On the Synthesis of Perturbative Heuristics for
Multiple Combinatorial Optimisation Domains

Christopher Stone, Emma Hart, Ben Paechter

School of Computing, Edinburgh Napier University, Scotland, UK
{c.stone,e.hart,b.paechter}@napier.ac.uk

Abstract. Hyper-heuristic frameworks, although intended to be cross-
domain at the highest level, rely on a set of domain-specific low-level
heuristics at lower levels. For some domains, there is a lack of available
heuristics, while for novel problems, no heuristics might exist. We address
this issue by introducing a novel method, applicable in multiple domains,
that constructs new low-level heuristics for a domain. The method uses
grammatical evolution to construct iterated local search heuristics: it
can be considered cross-domain in that the same grammar can evolve
heuristics in multiple domains without requiring any modification, as-
suming that solutions are represented in the same form. We evaluate the
method using benchmarks from the travelling-salesman (TSP) and multi-
dimensional knapsack (MKP) domain. Comparison to existing methods
demonstrates that the approach generates low-level heuristics that out-
perform heuristic methods for TSP and are competitive for MKP.

1 Introduction

The hyper-heuristic method was first introduced in an attempt to raise the gen-
erality at which search methodologies operate [2]. One of the main motivations
was to produce a method that was cheaper to implement and easier to use
than problem specific special purpose methods, while producing solutions of ac-
ceptable quality to an end-user in an appropriate time-frame. Specifically, it
aimed to address a concern that the practical impact of search-based optimi-
sation techniques in commercial and industrial organisations had not been as
great as might have been expected, due to the prevalence of problem-specific
or knowledge-intensive techniques, which were inaccessible to the non-expert or
expensive to implement.

The canonical hyper-heuristic framework introduces a domain barrier that
separates a general algorithm to choose heuristics from a set of low-level heuris-
tics. The low-level heuristics are specific to a particular domain, and may be
designed by hand, relying on intuition or human-expertise [2], or can be evolved
by methods such as Genetic Programming [14]. The success of the high-level
heuristic is strongly influenced by the number and the quality of the low-level
heuristics available. Given a new problem domain that does not map well to
well-studied domains in the literature, it can be challenging to find a suitable
set of low-level heuristics to utilise with a hyper-heuristic. Although this can be

addressed through evolving new heuristics [1], this process requires in-depth un-
derstanding of the problem and effort designing a specialist algorithm to evolve
the heuristic. We propose to address this by introducing a method of creating
new heuristics that is cross-domain, that is, the method can be used without
modification to create heuristics in multiple domains, assuming a common prob-
lem representation.

As a step towards raising the generality of creating low-level heuristics, we
focus on domains that can be mapped to a graph-based representation. This
includes obvious applications such as routing and scheduling [14], as well as
many less obvious ones including packing problems [11] and utility maximisation
in complex negotiations[12]. We describe a novel method using grammatical
evolution that produces a set of local-search heuristics for solving travelling-
salesperson (TSP) problems, and another for multi-dimensional knapsack (MKP)
problems. In each case, an identical grammar is used to evolve heuristics that
modifies a permutation representing a TSP or MKP problem. The grammar
is trained on a small subset of randomly generated instances in each case and
shown to produce competitive results on benchmarks when compared to human
design heuristics and almost as good as specially design meta-heuristics.

This research lays the foundation for a paradigm shift in designing heuristics
for combinatorial optimisation domains in which no heuristics currently exist, or
those domains in which hyper-heuristic methods would benefit from additional
low-level heuristics. The approach significantly reduces the burden on human
experts, as it only requires that the problem can be represented as a graph, with
no further specialisation, and does not require a large database of training ex-
amples. The contributions are threefold: (1) it describes a novel grammar that
generates mutation operators that perturb a permutation via partial permuta-
tions and inversions; (2) the grammar is trained to produce single instances of
new ‘move’ operators using a very small set of randomly generated instances
from each problem domain; (3) it demonstrates that competitive results can be
obtained from a generic grammar, even when using a representation that is not
necessarily considered the most natural for a domain.

