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Abstract One of the prevailing challenges in cycling research, or indeed any vulnerable road user research, is the 
availability of data to ascertain a representative level of ‘exposure’ or simply how much cycling there is – “when and 
where”. Therefore, it is difficult for researchers and ultimately local authorities to determine if changes in observed 
accident trends over time are due to increased accident risk, (users or environment becomes more unsafe) or if they 
are a function of the higher numbers of cyclists using the existing roads and routes resulting in more incidents, i.e. 
increased exposure. This paper describes the use of recently developed open source transport modelling software and 
an open source bike routing application to assign realistic cycling flows to the network and validation against observed 
network link flows. The cyclist flows then provide the ‘exposure’ variable to examine cyclist safety performance at 
macro and meso levels using global and local models. The results highlight the need for local level mobility-based 
exposure metric to describe cyclist safety performance and the superior ability of local models to describe safety 
performance of cyclists in urban contexts, where more frequently used population based, and global models mask 
urban spatial patterns and safety performance.  
 
© 2018 The Authors. Published by Elsevier Ltd.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 
“Peer-review under responsibility of the scientific committee of the International Symposium of Transport Simulation (ISTS’18) 
and the International Workshop on Traffic Data Collection and its Standardization (IWTDCS’18)” 

Keywords: Cyclists Flow; Exposure; Macro Model; Meso Model; Geographically Weighted Regression; Safety Performance.  

1. Introduction 

Cycling as a mode of transport, for any purpose in most countries, is a minority transport choice. Cycling, while 
beneficial in terms of population health and reducing carbon production, has much higher collision risks, per kilometer 
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travelled, than for car occupants and despite many countries setting road safety reduction targets, cyclist road safety 
has lagged behind improvements observed among motorised road users. For example, the UK average risk per billion  
kilometers travelled, between 2006 and 2015 cyclist killed or serious injury collision risk was almost 20 times higher 
than for car occupants and over that time cyclist risk has increased by almost 20% while motorised transport risk has 
experienced an overall improvement (DFT, 2017). Many national authorities seek to increase rates of cycling while 
at the same time improve road safety, however many authorities lack reliable ‘exposure’ metrics to calculate collision 
and injury rates (OECD/ITF, 2013). Detailed traffic data has the greatest potential to improve safety analyses (Lord 
and Mannering, 2010) however one of the prevailing challenges in cycling research is ascertaining a representative 
level of ‘exposure’ or simply “how much cycling happened and where”, also traffic exposure is a key determinant of 
the likelihood of being in a road collision (Loo and Anderson, 2016). Typically trip or population data may be the 
only information available but the choice, or availability of, ‘exposure’ variables impact analytical choices when 
developing accident prediction models (Hauer, 2015).  

Transport researchers have noted a correlation between an increase in the number of cyclists (or pedestrians) and 
a relative reduction of the incident rate of severe/fatal collisions involving cyclists (or pedestrians). The 
phenomenon ,widely cited in policy, is referred to as the “safety in numbers” (SiN) effect (Jacobsen 2003). At the 
center of the phenomenon is the observation of non-linearity of risk where, increased ‘exposure’ results in a less-than-
proportional (1:1) increase in the number of collisions (Elvik, 2009). Alternatively, researchers also observed that the 
risk profiles of cyclists deteriorate if fewer people cycle and more use a car, termed ‘risk in scarcity’ (Tin Tin et al., 
2011).         According to the OECD there is little empirical research examining the causal factors that could explain 
SiN, this may be due to the difficulties surrounding ‘exposure’. Furthermore, there is relatively little attention given 
to the spatial patterns associated with SiN where more pedestrian and cyclist activity leads to lower accident risk. This 
study aims to add to the understanding of SiN in a spatial context, using a novel approach to obtain ‘exposure’ 
estimates and to demonstrate the need to focus on mobility-based exposure measures for cyclists. Further, detailed 
exposure data may help conclude the debate on the SiN (Bhatia and Wier, 2011, Dozza, 2017). 

Researchers have explored national and city level, but there is little research on differences within a city at meso 
level (Yao and Loo, 2016). Meso level models strike a feasible balance between the level of output information 
required and cost, where global models may conceal local risk variation and micro level models are often time and 
cost prohibitive for most cycling budget allocations in highly motorised countries. The modelling approach will be of 
use to policy makers, engineers and planners who may wish to develop and monitor cycling safety. 

