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ABSTRACT
Vehicle Routing Problems (VRPs) are commonly used as
benchmark optimisation problems and they also have many
applications in industry. Using agent-based approaches to solve
VRPs allows the analysis of dynamic VRP instances that
incorporate congestion effects. By using a domain-specific
language as part of a model-driven approach, routing problems
can be modelled in an abstract form that does not contain
implementation and other technical details. With such a tool
domain experts can concentrate on the actual modelling task
without being distracted by low-level intricacies. We present
the DSL Athos in which computational and platform inde-
pendent routing problems can be defined. The DSL offers an
efficient way to model problems with seamless integration of
established optimisation methods. Generators create executable
code for several agent based platforms. Proof of concept is
given by applying the tools to the Oliver 30 TSP and an
instance of a dynamic TSP.

INTRODUCTION
The planning and optimisation of logistics networks and other
VRP problems have many industrial applications. Planning
and optimisation of resources is necessary in a world in
which sustainability and efficiency are important for organi-
sations that wish to remain competitive. A typical example is
where algorithms and models have to find optimal, or near-
optimal, solutions for vehicles in delivery processes. Creating
a schedule in which all customers are visited in an efficient
order means solving a Travelling Salesman Problem (TSP)
(see Schwab, Guckert, and Willems 2017).
TSP is NP-hard, and thus heuristic approaches are com-
monly used to find solutions. Nature inspired techniques are
such an approach (Afaq and Saini 2011). Schwab et. al
also describe how a solution for TSPs with additional time
constraints (see Savelsberg 1985) based on the ant algorithm
was integrated into an off-the-shelf transportation management
system (Schwab, Guckert, and Willems 2017).

In real-world applications, solutions should consider the cur-
rent traffic situation and respect congestion effects. Adding
a dynamic element increases the complexity of the problem.
Such problems belong to a special class of TSPs known
as Dynamic TSP (DTSP) (Cheong and White 2012). By
modelling the problem by means of an agent based approach in
which the behaviour of the agents can be dynamically adjusted
to reflect the current level of traffic congestion, it is possible
to analyse and optimise instances of the DTSP.
In this paper, we present the DSL Athos that allows domain
experts to specify traffic and transport related optimisation
problems in a declarative and concise way. In a program
written in Athos, agents move through a network of roads.
The agents in the network mutually influence the speed with
which they can travel the routes of the given network. Agent
behaviour can be defined in various ways. While it is possible
to let agents travel a pre-defined list of nodes, they can also be
assigned the task of travelling an optimised route. For finding
an optimised tour (measured by distance) that visits each node
of a given set of nodes the agents must solve a static TSP
instance. Agents could also be instructed to optimise for the
fastest route that visits each node in their list. Since agents
increase the time it takes to pass a given road in the network
by using it themselves, finding the fastest tour for a given
set of nodes requires to solve a dynamic version of the TSP.
Pillac et al. refer to this as the evolution of information (Victor
Pillac et al. 2013): agents can only plan their tour based on
the information they have at the moment the plan is created.
The best they can hope for is that this information represents
the current traffic situation in the network. However, a single
time step later, the traffic situation has changed, and the more
time passes, the more likely it is that the created tour is no
longer the optimal one. Agents therefore have to recalculate
and adjust their plan regularly.
We will describe Athos and then, as a proof of concept, apply it
to the published Oliver30 TSP based on the problem published
by Hopfield and Tank (Hopfield and Tank 1987) and on an
instance of a dynamic TSP which will be solved by using Ant
Colony System (ACS) (Dorigo and Gambardella 1997).