2 Background

Hyper-Heuristics are class of algorithms that explore the space of heuristics
rather than the space of solutions, and have found application in a broad range of
combinatorial optimisation domains [2]. As previously mentioned, the core idea
is to create a generic algorithm that selects and applies heuristics, separated by a
domain-barrier from a subset of low-level domain-specific heuristics. Most initial
work focused on development of the generic controlling algorithms [2]. More
recent attention has focused on the role of the low-level heuristics themselves.
Low-level heuristics fall into two categories [2]. Constructive heuristics build a
solution from scratch, adding an element at a time, e.g. [14]. On the other hand,
perturbative heuristics modify an existing solution, e.g. re-ordering elements in
a permutation [4] or modifying genes [2].

In many practical domains, hand-designed low-level heuristics are readily
available, e.g. [2]. However, a tranche of research has focused on generation of new
heuristics, typically using methods from Genetic Programming [1],Grammatical
Evolution [13] [8] and Memetic Algorithms [6]. Specifically in the domain of
perturbative heuristics, GP approaches to generating novel local search heuristics
for satisfiability testing were proposed by [2]. Grammatical Evolution is applied
to evolve new local-search heuristics for 1d-bin packing in [2,7]. It is also worth
mentioning the progress made in cross-domain optimisation thanks to HyFlex
[9]: however, note that here the controlling hyper-heuristics are cross-domain but
the framework still relies on pools of domain specific low-level heuristics.

Despite some success in the areas just described, we note that in each case,
the function and terminal nodes used in GP or the grammar specification in GE
are specifically tailored to a single domain. While clearly specialisation is likely
to be beneficial, it can require significant expertise and investment in algorithm
design. For a practitioner, such knowledge is unlikely to be available, and for
new domains, this may be time-consuming even for an expert. Therefore, we
are motivated to design a general-purpose method that is capable — without
modification — of producing heuristics in multiple domains. While we do not
expect such a generator to compete with specialised heuristics or meta-heuristics,
we evaluate whether the approach can be used as a “quick and dirty” method of
generating a heuristic that produces an acceptable quality solution in multiple
domains.

3 Method

Our generator makes use of Grammatical Evolution [10] for the production of
new heuristics. In particular we specify one grammar and this single grammar is
used to produce heuristics in two different domains. Our method can be described
by three fundamental steps:

— Represent the problem-domain of interest as an ordering problem

— Use Grammatical Evolution to breed heuristics that perturb the order of
a solution, using a small training set of examples. The new heuristics are
evaluated according their effectiveness as a mutation operator in an iterated
local-search algorithm.

— Re-use the evolved heuristics on unseen instances from the same domain

3.1 Grammatical Evolution

Grammatical Evolution (GE) is a population based evolutionary computation
approach used to construct sequence of symbols in an arbitrary language de-
fined by a BNF grammar. A BNF Grammar consist of a set of production rules
composed of terminal and non-terminal nodes. The production rules are used
to substitute the non-terminal nodes with other nodes, which can be both non-
terminal or terminal nodes, repeatedly until a whole sequence of terminal nodes

is composed. Each non terminal node has its own set of production rules. Codons
(represented as a single integer) specify which specific production rule should be
chosen at each step.

We use GE to evolve a Python program that takes a sequence (i.e a permu-
tation) as an input and returns a modified version of the same sequence (permu-
tation) with the same length. Our implementation uses the GE library described
by Fenton et al [5]. This version of GE proved to be accessible, straightforward
to reuse, and is the most recent version of GE. A detailed description of the
complete implementation can be found in [5]. The code is also open-source and
available on github'. The main implementation details relevant to this work are
as follows:

Genome: Fenton’s implementation uses a linear genome representation that
is encoded as a list of integers (codons). The mapping between the genotype and
the phenotype is actuated by the use of the modulus operator on the value of the
codon, i.e. Selected node = ¢ mod n, where c is the integer value of the codon to
be mapped and n is the number of options available in the specific production
rule.