2. Study Area 

The study area consisted of 111 Scottish Intermediate data zones (IZ) across Edinburgh city. Edinburgh is a 
compact city with 477,000 inhabitants, 55% of the city’s population live within 4 km of the center (CEC, 2014). 
Edinburgh has experienced a doubling of cycling activity between the years 2001 and 2011 from 2% to 4.8% a trend 
well ahead of the national average and the mode share varies from 10% to 2.5% within the city. 

3. Methodology 

    The evaluation of cyclist risk includes two parts, firstly the development of a model to provide mobility-based 
‘exposure’ and secondly the specification of global and local models to estimate cyclist risk at a meso spatial scale. 
Data came from several sources, Department for Transport (DfT) for major and minor roads, City of Edinburgh 
Council (CEC) automatic counters (AC) at on-road and off-road cycle routes and origin destination (O-D) flow data 
(ONS, 2014) for the 2011 census, see Table 1 below. Flow models were validated using observed link flows from 
N=96 counters, N=54 major roads, N=24 minor roads and N=18 on-road and off-road cycle routes. The Department 
for Transport, STATS19, provided the information on cyclist collisions. 

                Table 1.Summary of Edinburgh Scottish Intermediate Data Zone - Cyclist trips (ONS, 2014). 

Origin-Destination Trips Census 2011 No. trips (%) Total  Scottish Intermediate Data Zones (IZ) 
Inter Zonal (Within Edinburgh) 8808 93   

 
N = 111 

Inter Zonal (All trips) 9143 96.5  
Intra Zonal 335 3.5 N= 9478 
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3.1. Cyclist Flow Modelling 

To estimate population-based cycling exposure (Lovelace et al., 2016) in each IZ formula (1) was used. Where 
DProd is the total annual average distance cycled in each IZ, n is the number of people who cycled to work (estimated 
from Census 2011), f is the frequency of trips (assuming 400 one-way trips per capita each year (Hall et al., 2011)), d 
is the average trip distance (estimated from TS (2015)) and p is the proportion of bicycle commuter trips (assuming 
the proportion of commuter trips is one third of all cycling trip purposes (Goodman, 2013; Sustrans, 2017)). 

𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑛𝑛𝑛𝑛 × 𝑓𝑓𝑓𝑓 × 𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝      (1) 

Cycling trips to work can be used as a proxy, as in previous research (Lovelace et al, 2016), due to their correlation 
with all trips (Goodman, 2013). The estimates the actual cyclist routes using O-D information. The study used the 
functions within the R (CRAN, 2017) package stplanr (Ellison and Lovelace, 2017) developed for sustainable 
transport planning to estimate mobility-based exposure.  

The routing within stplanr uses and external routing engine CycleStreets.net via an application interface program 
(AIP) developed specifically for cycling based on an Open Street Map (OSM) to replicate the same decisions a 
knowledgeable cyclist would make to find a route to their destination (Nuttall and Lucas-Smith, 2006). The O-D flows 
are aggregated in each IZ, then the O-D data is converted into Euclidian flows between O-D pairs, the flow lines are 
then allocated to the network using CycleStreets.net and finally the overlapping routes aggregated to produce modelled 
(M) link flows, illustrated in Figure 1 below.  

Figure 1. a) IZ with Population Weighted Centroids; b) Euclidean lines between O-D pairs; c) Route allocated flows from stplanr and 
Cyclestreets.net 

Cyclestreets.net has three built-in cycling route options, Fast, Balanced and Quiet to replicate the route choices 
favoured by fast and experienced utility cyclists to cyclists who may wish to avoid traffic and who are willing to 
choose less direct routes. All three options were validated against observed (O) cyclist flow volume data, from the 
N=96 counter locations in Edinburgh. The three models (Fast, balanced and Quiet) M flows were compared to the O 
link flows using a GEH (Geoffrey Edward Havers) method.  The GEH statistic is a modified Chi² statistic used to 
calculate a value for the difference between O and M flows, it is a widely used criterion (Giuffre et al., 2017) used by 
UK Highways Agency and Transport for London (TfL) among others (2). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 =  �
2(𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗−𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗)2

𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗+𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗
   (2) 

Where M is the modelled flow and 𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗 is the average observed flow. A GEH less than 5.0, for 85% of the model, is 
acceptable. GEHs between 5.0 and 10.0 may warrant investigation. The data information formats differed, therefore 
a long-term hourly average flow was used. The GEH has limitations; it does not take account of the variability of the 
count data and typically uses peak hourly flows to determine ‘goodness of fit’ (Feldman, 2012). For robustness and 
to reflect the fact that the GEH is intended for peak hourly motorised traffic flows, the Pearson’s correlation coefficient 
and linear regression were also examined. The best fitting model will provide the vkm variable for the risk models 
developed. 