RELATED WORK
The TSP is an NP-hard benchmark combinatorial optimisation
problem. The problem requires a route to be determined for a



salesman who must find the shortest tour to visit a number of
cities. Each city must be visited once and once only within a
tour so that the solution is a Hamiltonian circuit that starts form
and ends in a designated starting point. The number of possible
tours is calculated as (n−1)!. However if the distances between
the cities are bi-directional then the number of possible tours
reduces to (n− 1)!/2.
Problems related to the TSP were discussed by William
Hamilton in the 1800s, but the first published work proposing
a method for solving the TSP appeared in 1954 (Dantzig,
Fulkerson, and Johnson 1954). Subsequently, Chvátal (Chvátal
et al. 2010) proposed the cutting plane method based on
linear equations and solved a 49 city TSP instance. Sub-
sequent notable methods for solving TSP instances include
the 2-opt (Croes 1958), 3-opt (Shen Lin 1965) and Lin-
Kernighan (S. Lin and Kernighan 1973) heuristics. Stochastic
and nature inspired methods applied to the TSP include genetic
algorithms Grefenstette et al. 1985 and ant colony optimisa-
tion (Dorigo and Gambardella 1997).
There exists a number of variants of the basic TSP. These in-
clude TSP with time windows (TSPW), multiple TSP (MTSP)
and dynamic TSP (DTSP). TSPW (Baker 1983) allocates a
time window to each city. Cities may only be visited if the
salesman arrives within the respective time window. In the
MTSP (Laporte and Nobert 1980), with multiple start/end
points, the solution has to contain multiple Hamiltonian cir-
cuits. The DTSP adds and removes cities at run time (Ghare-
hchopogh, Maleki, and Khaze 2013). The challenge is not
to produce one solution, but to produce a series of updated
solutions in response to cities being added or deleted from
the problem. Beyond that, our definition of a DTSP allows
dynamic changes of the weights (i.e. length) of the edges in
the network (compare Tinos 2015).
A DSL named Turn was developed by Steil et al. (Steil et al.
2011) in order to specify how vehicles should be routed with
a specific real-world VRP instance. A reference to a DSL is
made by Pigden et. al. in (Pigden et al. 2012), but no details are
supplied. It becomes apparent that whilst some work has been
undertaken in relation to the application of DSLs to VRP type
problems, there remains a significant requirement of a DSL
that can be adapted to a range of VRP instances.

A DSL FOR ROUTING PROBLEMS
Athos is a DSL that allows researchers to define models
for traffic-related optimisation problems at a computational
and platform independent level. Domain experts can take a
declarative approach, instead of imperatively coding agent
behaviours. A convention over configuration approach is taken
that allows, but does not require, users to control certain
aspects of the modelled simulation. For many aspects of the
simulation, Athos assumes reasonable default values and leaves
it open to the language users to override these defaults with
their desired values.
The problems that we wish to simulate comprise agents
that must try to optimise routes within a network of roads.
Each road (edge) in the network has a capacity attribute
that determines the extent to which the road is affected by

congestion. These congestion effects are also dependent on
the number and types of agents on the road. Some agents
have a greater congestion effect on roads than others. For
example, an agent that represents a slow-moving large tractor
is far more likely to congest a low-capacity road than an
agent that represents a small motorcycle. Agents enter the
network from arbitrary nodes, meaning that any type of vehicle
may potentially enter from any node. It is possible to define
distribution functions that represent the probability with which
a given place in the network is the origin of a given type of
agent. These distributions can be calibrated with data taken
from empirical observations. Agents may be specified to differ
in their travelling behaviour, e.g. some agents start at a given
node and seek to reach a given destination node, visiting a
given list of nodes en route. Other agents exhibit a circling
behaviour. They repeatedly travel along a given route within
the network. Similar to circling agents are shuttle agents which
shuttle along a given route of points. The agents with circling
and shuttling behaviour are used to create noise and traffic in
the network thus simulating high rates of traffic.