Mutation: An integer flip at the level of the codons is used. One of the
codons that has been used for the phenotype is changed each iteration and
substituted with a completely new codon.

Crossover: Variable one-point crossover, where the crossing point between
2 individuals is chosen randomly.

Replacement: Generational replacement strategy with elitism 1, i.e one
genome is guaranteed to stay in the pool on the next generation.

3.2 Grammar and mechanics of the operator

The operator constructed by our grammar can be thought of as a form of k-opt,
that is configurable and includes extra functions to determine where to break a
sequence. The formulation and implementation is vertex centric instead of edge
centric. The mechanics of the algorithm are as follows:

Number of cuts: This determines in how many places a sequence will be
cut creating (k — 1) subsequences where k is the number of cuts. The number of
possible loci of the cuts is equal to n + 1, where n is the number of vertices (the
sequence can be cut both before the first element and after the last element).

Location of cuts: The grammar associates a strategy to each cut that will
determine the location of the specific cut. A strategy may contain a reference
location such as the ends of the sequence or subsequence, a specific place in
the sequences or a random location. The reference can be used together with
a probability distribution that determines the chances of any given location to
be the place of the next cut. These probability distributions de facto regulate
the length of each subsequence. Two probability distributions can be selected
by the grammar: a discretised triangular distribution and a negative binomial
distribution. An example can be seen in fig.1-A and 1-B.

! https://github.com/PonyGE/PonyGE2

Cut 1

A) ® oio eoo00 mToUoLUoUJ
B) . QQUQLHQHQT“ o0 oio oo

I

I

=

C) ..:...}......}....}...
| I I I

Fig.1: A) Example of a sequence with one cut and a probability mass function

that will decide the loci of the second cut. B) Both cuts now shown C) Final set

of subsequences after k-cuts

After the cutting phase the subsequences are given symbols with S being
always the leftmost subsequence and E being the rightmost subsequence such as
in fig. 1-C. The start and end sequences (S, F) are never altered by the evolved
operator which only acts on the sequences labelled a-f in fig. 1-C. Note that
subsequences may be empty. This can happen if the leftmost cut is on the left of
the first element (leaving S empty), if the rightmost cut is after the last element
(leaving E empty) or if two different cuts are applied in the same place.

Permutation of the subsequence: After cutting the sequence the subse-
quences becomes the units of a new sequence. The grammar can specify if the
subsequence will be reordered to a specific permutation (including the identity,
i.e no change) or to a random permutation. An example can be seen in 2-a.

Inversion of the subsequences: The grammar specifies whether the order
of each specific subsequence should be reversed or if the reversing should be
decided randomly for each subsequence each iteration.

Iteration effect: Another component of the grammar is the iteration effect
which may associate a specific function that regulate the changein the initial
cutting location at each iteration. We have specified four types of effect: random,
which means that the starting location of the first cut will be random; oscillate
that makes the starting position move in a wave like manner and returns to the
initial loci after a number of iterations; step simply moves one step on the right
of the previous starting position and finally none which has no effect.

(a) Subsequence permutation (b) Subsequence inversion

Fig. 2: Example perturbations of the subsequences produced by the grammar

3.3 Problem Domains and Training Examples

We apply the grammar in two problem domains. The Travelling Salesman Prob-
lem (TSP) is one of the most studied problems in combinatorial optimisation,
in which a tour passing by all points must be minimised. Due to the fact that
it is naturally encoded as an ordering problem represented by a permutation it
plays the role of base case for our experiments.

The Multidimensional Knapsack Problem (MKP) is another of the most stud-
ied problem in combinatorial optimisation with applications in budgeting, pack-
ing and cutting problems. In this case the profit from items selected among a
collection must be mazimised while respecting the constraints of the knapsack.
This problem is chosen as in its typical form, it is not represented as ordering
problem. However, a formulation based on chains and graphs was recently intro-
duced in [15]. The goal here is to demonstrate that the approach can produce
acceptable heuristics from a generic representation, without requiring the expert
knowledge required to formulate a problem-specific approach.