a b c 
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3.2. Meso Level Global and Local Risk Model Estimation 

To estimate the cyclist risk at meso spatial level, safety performance risk models were developed using global and 
local forms. The dependent variable was fitted with two exposure variables, trip productions (population-based) and 
vkm (mobility-based), see Table 2 below. Global Poisson (P), Negative Binomial (NB), Zero Inflated (ZI) generalized 
linear regression models (GLM) were developed and then a local Geographically Weighted Regression (GWPR) 
model. GWPR refer to a family of regression models where the coefficients may vary spatially (Fortheringham et al., 
2002) using coordinates of spatial zone centroids (de Smith et al, 2015). Cyclist risk is assumed to be, non-stationary, 
rather than stationary as for the global models. Geographically weighted regression (GWR) is an exploratory technique 
mainly intended to indicate non-stationarity (Bivand, 2017). In general, spatial correlation is one area with a 
considerable gap between practice and research (Rhee et al., 2016) where GWPR can provide improved model 
performance (Matkan et al., 2011). 

Table 2. Descriptive Statistics of the variables. 

Category Variable Description  N  Avg Min Max SD 

Spatial IZ Scottish Intermediate Date Zone 111  - - - - 

Collisions PC Cyclist Injury (Slight, Serious, Fatal) 240  2 0 25 3 

Exposure Prod Trip Production in each IZ 9593  86 13 259 56 

 vkm Cyclist Kilometres Travelled per IZ 47688  430 26 1967 392 

 
The P, NB and ZI models provide global estimates whereas the GWPR provided heterogeneous local estimates at 

each IZ. The models were developed in R (R Development Core Team, 2017) package msme (Hilbe and Robinson, 
2015) and GWmodel (Lu et al., 2017). The GWPR models were developed, similarly to the methodology followed by 
Rhee et al. (2016). Best model fit is the lowest Akaike Information Criterion (AIC), based on the log-likelihood 
function (Hilbe, 2011), where AIC values differing by less than or equal to 2 are not significant (Nakaya et al., 2005) 
and AIC differences over 10 suggest that the lower AIC is significant (Hilbe, 2011).  

4. Results and Discussion 

The fast, balanced and quiet flow models are summarised in Table 3. The vkm totals are smaller for the ‘fast’ model 
and higher for the ‘quiet’ model, which reflects the slightly longer and less direct ‘quiet’ routes. The estimates are 
comparable to other research that suggest the total vkm cycled annually is 57.9 mvkm (Sustrans, 2017). 

 Table 3. Comparison of the CycleStreet.net routing engine options analysis in stplanr. 

Route Estimation Method Segments Network (km) vkm Annual mvkm Trip Length (Km) (mean, median, SD) 

Fast N=3481 693 47,688 57.2 5.4 4.5 5.7 

Balanced N=3163 675 48,958 58.7 5.6 4.5 6.3 

Quiet N=3207 645 49,348 59.2 5.7 4.6 6.6 

DProd*  - - - 53 4.4** 2.1** - 

*Estimated using equation (1) using Census 2011 Table QS701SC (NRS, 2011) data.** TS(2014) Table TD5a, straight line distances.  

4.1. Cyclist Flow Model Validation 

Exploratory examination of the three flow models, in Figure 2, indicate that the ‘balanced’ and ‘quiet’ modelled 
flows are quite poor predictors of the observer (O) data. The ‘fast’ modelled flows appear to be more consistent with 
the AADF and the 12hr adjusted O data. The following assumptions were made, work trips covered a 12hour period 
between 7am and7pm and AADF represents 16 hours.  The census data was collected in March 2011 so a 12hour 



	 S. Meade  et al. / Transportation Research Procedia 34 (2018) 59–66� 63 Meade et al. / Transportation Research Procedia 00 (2018) 000–000  5 

adjusted estimate was also derived to take account of seasonality. The GEH statistic was calculated using the long 
term average cyclist per hour unit, 𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗 in equation (2), and the comparison of validation results are shown in Table 4.  

Figure 2. Box Plots 2011 modelled flows versus a) AADF; b) 12hr; c) 12hr adjusted counts. 