Architecture of Athos’ generator
The architecture of the generator used to transform Platform-
Independent Models (PIMs) into Platform-Specific Models
(PSMs) is depicted in Figure 1. The Athos-generator comes
in the form of an Eclipse plug-in. Once the generator is
given a program written in Athos, it uses a set of templates
to generate a traffic model for the NetLogo platform. At
this point, it is important to note that Athos is not a mere
interface to facilitate the creation of NetLogo models. It is
also possible to generate models for other ABM platforms
like Repast (a version with different and reduced function-
ality for Repast Simphony has already been implemented) or
Jadex. Together with the generator and its templates, we have
developed a NetLogo extension that can be accessed from the
generated NetLogo models via the NetLogo-Extension-API.
This extension contains several optimisation algorithms for
graph structures (e.g. Dijkstra’s algorithm) by using available
frameworks (e.g. JUNG http://jung.sourceforge.net/).
The extension also features a meta-heuristic known as Ant
Colony System (ACS) (Dorigo and Gambardella 1997). We
have implemented ACS as a NetLogo extension so that agents
in the network can find solutions of sufficient quality for the
given TSP. ACS is one out of many other possible approaches
to solve TSPs heuristically. It was chosen to demonstrate how
the philosophy of our architecture can integrate optimisation
algorithms. As Athos matures we will possibly implement
other algorithms if that widens the applicability. According
to Athos’ philosophy of providing sensible defaults, if not
specified differently, ACS parameter values are those obtained
from Dorigo and Gambardella 1997 (exception: t0 = 10).

The ACS implementation
From a theoretical point of view, solving a TSP means finding
a Hamiltonian cycle of shortest length (see e.g. Laporte and
Osman 1995). As is noted by Laporte and Nobert (Laporte
and Nobert 1987), this definition does not cause problems in
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Fig. 1. Athos’ modelling approach

complete graphs in which the triangle inequality holds (i.e.
in which there is no shorter path between any two nodes in
the network than their direct link). Athos does not require the
underlying graph to be complete, because real world traffic
networks are often incomplete. Therefore, for any two nodes
in the network their distance is defined as the length of the
shortest path from one to the other. Furthermore, the constraint
that each node is to be visited exactly once is relaxed by
distinguishing between service visits and crossing visits. Each
node then has to be serviced exactly once but may be crossed
an arbitrary number of times.
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n3

Fig. 2. Behaviour of the salesman-agent in an Athos-generated simulation.
Solid lines represent edges, dashed lines represent calculated distances, dotted
arcs represent the salesman’s moving pattern.

In Figure 2, the graph consists of nodes N = {n0, . . . , n6}.
However, the actual tour of the salesman consists only of
T = {n1, n4, n6} with T ⊂ N . Following Laporte and
Norbert, in our ACS implementation, we first calculate the
minimal distance between any two nodes of the tour by
means of Dijkstra’s algorithm. Take n1n6 as an example. In
our implementation, we would use Dijkstra’s to introduce an
artificial edge and define n1n6 := n1n2n4n5n6.
The arcs in Figure 2 then show the solution for the incomplete
graph, given that the salesman starts in n1. The salesman will

first service n4 by going from n1 to n2 and then to n4. Next,
he will go to n5 and then service n6. From there, he will cross
the nodes n5, n4, n2 to return to node n1. Note that another
feasible solution would have the salesman to first service node
n6 and then service node n4 on the way back to node n1.
Our ACS implementation works on two-dimensional arrays
that contain the mutual distances between any two tour
nodes and the pheromone values assigned to the edges. The
implemented ACS closely follows the description described
in (Dorigo and Gambardella 1997).
The ants work with two lists: one in which the indices of
the tour are stored and one in which the indices of the cities
yet to be visited are kept. By default, ten ants are used. The
algorithm performs a given number of iterations in which the
ants construct their tour incrementally beginning with an empty
list for the tour. The ants are placed randomly at one of the
nodes of the tour. In sequence, the ants are then asked to
perform a state transition, i.e. add a node to their tour. In order
to determine which node to service next, ants execute a pseudo-
random-proportional rule which is a centrepiece of the ACS
algorithm. Depending on the outcome the ant either chooses to
exploit current length and pheromone information or to explore
new links by application of a probabilistic state transition
rule. The pheromone-value for the edge that connects an ant’s
current and next city is then updated locally.
When the list of the yet to be visited cities is empty, the other
list in which the tour is stored must be complete. It is important
to note that to this point the tour list of an ant only stores each
node index exactly once. This means that the node in which
the ant is supposed to end the tour must be added in a final step
to have a complete tour. In a Hamiltonian circle, the ant must
finish its tour at its starting node. However, in order to allow
re-optimisation during tour execution, it must be possible to
explicitly define a node where the tour is supposed to end. As
an example, consider a salesman that found the tour of nodes
a, b, c, d to be optimal. When the salesman enters node b, the
remaining nodes consist of nodes b, c, d. If the salesman wants
to re-optimise this tour, the tour still must be finished in a –
and not in b which is the current location of the salesman. For
this reason, we modified the algorithm in a way that allows to
explicitly define a node where the tour is supposed to end. It
is still possible to define an end node that is also the starting
node, in which case the outcome will be a Hamiltonian cycle.



