any of the
above categories because it has associated the same objective function value
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than its adjacent individuals. Hence, it does not exchange information with
any other individual, but generates k neighbors. The set of independent
individuals is denoted as PI .

Algorithm 1 Pseudocode of MMBO

Require: p, K, k, and δ

1: Initialize the population P , which consists of p individuals generated at random
2: while (K neighbors have not been generated) do
3: Determine the interaction among the individuals of P and establish the relation-

ship structure
4: while (the stopping criterion associated with the relationship structure is not

met) do
5: Generate k neighbors starting from each individual included into PL ∪ PI

6: Replace each individual included into PL ∪ PI by its fittest neighbor if the
latter is fitter than the former

7: Replace each individual included into PI by its fittest neighbor
8: for all (individual f ∈ PF ) do
9: Generate k − δ neighbors starting from f

10: Get the best unused δ neighbors from the previous individuals of f in the
relationship structure

11: Replace f by its fittest neighbor if the latter improves the former
12: end for

13: end while

14: end while

15: Return the fittest individual in P

3 Numerical Results

The proposed optimization technique has been implemented in Java and ex-
ecuted on a computer equipped with an Intel i7 CPU 3.5 GHz and 16 GB
of RAM. By preliminary experiments, we identified the following parameters
p = 20, δ = 1, and k = 5 with a stopping criterion K = |n|2 neighbors. The
problem instances used are those proposed in [2] by following the guidelines of
previous works.

Table 1 shows the computational results for instances with n = 100 items,
which were generated by considering different density values (dst). The methods
selected for comparison purposes are the best-performing ones in the related
literature for the instances proposed in [2]. They are based on a Dynamic Pro-

gramming Heuristic (DPH) and a Non-Delayed Relax-and-Cut (CSL) [3]. We
should note that execution times are measured as integer values in [2]. Hence,
some execution times were reported as 0 when the time invested was lower than
1 second. Therefore, we have reported the upper bound of the said times to avoid
those cases. Furthermore, as it can be observed in the table, our approach is able
to reduce considerably the execution time with respect to the best approach in
terms of the objective function value (CSL). Finally, it is worth mentioning that
MMBO reported a new best solution considering one of the instances (id = 4).
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Table 1: Numerical results for instances of n = 100 items. The new best solution
attained by MMBO is faced in bold

Instance CSL DPH MMBO

dst id obj t(s) obj t(s) obj t(s)

25 1 53774 3 53757 2 53774 0.06
2 7082 5 7076 1 7082 0.06
3 60875 2 60875 1 60875 0.07
4 18386 6 18386 2 18386 0.04
5 43014 4 43014 1 43014 0.06
6 50484 4 50484 1 50484 0.06
7 21769 4 21769 2 21769 0.05
8 30687 5 30687 1 30687 0.04
9 28719 6 28719 1 28719 0.04
10 5463 4 5421 2 5463 0.06

Average 32025.3 4.3 32018.8 1.4 32025.3 0.05

Instance CSL DPH MMBO

dst id obj t(s) obj t(s) obj t(s)

50 1 34653 5 34653 1 34653 0.08
2 43178 5 43169 1 43178 0.06
3 46243 6 46243 2 46243 0.09
4 48894 5 48992 1 49030 0.04
5 41515 6 41515 1 41515 0.08
6 71982 4 71982 2 71982 0.06
7 69146 6 69177 1 69177 0.07
8 83085 3 83085 1 83085 0.06
9 9772 4 9772 2 9772 0.13
10 62465 6 62407 1 62465 0.08

Average 51093.3 5 51099.5 1.3 51110 0.07

4 Conclusions

In this work, we have proposed a cooperative learning approach for the Quadratic
Knapsack Problem. Due to its self-organization and cooperation dynamics, it
allows individuals to learn along the search process in a collective way. The col-
laborative relationship structure enhances the diversification of the search as
individuals can be distributed over the search space. At the same time, the in-
tensification is addressed by the sum of efforts of the individuals belonging to
the same group located at a particular region of the search space. It is remark-
able from the computational experience that our algorithm reports high quality
solutions in terms of the objective function value by investing shorter computa-
tional times with respect to state-of-the-art approaches. In this regard, we even
attained a new best solution for one of the instances tested.

As future work, we aim to extend the results provided herein to analyze the
different features provided by the approach to solve the QKP in more detail. We
also aim to work on the assessment of our algorithm to deal with other problems.
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