A set of heuristics is evolved in each domain, using a set of example training
instances in each case. It is well known that having better training instances leads
to better outcomes [2]. However, as the ultimate goal of this work is produce a
system that can produce acceptable heuristics in an unknown domain in which
good training examples might not be available (or in an existing domain in which
we cannot predict characteristics of future problems) we synthesise a random set
of training instances in each case. Parameters of the synthesisers are given in
table 1. 5 TSP instances are synthesised using a uniform random distribution.
Each instance has 100 cities placed in a 2D Euclidean plane. For MKP, each of 5
instances has 100 objects with 10 constraints. Each constraint is a sample from
a uniform random distribution between 0 and 100. The profits of each object are
taken from a normal distribution with mean equal to the sum of the constraints
and standard deviation 50. The constraints of the knapsack are sampled from a
normal distribution with mean 2500 and standard deviation 300. We recognise
that real-instances are unlikely to be uniformly distributed; our implementation
therefore represents the worst-case scenario in which the system can be evolved.

<op> — addCut(<loci_ref> <distance>)
<c>
<ExtraCuts>
Iteration_effect(<motion>,<loci_computation>)
permutation(<perm_behaviour>)
inversions(<inv_behaviour>)

<ExtraCuts>

— @] <c> | <c><c> | <¢><c><c>
<c> — addCut(<loci_ref> <distance>)
islnverted(<invert>)
permutationFactor(<r>)
<motion> — ‘random’ | ‘oscillate’ | ‘steps’ | ‘none’
<loci_ref> — ‘none’ | 'left’ | ‘right’ | ‘limit’
<distance> — ‘linear’ | ‘negative_binomial’,(<r>,<p>)
<r> — 1|2|3|4|5|6|7|8|9]|10
<p> — 01]02]|03[04|05]|06]0.7
<loci_computation> — ‘once’ | ‘always’
<perm_behaviour> — ‘fixed' | ‘random’
<inv_behaviour> — ‘fixed' | ‘random’
<invert> — 0|1

Fig. 3: Grammar used to produce the local search operator

4 Experiments

Training Phase: One-point local-search heuristics are generated using an off-
line learning approach. The system is applied separately to each domain, but
uses an identical grammar in both. At each iteration of the GE, each heuristic
in the population is applied within a hill-climbing algorithm to each of the 5
training instances starting from an randomly initialised solution. The hill-climber
runs for x iterations with an improvement only acceptance criteria. For TSP,
x = 1000 and for MKP, z = 2500 (based on initial experimentation). The fitness
at the end-point is averaged over the 5 instances and assigned to the heuristic
(i.e. distance for TSP and profit for MKP). Experiments are repeated in each
domain 10 times, with a new set of 5 problems generated for each run. The
best performing heuristic from each run is retained, creating an ensemble of 10
heuristics as a result. All the parameters of the synthesisers are give in table 1a
while the GE parameters are in table 1b.

Testing Phase: The generated ensemble is tested on benchmark instances
from the literature. For TSP, we use 19 problems taken from the TSPlib. MKP
heuristics are tested on at total of 54 problems from 6 benchmark datasets from
the OR-library. Each of the 10 heuristics is applied 5 times to each problem for
10° iterations, starting from a randomly initialised solution, using an improve-
ment only acceptance criteria (hill-climber). We record the average performance
of each heuristic over 5 runs, as well as the best, and the worst.