The nodes are permuted so that they start at the current location
of the salesman (and not at the current location of the ant).
Then, the final city is added to the list.
In our implementation, ants possess a tourCost attribute. A
reset method is executed at the beginning of each iteration,
and the tourCost of each ant is set to a negative value. In
this way an ant has to calculate the cost for its tour only when
the value of the tourCost attribute is negative, otherwise it
can simply return the value of the tourCost attribute. In a
final iteration step, the ants are sorted according to the length of
their tour. Over all iterations a globalBestTourIndices
list is stored, and at the end of each iteration a global
pheromone update on all edges that connect nodes of these
list is performed.

EXAMPLES

Oliver 30 TSP

In this section we show how Athos can be applied to the
Oliver 30 TSP instance (http://stevedower.id.au/blog/research/
oliver-30/).

modeloliver30worldxmax100xmin 0 ymax100ymin 0
functions
durationFunctionnormal length default
completenetwork
nodes
noden0(54.0,67.0) noden1(54.0,62.0) noden2(37.0,84.0)
noden3(41.0,94.0) noden4 (2.0,99.0) noden5 (7.0,64.0)
noden6(25.0,62.0) noden7(22.0,60.0) noden8(18.0,54.0)
noden9 (4.0,50.0) noden10(13.0,40.0)noden11(18.0,40.0)
noden12(24.0,42.0)noden13(25.0,38.0)noden14(44.0,35.0)
noden15(41.0,26.0)noden16(45.0,21.0)noden17(58.0,35.0)
noden18(62.0,32.0)noden19(82.0,7.0) noden20(91.0,38.0)
noden21(83.0,46.0)noden22(71.0,44.0)noden23(64.0,60.0)
noden24(68.0,58.0)noden25(83.0,69.0)noden26(87.0,76.0)
noden27(74.0,78.0)noden28(71.0,71.0)noden29(58.0,69.0)
edges
sources

n0sprouts (congestionFactor2.0route (n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,
n12,n13,n14,n15,n16,n17,

n18,n19,n20,n21,n22,n23,n24,n25,n26,n27,n28,n29) optimise )frequency1.0every 1
until 1

Athos is purely declarative and neither contains information
about the execution platform nor the method with which the
problem is going to be solved. Therefore it is computationally
independent and platform independent. The Athos generator
generates an executable NetLogo program, which will use Ant
Colony System (ACS) to solve the problem. By modifying the
generator the optimisation heuristic can be changed.
ACS is a stochastic algorithm which can produce varying
results with each execution. The generated solutions tend to
have a length in the range of 430 to 480. This is achieved
by a default of 30 iterations, for which our implementation
requires less than one second on a machine equipped with an
Intel i7-6820HQ CPU running at 2.70GHz. One example route
generated by our implementation has a length of 448.834. The
optimal solution published on the Oliver30 website is 423.741.
It is not our aim to find optimal solutions or to outperform
current published solutions. Our goal is the development of a
tool that allows efficient definition of problems and integrates
appropriate solving methods.

Dynamic vs. static agents

Our second example shows how Athos can be used to study
the implications of dynamic decision making based on com-
plete information within in a simple road network. For this
purpose, we define a network that consists of nine nodes and
eleven bidirectional edges between selected nodes. Within this
network, there are five agents, two of which travel pre-defined
paths and three who aim to find an optimal tour for a given
set of nodes. In this example, the optimisation function is not
defined in terms of the travelled distance but in the amount of
time required to complete a tour. More precisely, the value of
interest is the time it takes for the three agents to complete a
total of 100 tours.
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Fig. 3. Network for dynamic problem.