The GEH statistic indicates that the ‘fast’ and ‘balanced’ models have the best fit between the O and the M data. The 
AADF in combination with the ‘fast’ model has the highest GEH score. The ‘quiet’ model comparison to the 12hr 
and 12hr adjusted do not meet the GEH thresholds. The GEH was not conclusive, this may be due to use of the long 
term average 𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗  instead of a peak hour flow. The Pearson’s and R2 however indicated that the ‘fast’ option, in 
combination with the 12hr count data, provided the best validation results with a correlation coefficient of 0.815.  

While the ‘fast’ model showed best correlation with O data, the current understanding of cyclist route preferences 
suggests that cyclists prefer routes with less traffic (Lovelace et al., 2016) such as the ‘quiet’ or ‘balanced’ models. 
Alternatively, it can be argued that the ‘fast’ model reflects the gender and age bias in Edinburgh (towards 
young/middle aged affluent men) where fewer women and children or retired people cycle to work (Sustrans, 2017).  

Table 4. CycleStreet.net routing engine options validation using GEH/Pearson’s/R2 

Validation Statistic ‘Fast’ ‘Balanced’ ‘Quiet’ 

GEH(AADF) 97.9% 91.7% 91.7% 

GEH(12hr) 90.6% 84.4% 81.3% 

GEH(12hr) Adjusted 91.7% 87.5% 85.4% 

Pearson’s Correlation coefficient (AADF) 0.745 0.616 0.577 

Pearson’s Correlation coefficient (12hr) 0.815 0.5 0.437 

Pearson’s Correlation coefficient (12hr) Adjusted 0.694 0.699 0.685 

R2(AADF) 0.551 0.373 0.326 

R2 (12hr) 0.661 0.242 0.183 

R2(12hr) Adjusted 0.476 0.484 0.464 

 
Cyclists, in 2011, appear to favor more direct routes in this study, this suggests that measures such as ‘quiet streets 

or quiet routes’ may not successfully attract cyclists in Edinburgh, furthermore the main reason Scottish people cite 
for not cycling to work is “too far to cycle” (TS, 2017) rather than the perceived quietness of the route. However, 
given gender imbalance this may not always be the case, but it does also suggest that measures or policies aimed to 
improve cycling safety should focus on links or areas with higher volumes rather than simply aiming to offset routes 
elsewhere that are assumed to be less dangerous. Loo and Anderson (2016) make the salient point that asking 
vulnerable road users to avoid travelling on certain routes can be contradictory to promoting mobility and equity. 

4.2. Meso Level Risk Models  

An initial spatial inspection of the ‘fast ‘model flows and the cyclist modal share at IZ level indicated that the levels 
of exposure vary spatially and differ considerably, as illustrated in Figure 3. While a global collision rate will be 
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substantially the same, estimating local collision rates at IZ or ward level, using equation (2) above, provides two very 
different results. Therefore, collision rates that use population data hold true if the population under review travelled 
only within the subject area. If we consider trip data, presented in this study and summarised in Table 1, of the total 
9478 trips, only 3.5% (N=335 trips) occur within its IZ zone. This illustrates the importance of firstly using vkm as 
an exposure measure and secondly the need to account for spatial variation. 
    Considering previous research that examined non-linear relationship between cyclist collisions and cycling volume, 
the models examined here show mixed results. The global models fitted with vkm had coefficients ranging from 𝛽𝛽𝛽𝛽1= 
0.89 to 0.81 suggesting a weak SiN effect. However, the global models fitted with Prod produced results much closer 
to previous research with coefficients ranging from 𝛽𝛽𝛽𝛽1 = 0.49 to 0.58. In all cases the vkm provided a better prediction 
than Prod (trip production), Table 5 below. The NB and ZINB global models had the lower AIC (AIC=396) which 
indicates a significantly better fit than the global models fitted using Prod. These results suggest that the choice of 
exposure variable may impact the relative safety rate estimated and may overestimate the SiN effect.  

Figure 3. (a) Spatial distribution of vkm, (Fast_Veh_Km); (b) Spatial distribution of Trip Production (P_PC); (c) Spatial distribution of aggregate 
vkm; (d) Spatial distribution of Trip Production. 

A recent longitudinal examination of the effect noted that while results indicated a SiN non-linearity in the data the 
researchers also noted that the number of collisions increased during the same period (Aldred et al., 2017). The 
coefficients produced using the vkm would seem more intuitive given the continued increase in cyclist collisions.    