For TSP, we compare the results with 50 runs per instance of a classic two opt
algorithm?, chosen as a commonly used example of high-performing local-search

2 using the R package TSPLIB

heuristic. For MKP, the vast majority of published results use meta-heuristic ap-
proaches. We compare with two approaches from [3], the Chaotic Binary Parti-
cle Swarm Optimisation with Time Varying Acceleration Coefficient (CBPSO),
and an improved version of this algorithm that includes a self-adaptive check
and repair operator (SACRO CBPSO), the most recent and highest-performing
methods in MKP optimisation. Both algorithms use problem specific knowledge:
a penalty function in the former, and a utility ratio estimation function in the
latter, with a binary representation for their solution. Both are allocated a con-
siderably larger evaluation budget than our experiments. The heuristics evolved
using our approach would not be expected to outperform these approaches —
however, we wish to investigate whether the approach can produce solutions
within reasonable range of known optima that would be acceptable to a practi-
tioner requiring a quick solution.

Parameter Value
Number of cities 100
Cities distribution type Uniform Parameter Value
Cities distribution range 0-100 Generations 80
Number of objects 100 Population 100
Number of constraints 10 Mutation int flip
Object constraints distribution Uniform Crossover Prob. 0.80
Object constraints range 0-100 Crossover type one point
Object profit distribution Normal Max initial tree 10
Object profit mean Sum of constraints Max tree depth 17
Object profit deviation 50 ReplacemenF generational
Knapsack constraints dist. Normal Tournament size 2
Knapsack const?aints mean 2500 (b) Grammatical Evolution
Knapsack constraints deviation 300

(a) Problem synthesisers
Table 1: Experimental Parameters

5 Results and Analysis

We refer to our algorithm as HHGE in all reported results. Table 3 shows the
best, worst and median performance of the evolved heuristics and the two-opt
based algorithm for TSP. With the exception of a single case, the evolved heuris-
tics perform better in term of best, worst and median results. For each instance,
we apply a Wilcoxon Rank-sum test on the 50 pairs of samples, and provide a
p-value in the rightmost column. Improvements are statistically significant at
the 5% level in all cases.

Results for MKP are reported in table 2, averaged over 10 heuristics in each
case. Note that despite the simplistic nature of our approach — a hill-climber

HHGE CBPSO SACRO-BPSO

Instance|Best Worst |Average Median |[Optima |Best Average |Best Average
hpl 3418 3385 3410.56 3418 3418 3418 3403.9 [3418 3413.38
hp2 3186 2997 3171.54 3186 3186 3186 3173.61 [3186 8184.74
pbl 3090 3057 3083.32 3090 3090 3090 3079.74 [3090 3086.78
pb2 3186 3114 3179.88 3186 3186 3186 3171.55 |3186 3186
pb4 95168 [90961 |93515.54 93897 95168 [95168 |94863.67|95168 95168
pb5 2139 2085 2120.06 2130.5 [2139 2139 2135.6 [2139 2139
pb6 776 641 733.12 735.5 |776 776 758.26 |776 776

pb7 1035 983 1018.9 1025 1035 1035 1021.95 [1035 1035
pet2 87061 |78574 [85409.32 87061 [87061 |- - - -

pet3 4015 3165 3955.8 4015 4015 - - - -

petd 6120 5440 6040.2 6110 6120 - - - -

petb 12400 12090 [12363.1 12400 |12400 |- - - -

pet6 10618 10107 [10592.1 10604 (10618 |- - - -

pet7 16537 |15683 |16504.48 16537 |16537 |- - - -
sentol |7772 7491 7706.92 7749.5 |7772 7772 7635.72 7772 7769.48
sento2 |8722 8614 8691.02 8704 8722 8722 8668.47 |8722 8722
weingl [141278 135673 |140619.36 141278 141278 [141278 |141226.8|141278 |141278
weing2 [130883 |118035 [128542.94 130712 |130883 [130883 |130759.8|130883 |130883

weing3 |95677 |77897 |93099.5 94908 95677 95677 |95503.93|95677 |95676.39
weing4 |119337 |100734 |117811.56 119337 [119337 |119337 [119294.2|119337 [119337
weingb [98796 |78155 95912 98475.5 98796 (98796 |98710.4 |98796 |98796