Figure 3 illustrates the network. Agent 1 is assigned a tour
that consists of the nodes n1, n4, n6. Agent 2 is to service
nodes n2, n6, n7, n9 and Agent 3 services nodes n8, n3, n1.
The three agents aim at tour completion in a minimum amount
of time. In order to intensify congestion effects, Agent 4 and
Agent 5 travel the predefined route n4, n5, n3, n0, n1, n2 and
n3, n0, n1, n2, n4, n5, respectively. Depending on the simula-
tion configuration, the tour-optimising agents either exhibit a
static or dynamic optimising behaviour.
In this context, static behaviour allows the agent to calculate
the optimal route at the beginning of the simulation, based
on the traffic situation at the moment the calculation is
performed. Once a route is calculated, the agent sticks to this
route throughout the entire simulation. Dynamic optimisation
implies that each time an agent reaches a node within its tour it
calculates a new optimised tour that comprises the unserviced
nodes. Agents in this dynamic scenario only recalculate their
tour when they have serviced a node. They do not recal-
culate when travelling through a node. If an agent has just
recalculated its tour, and the next node to be serviced is not
directly connected to the current node, the path to the next
node to be serviced is calculated based on the data used when
recalculating the tour. The agent will then follow the path and
not perform any recalculation until it arrives at the node to be
serviced.



TABLE I. RESULTS OF DYNAMIC TSP EXPERIMENT IN THE NETWORK. ALL EDGES IN THE NETWORK WHERE ASSIGNED THE TRAVEL DURATION
FUNCTION t = l+ 2AC (l : LENGTH OF EDGE, AC : ACCUMULATED CONGESTION FACTOR). OPTIMAL TOURS WERE CALCULATED BY MEANS OF THE ACS

ALGORITHM WITH THE FOLLOWING PARAMETERS α = 0.1, ρ = 0.1, q0 = 0.9, β = 2.0, 10 ANTS WERE USED IN 30 ITERATIONS.

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Mode Optimising Optimising Optimising Static Static
Tour n1, n4, n6 n2, n6, n7,

n9

n8, n3, n1 n4, n5, n3,
n0, n1, n2

n3, n0, n1,
n2, n4, n5

Config dyn? CF dyn? CF dyn? CF dyn? CF dyn? CF Avg. time 100 tours

C1 no 50 no 50 no 50 no 50 no 50 117,783.4
C2 yes 50 yes 50 yes 50 no 50 no 50 109,593.0
C3 no 250 no 250 no 250 no 50 no 50 589,651.4
C4 yes 250 yes 250 yes 250 no 50 no 50 555,630.9
C5 no 1250 no 1250 no 1250 no 50 no 50 2,706,275.7
C6 yes 1250 yes 1250 yes 1250 no 50 no 50 2,691,348.8

The listing below demonstrates how the intended scenario is
modelled in Athos. For Agents 1 – 3 the model only uses the
keyword optimise – it does not go into any computational
detail as to how this optimisation is to be achieved. Also note
how each edge is associated with a durationFunction
that defines the time it takes to travel an edge in terms of its
length, congestion factor (cfactor) and its current traffic
(accumulated congestion factor of all agents on the respective
road accCongestionFactor). If the optimise keyword
is directly followed by the dynamic keyword, the respective
agent behaves in the dynamic manner described above.