Table 5. Meso Level Risk Model Results 

    Mapping the collision rates, Figure 4(a), illustrates that there is some spatial pattern, the global models don’t capture 
this, where local risk variation or autocorrelation may be present. The Moran I statistic for the dependent variable is 
positive (I = 0.235) which suggests spatial effects and some clustering with significant p-values (p=0.05) in the central 

Model Intercept 𝛽𝛽𝛽𝛽0 Ln(vkm) 𝛽𝛽𝛽𝛽1 Quasi-R2 AIC Intercept 𝛽𝛽𝛽𝛽0 Ln(Prod) 𝛽𝛽𝛽𝛽1 Quasi-R2 AIC 

P  -4.62 0.89  440 -1.37 0.49  554 

NB -4.15 0.82  396 -1.75 0.58  435 

ZINB  -4.09 0.81  399 -1.60 0.55  439 

GWPR  (5.15, -4.83, 3.15) (0.62, 0.93, 0.95) 0.39 226 (-1.38, -1.32,  -1.21) (0.45, 0.48, 0.49) 0.07 346 

a 

c 

b 

d 
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IZ, Figure 4(b) below. The GWPR estimates local regression equations for each IZ, the coefficients in Table 5 describe 
the minimum, median and maximum, whereas the P, NB and the ZI provided single coefficient estimate. The GWPR 
vkm coefficients vary between 𝛽𝛽𝛽𝛽1 = 0.62 to 0.95 and the Prod coefficients vary between  𝛽𝛽𝛽𝛽1 = 0.45 to 0.49 however 
in the Prod model R2=0.07 indicating a poor fit in addition to an AIC significantly higher than the vkm fitted model.  
 

 
 
 
 
 
 
 
 
 

 

 

Figure 4. Cyclist collisions, a) Moran’s I statistic; b) local P-values. 

The GWPR Prod models produce coefficients close to previous research (Jacobsen, 2003; Schepers et al., 2011; 
Aldred et al., 2017), but the vkm models have lower AIC’s and their coefficients suggest that the majority of the IZ 
coefficients tend towards linearity with a median 𝛽𝛽𝛽𝛽1 = 0.93. This result is in agreement with previous findings that 
suggest vkm should be used (Matkan et al., 2011; Dozza, 2016; Rhee et al., 2016) which holds for both global and 
local models. 

The GWPR model highlights the non-stationary influence of ‘exposure’ across IZs. The results suggest that global 
models may be limited in their ability to explain SiN where spatial autocorrelation is present. As suggested by Dozza, 
(2017) the number of accidents by the cyclist flow for different geographic regions differentiates and quantifies the 
SiN effect which this paper demonstrates at a meso spatial level.  

5. Conclusions 

Bespoke micro-simulation type network models are typically required to provide a mobility-based measure of 
‘exposure’. This study modelled census O-D data using open source software stplanr and CycleStreet.net validated 
using a long-term hourly average. This combined approach offers policy makers and planners empirical information, 
simply “how much cycling happened and where”, to monitor cycling safety using normalised ‘exposure’.  

The global and local models fitted with population-based ‘exposure’ produce coefficients similar to previous 
research. However, the mobility-based ‘exposure’ provided a better model fit with significantly lower AIC results and 
the coefficients indicated that a much less pronounced apparent SiN effect.  

The GWPR improved the model fit compared to the P, NB and ZINB. GWPR provides local parameter estimates 
that illustrate spatial variations, which are assumed to be stationary in global models often without question 
(Fortheringham et al., 2002). This study illustrated that the “safety in numbers” effect has spatial variation where 
parameter estimates ranged from 𝛽𝛽𝛽𝛽1 = 0.62 to 0.95 across N=111 IZ and that meso level analysis may help to explain 
‘where’ the SiN effects manifests. Given the current prevalence of SiN in cycling policy and advocacy, a less than 
expected or desired effect may be counterproductive, where absolute relative risk remains high in most places or where 
cycling ‘exposure’ levels are low. Therefore, global models and models that use population-based ‘exposure’ should 
be cognisant of spatial heterogeneity when drawing inference about SiN. 

Extending the univariate models to multivariate models may provide further insight. Meso level analysis is also 
useful because it can merge socioeconomic information with spatial variation and strike a balance between the level 
of output information and cost.  

a b 
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A limitation of the GWPR maybe its ability to fully captured overdispersion. However, recent research (Silva and 
Rodrigues, 2014; Rhee et al, 2017) proposes Geographically Weighted Negative Binomial Regression which should 
be investigated further. Finally, categorising collision frequency by severity using casualty-based cost-weighting to 
different severities (Yao and Loo, 2012) may also prove beneficial.  
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