weing6 (130623 |117715 |[129452.56 130233 130623 [130623 |130531.3|130623 |130623
weing7 [1095382(1088277(1093583.14|1093595(1095445|1095382|1084172 |1095382(1094349
weing8 (624319 525663 |606175.12 (613070 (624319 |624319 [597190.6(624319 |622079.9

weishO1 (4554 4298 4494.34 4530 4554 4554 4548.55 |4554 4554
weish02 4536 4164 4485.12 4536 4536 4536 4531.88 4536 4536
weish03 4115 3707 3963.08 3985 4115 4115 4105.79 |4115 4115
weish04 4561 3921 4385.5 4455 4561 4561 4552.41 |4561 4561
weish05 (4514 3754 4265.56 4479.5 (4514 4514 4505.89 |4514 4514
weish06 [5557 5238 5503.16 5538 5557 5557 5533.79 |5557 5553.75
weish07 [5567 5230 5496.56 5542 5567 5567 5547.83 5567 5567
weish08 [5605 5276 5534.82 5597.5 |5605 5605 5596.16 5605 5605
weish09 5246 4626 5062.24 5128 5246 5246 5232.99 [5246 5246
weish10 [6339 5986 6244.82 6314 6339 6339 6271.84 6339 6339
weish1l |5643 5192 5522.18 5631.5 |5643 5643 5532.15 |5643 5643
weish12 [6339 5951 6217.14 6322.5 |6339 6339 6231.5 |6339 6339
weish13 [6159 5780 6032.28 6056 6159 6159 6120.38 |6159 6159
weish14 (6954 6581 6827.9 6852 6954 6954 6837.77 |6954 6954
weishlb [7486 7113 7391 7445.5 |7486 7486 7324.55 |7486 7486
weish16 7289 6902 7154.82 7159.5 |7289 7289 7288.7 |7289 7288.7
weish17 |8633 8506 8609 8633 8633 8633 8547.71 |8633 8633
weish18 9580 9310 9527 9560.5 [9580 9580 9480.86 9580 9578.46
weish19 |7698 7272 7505.3 7527 7698 7698 7528.55 |7698 7698
weish20 [9450 9117 9381.32 9430 9450 9450 9332.11 |9450 9450
weish21 [9074 8655 8972.9 9025 9074 9074 8948.22 (9074 9074
weish22 (8947 8466 8814.7 8871 8947 8947 8774.2 |8947 8936.92

weish23 (8344 7809 8202.06 8217.5 |8344 8344 8165 8344 8844
weish24 (10220 9923 10154.54 |10185.5 {10220 (10220 |10106.28{10220 |10219.7
weish25 9939 9667 9872.48 9909.5 (9939 9939 9826.57 9939 9939
weish26 |9584 9175 9434.92 9473 9584 9584 9313.87 9584 9584
weish27 [9819 9244 9652.3 9671 9819 9819 9607.54 9819 9819
weish28 (9492 8970 9328.52 9347.5 (9492 9492 9123.26 |9492 9492
weish29 (9410 8794 9217.28 9279 9410 9410 9025.5 |9410 9410
weish30 (11191 [10960 [11135.64 [11161 [11191 [11191 [10987.21|11191 [11190.12

Table 2: Generated heuristics vs specialised meta-heuristics from [3]. High-
lighted values for HHGE indicate where it outperforms CBPSO. SACRO-BPSO
performs best in all instances