modelincompleteworldxmax30xmin 0 ymax30ymin 0
functions
durationFunctionnormal length + cfactor *accCongestionFactordefault
network
nodes
noden0 (1.0,1.0)noden1 (1.0,8.0)noden2 (2.0,11.0)
noden3 (4.0,6.0)noden4 (5.0,12.0)noden5 (8.0,11.0)
noden6 (8.0,7.0)noden7(13.0,12.0)noden8 (9.0,5.0)
noden9(13.0,1.0)
edges
edgeundirectede0fromn0 to n1length0.0cfactor2.0functionnormal
edgeundirectede1fromn1 to n2length0.0cfactor2.0functionnormal
edgeundirectede2fromn2 to n4length0.0cfactor2.0 functionnormal
edgeundirectede3fromn4 to n5length0.0cfactor2.0 functionnormal
edgeundirectede4fromn5 to n3length0.0cfactor4.0functionnormal
edgeundirectede5fromn6 to n5length0.0cfactor2.0functionnormal
edgeundirectede6fromn3 to n0length0.0cfactor4.0functionnormal
edgeundirectede7fromn7 to n4length0.0cfactor2.0functionnormal
edgeundirectede8fromn7 to n9length0.0cfactor2.0functionnormal
edgeundirectede9fromn9 to n0length0.0cfactor2.0functionnormal
edgeundirectede10fromn9 to n8length0.0cfactor2.0functionnormal
edgeundirectede11fromn8 to n6length0.0cfactor2.0functionnormal
sources

n1sprouts (congestionFactor250.0route (n1, n4, n6) optimisedynamic)
frequency1.0every 1 until 1 //Agent 1

n2sprouts (congestionFactor250.0route (n2, n6, n7, n9) optimisedynamic)
frequency1.0every 1 until 1 //Agent 2

n8sprouts (congestionFactor250.0route (n8, n3, n1) optimisedynamic)
frequency1.0every 1 until 1 //Agent 3

n4sprouts (congestionFactor250.0route (n4, n5, n3, n0, n1, n2) mode 1 )
frequency1.0every 1 until 1 //Agent 4

n3sprouts (congestionFactor250.0route (n3, n0, n1, n2, n4, n5) mode1)
frequency1.0every 1 until 1 //Agent 5

Table I shows the results of the simulation experiments. The
columns of the table show the agents that were used in the sim-
ulations and their general behaviour as well as their respective
route. For the experiment, six different configurations, with
differing agent configurations, were executed. Ten simulations

were executed for each configuration and the amount of time
in simulation ticks was recorded. The tour-optimising agents
had to complete a total of 100 tours. Three different congestion
factor (CF) values were used for all agents: 50, 250 and 1250.
For each of those values, 10 simulations were executed, in
which all tour-optimisation agents behaved in a static way and
ten simulations were executed in which they utilised dynamic
behaviours. The right column of the table presents the mean
time (measured in simulation ticks) the tour-optimising agents
required to perform 100 tours.

Table I shows that in the underlying network, the agents
performed better when they acted in a dynamic way. With a
congestion factor of 50, the dynamic agents required approx.
6.9% less time than the static agents. Surprisingly, this value
decreased to only approx. 5.7%, when we intended to increase
congestion effects by altering the agents’ congestion factor to
250. When the congestion factor was increased to 1,250, this
saw the advantage of the dynamic agents decline to 0.55%.

The reason for the diminishing performance advantage of the
dynamic agents with increased congestion factors requires
further investigation. However, we decided to modify the
underlying network in a way that it contained one road of
increased length so that dynamic agents could avoid this
road when they identified congestion on it. To this end,
we created the network depicted in Figure 4. The network
features an additional edge between nodes n5 and n7 and the
undirected edges n0, n3, n3, n5, n5, n7 form a coherent path.
The congestion factor of an agent that is on an edge of such
a coherent path, is also considered in the calculations of all
other edges that belong to the same coherent path. Athos allows
the specification of such a coherent path of edges simply by
adding the path keyword followed by the name of the path
to any edge in a network. For this scenario, we also wanted
some more influence on the underlying ant algorithm and thus
chose to leave the computationally independent level. Due to
this step, we were able to explicitly define the parameters of
the ACS algorithm. Note how the Athos model below increases
the iterations to 60.