HHGE 2-opt
Best [Worst|Median| Best [Worst | Median|Ranksum p-value
berlin52| 7793 | 8825 8170 | 7741 | 9388 8310 0.0033
ch130 | 6418 | 7108 6722 | 6488 | 7444 6984 0.0030
d198 [16256| 17033 | 16651 [16400| 18213 | 17291 < 0.001
eil101 674 739 702 680 749 709 0.0073
eil51 435 484 456 442 494 473 < 0.001
eil76 563 616 593 583 628 611 < 0.001
kroA150(28109| 31473 | 29344 [29223| 31994 | 30509 < 0.001
kroA200(31470| 34528 | 32634 [31828| 35170 | 32893 0.0005
kroB150|27028| 30283 | 28767 [28114| 30941 | 29134 < 0.001
kroB200|31315| 35319 | 33029 [31509(| 35077 | 33422 0.0455
kroC100(21418| 24353 | 22885 [22953| 25503 | 23977 < 0.001
kroD100(21817| 24405 | 23233 [22772| 26428 | 23430 < 0.001
kroE100|22660| 25509 | 24178 |23012| 26695 | 24216 0.0021
lin105 |14675| 16965 | 15642 |14966| 17057 | 16191 < 0.001
pr107 |45547| 50313 | 47560 [47597| 51932 | 50002 0.0001
prl44 |58847| 68722 | 61534 [59058| 67272 | 64660 0.0002
pr152 |75615| 81458 | 78073 |[77307| 81850 | 79964 < 0.001
pr226 |81811| 96484 | 86244 [83566|101582| 91512 0.0021
ul159 |44826| 51353 | 47461 |45297| 51505 | 48124 0.1276

Table 3: Comparison between evolved heuristics and classic two-opt. For each
instance we compute the Wilcoxon Rank-sum test using 50 pairs of samples

with an evolved mutation operator — our approach out-performs CBSPO in
22 out of 54 instances when considering average performance®. SACRO-BPSO
(currently the best available meta-heuristic) performs better across the board,
as expected.

In table 4 we compare the Average Success Rate (ASR) across all instances
group by dataset against the results presented by [3] on 2 versions of SACRO
algorithms and an additional fish-swarm method. In [3], ASR is calculated as
the number of times the global optima was found for each instance divided by
the number of trials. For HHGE, we define a trial as successful if at least one of
the 10 heuristics found the optima in the trial, and repeat this 5 times. It can
be seen that the results are comparable to those of specialised algorithms, and
in fact outperform these methods on Weing and HP sets.

6 Conclusions

We have presented a method based on grammatical evolution for generating per-
turbative low-level heuristics for multiple problem domains that is cross-domain:
the same grammar generates heuristics for a domain that can be represented as
an ordering problem. The method was demonstrated on two specific domains,
TSP (a natural ordering problem) and MKP. We have compared the synthesised
heuristics with a specialised human-designed heuristic in the TSP domain where
the synthesised heuristic outperformed the well-known 2-opt heuristic. In the

3 We do not provide statistical significance information as the PSO results, which
are reported directly from [3], use a population based approach and vastly different
number of evaluations

Problem Set|Instances ASR
IbAFSA[BPSOTVAC[CBPSOTVAC[HHGE
Sento 2 1.000 0.9100 0.9100 0.90
Weing 8 0.7875 |0.7825 0.7838 0.80
Weish 30 0.9844 |0.9450 0.9520 0.907
Hp 2 0.9833 |0.8000 0.8600 1.00
Pb 6 1.000 0.9617 0.9517 0.967
Pet 6 na na na 1.00

Table 4: Comparison with latest specialised meta-heuristics (PSO) from the lit-
erature: a fish-swarm algorithm IbAFSA and the two most recent SACRO algo-
rithms, results taken directly from [3]

MKP domain, we compared the generated heuristics against two of the latest
specialised meta-heuristics. The heuristics outperform one of these methods, and
are at least comparable to the best method. We also note that the ensemble of
10 generated heuristics demonstrate high success rates in finding known optima
when each heuristic is applied several times.

The approach represents the first steps towards increasing the cross-domain
nature of hyper-heuristics: current approaches tend to focus on the high-level
hyper-heuristic as cross-domain, while relying on specialised low-level heuristics
below the domain barrier. Our approach extends existing work by also making
methods for the automated generation of low-level heuristics cross-domain, with-
out requiring specialist human-expertise. The proposed approach is applicable
to a subset of domains that can be represented as ordering problems. While we
believe this subset is large, it clearly does not include all domains. However, the
same approach could be generalised to develop a portfolio of modifiable gram-
mars, each addressing a broad class of problems.