modelincompleteworldxmax30xmin 0 ymax30ymin 0
functions
durationFunctionnormal length + cfactor *accCongestionFactordefault
networknodes
noden0 (1.0,1.0)noden1 (1.0,8.0)noden2 (2.0,11.0)
noden3 (4.0,6.0)noden4 (5.0,12.0)noden5 (8.0,11.0)
noden6 (8.0,7.0)noden7(13.0,12.0)noden8 (9.0,5.0)
noden9(13.0,1.0)
edges
edgeundirectede0fromn0 to n1length0.0cfactor2.0functionnormal
edgeundirectede1fromn1 to n2length0.0cfactor2.0functionnormal
edgeundirectede2fromn2 to n4length0.0cfactor2.0 functionnormal
edgeundirectede3fromn4 to n5length0.0cfactor2.0 functionnormal
edgeundirectede4fromn5 to n3length0.0cfactor4.0path "ab" functionnormal
edgeundirectede5fromn6 to n5length0.0cfactor2.0functionnormal
edgeundirectede6fromn3 to n0length0.0cfactor4.0path "ab" functionnormal
edgeundirectede7fromn7 to n4length0.0cfactor2.0functionnormal
edgeundirectede8fromn7 to n9length0.0cfactor2.0functionnormal
edgeundirectede9fromn9 to n0length0.0cfactor2.0functionnormal
edgeundirectede10fromn9 to n8length0.0cfactor2.0functionnormal
edgeundirectede11fromn8 to n6length0.0cfactor2.0functionnormal
edgeundirectede12fromn5 to n7length0.0cfactor2.0path "ab" functionnormal
sources

n0sprouts (congestionFactor50.0route (n0, n8, n4) antdynamicants10alpha
0.1rho0.1iterations120q00.9beta2.0)frequency1.0every 1 until 1

n9sprouts (congestionFactor50.0route (n9, n4, n0) antdynamicants10alpha
0.1rho0.1iterations120q00.9beta2.0)frequency1.0every 1 until 1

n7sprouts (congestionFactor50.0route (n7, n0) antdynamicants10alpha0.1
rho0.1iterations120q00.9beta2.0)frequency1.0every 1 until 1

n4sprouts (congestionFactor50.0route (n4, n5, n3, n0, n1, n2) mode 1 )
frequency1.0every 1 until 1

n3sprouts (congestionFactor50.0route (n3, n0, n1, n2, n4, n5) mode1)
frequency1.0every 1 until 1
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Fig. 4. Network for dynamic problem.

The right column of Table II shows the average time required
by the agents for the new network. When assigned a congestion
factor of 50, the static agents exhibited better performance.
While the dynamic agents required an average of 99,027
ticks (over ten simulation runs), their static counterparts only
required 92,928.3 ticks. However, when the congestion factor
was increased to 250, the dynamic agents outperformed the
static agents by 4.9%. With a congestion factor of 1.250, the
performance advantage dropped to 2.6%.
The numbers indicate that dynamism alone is no guarantee
for better performance. Other factors like the topology of the
underlying network have to be considered. As the presented
problems are highly dynamic, even an updated tour is outdated
very quickly. This example showed how Athos allows for
the convenient definition of dynamic traffic simulations. From
these simulations further data can be derived that allow to

analyse traffic and routing related problems.

CONCLUSIONS AND FUTURE WORK
We have presented the DSL Athos with which computational
and platform independent descriptions of traffic simulations
and routing problems can be created. These models are free
of implementation details and do not explicitly specify the
method to be applied to solve the problem. All necessary
details are generated into the code to be executed in the target
environment. We have shown how Athos can be applied to
different traffic-related optimisation problems. In a first exam-
ple, we have demonstrated how Athos describes and solves a
popular TSP benchmark problem. In a second example, we
applied Athos to analyse a traffic scenario where multiple
dynamic TSP problems occurred.
Our goal is to develop a language in which models can be
described more efficiently than with conventional methods and
not to improve algorithms and solutions. In the current version,
we generate code that implements the ACS heuristic but this
can and will be extended to other approaches. There is the
potential to create a more intelligent solution generator which
can analyse given models and chose appropriate methods and
heuristics. Doing this in the generator, rather than in a more
interpretative way at runtime, results in lean best-practice
implementations which can scale in size and usability by
choosing the best platform and algorithmic approach for a
problem. The next steps in the development of Athos are to
extend the expressiveness of the language (to encompass more
problem types) and intelligent features of the generator.
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