Recall that in each case, HHGE was trained using a very small, uniformly
generated set of instances, and in the case of MKP, applied to a non-typical
representation, yet still provides acceptable results. We believe this fits with
the original intention of hyper-heuristics, i.e. to provide quick and acceptable
solutions to a range of problems with minimal effort. Although specialised rep-
resentations and large sets of specialised training instances undoubtedly have
their place in producing very high-quality results when required, these results
demonstrate that a specialised representation is not strictly necessary and can
be off-set by an appropriate move-operator.

Reproducibility

The code used for the experiments and for the analysis of the results is available
at https://github.com/c-stone2099/HHGE-PPSN2018

References

1.

10.

11.

12.

13.

14.

15.

Mohamed Bader-El-Den and Riccardo Poli. Generating sat local-search heuristics
using a gp hyper-heuristic framework. In International Conference on Artificial
Evolution (Evolution Artificielle), pages 37-49. Springer, 2007.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Ozcan, and Rong Qu. Hyper-heuristics: A survey of the state of the
art. Journal of the Operational Research Society, 64(12):1695-1724, 2013.
Mingchang Chih. Self-adaptive check and repair operator-based particle swarm
optimization for the multidimensional knapsack problem. Applied Soft Computing,
26:378-389, 2015.

Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to
scheduling a sales summit. In International Conference on the Practice and Theory
of Automated Timetabling, pages 176—190. Springer, 2000.

Michael Fenton, James McDermott, David Fagan, Stefan Forstenlechner, Erik
Hemberg, and Michael O’Neill. Ponyge2: Grammatical evolution in python. In
Proceedings of the Genetic and Fvolutionary Computation Conference Compan-
ion, pages 1194-1201. ACM, 2017.

Natalio Krasnogor and Steven Gustafson. A study on the use of “self-generation”in
memetic algorithms. Natural Computing, 3(1):53-76, 2004.

Franco Mascia, Manuel Loépez-Ibdnez, Jérémie Dubois-Lacoste, and Thomas
Stiitzle. From grammars to parameters: Automatic iterated greedy design for the
permutation flow-shop problem with weighted tardiness. In International Confer-
ence on Learning and Intelligent Optimization, pages 321-334. Springer, 2013.
Franco Mascia, Manuel Loépez-Ibanez, Jérémie Dubois-Lacoste, and Thomas
Stiitzle. Grammar-based generation of stochastic local search heuristics through
automatic algorithm configuration tools. Computers & operations research, 51:190—
199, 2014.

Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A Vazquez-Rodriguez, James
Walker, Michel Gendreau, Graham Kendall, Barry McCollum, Andrew J Parkes,
Sanja Petrovic, et al. Hyflex: A benchmark framework for cross-domain heuristic
search. In Furopean Conference on FEvolutionary Computation in Combinatorial
Optimization, pages 136—147. Springer, 2012.

Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transactions on
Evolutionary Computation, 5(4):349-358, 2001.

Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs.
J. Graph Algorithms Appl., 13(2):233-249, 2009.

Valentin Robu, DJA Somefun, and Johannes A La Poutré. Modeling complex
multi-issue negotiations using utility graphs. In Proceedings of the fourth inter-
national joint conference on Autonomous agents and multiagent systems, pages
280-287. ACM, 2005.

Nasser R Sabar, Masri Ayob, Graham Kendall, and Rong Qu. Grammatical evolu-
tion hyper-heuristic for combinatorial optimization problems. strategies, 3:4, 2012.
Kevin Sim and Emma Hart. A combined generative and selective hyper-heuristic
for the vehicle routing problem. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, pages 1093-1100. ACM, 2016.

Christopher Stone, Emma Hart, and Ben Paechter. Automatic generation of con-
structive heuristics for multiple types of combinatorial optimisation problems with
grammatical evolution and geometric graphs. In International Conference on the
Applications of Evolutionary Computation, pages 578-593. Springer, 2018.

