Communicating Process Architectures 2018 1
K. Chalmers, J.B. Pedersen et al. (Eds.)

10S Press, 2018

© 2018 The authors and 10S Press. All rights reserved.

Solving the Santa Claus Problem
Over a Distributed Systeml

David MARCHANT #! and Jon KERRIDGE ®

& Niels Bohr Institute, University of Copenhagem
b School of Computing, Edinburgh Napier University

Abstract. A working solution to the Santa Claus Problem is demonstrated that op-
erates over a distributed system. It is designed and modelled using the client/server
model to maintain a deadlock and livelock free architecture. The system was devel-
oped using the JCSP library for Java and demonstrated over a network of twenty
desktop PCs. Each Santa, Reindeer and Elf process is broken down into numerous
sub-processes, and are each designed according to the client/server model. A novel
approach to the Elves is presented using a chain-based architecture to allow non-
determined sub-groups to communicate and consult with Santa in sets of three.

Keywords. Santa Claus Problem, CSP, JCSP, Client/Server model

Introduction

The Santa Claus Problem was first proposed as a way of introducing new students to the
problems of concurrent and parallel programming, and so is intended as a reasonably simple
problem to solve on a single machine running multiple concurrent processes. This paper
will look at a distributed solution running on multiple machines in parallel. Different PCs
will be used to represent the various processes with the aim that they can interact with each
other to demonstrate a solution. For the system to be judged as a success it must meet the
requirements set out by Trono’s original proposition, and must be deadlock, livelock and
error free. Freedom from deadlock and livelock can be guaranteed by correct application of
the client/server model so this shall be used throughout the design. The client/server model
is needed as there are many additional challenges in distributed systems [1].

1. Background
1.1. Problem Definition

The Santa Claus Problem is an exercise in designing concurrent and parallel systems. It
was initially proposed by John Trono in his paper A New Exercise in Concurrency [2]. The
problem states:

“Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all nine reindeer
being back from their year long vacation on the beaches of some tropical island in the South Pacific, or by
some elves who are having some difficulties making the toys. One elfs problem is never serious enough to
wake up Santa (Otherwise, he may never get any sleep), so, the elves visits Santa in a group of three. When
three elves are having their problems solved, any other elves wishing to visit Santa must wait for those

!Corresponding Author: David Marchant, Niels Bohr Institute, University of Copenhagen, Denmark. E-mail:
d.marchant@ed-alumni.net.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

2 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

elves to return. If Santa wakes up to find three elves waiting at his shops door, along with the last reindeer
having come back from the tropics, Santa has decided that the elves can wait until after Christmas, because
it is more important to get his sleigh ready as soon as possible. (It is assumed that the reindeer dont want
to leave the tropics, and therefor they stay there until the last possible moment. They might not even come
back, but since Santa is footing the bill for their year in paradise this could also explain the quickness in
their delivering of presents, since the reindeer cant wait to get back to where it is warm.) The penalty for
the last reindeer to arrive is that it must get Santa while the others wait in a warming hut before being
harnessed to the sleigh.”

1.2. Motivation

In the years since Trono first proposed his problem, concurrent and parrallel systems have
become possible over networks. The simple problem that Trono proposes may now serve as
an introduction to the additional problems presented by these distributed systems. Problems
such as a lack of global resources mean that a great deal of solutions to the Santa Claus Prob-
lem are not applicable to a distributed solutution, as shown in Section 1.3. For this reason,
this paper shall explore a new solution specifically for a distributed system.

1.3. Background Literature

A New Exercise in Concurrency [2] 1s the starting point for the paper as it is where the Santa
Claus Problem was first proposed. Trono talks about his desire for a new exercise to be used
to help teach core concepts of parallel processing and so comes up with his problem. He then
proposes a solution to the problem and considers it solved within a 3-page paper. His solution
relies on semaphores and shared memory to count the number of Reindeer and Elves that
have arrived. This is sufficient for a small exercise, but shared memory is impossible over
a network such as between several independent machines. For this reason we will need a
different solution. Additionally, Santa must check each time a Reindeer arrives to see if that
is the last Reindeer. This directly contradicts the last sentence of his initial proposal and so it
is possible that his solution is not really a solution at all.

Trono’s solution is rejected in the paper How to solve the Santa Claus problem [3],
though on different grounds. Ben-Ari states that semaphores are not sufficient as it assumes
that any process released from waiting will automatically be scheduled again. He then states
that there are semaphore algorithms that could solve this issue, but that they are too complex
for such an introductory exercise. A solution in Ada 95 is then proposed, which uses barriers
to count in processes. These barriers are in external ‘room’ processes, with separate rooms
for Reindeer and Elves. Though Ben-Ari does not refer to them as such, the room for the
Reindeer shall be referred to as the stable and the vestibule for the Elves. This is to make the
solution more consistent with later discussed solutions. In the case of the stable it will count
in the Reindeer, and only wake Santa once all are assembled. In the case of the Elves it will
wait for three before waking Santa. Like Trono’s solution, this also ignores the last sentence,
as the last Reindeer is not the one to wake Santa, it is the stable. This problem is discussed
and solved in Ben-Air’s paper but there is still the use of stables and vestibules which seems
an unsatisfying solution. Trono’s problem makes no mention of external processes. A true
solution should have the processes being able to count themselves in and identify who else
has already arrived without the aid of some external barriers.

In the paper Santa Claus: Formal Analysis of a Process-Oriented Solution [4] Welch &
Pedersen proposed another solution using barriers. In the case of the Reindeer this barrier
is a syncing barrier, where all Reindeer need to wait on the barrier until all are there, and
can then together wake Santa. For the Elves a more complicated partially syncing barrier is
used which waits only for a subgroup of Elves, which are then let through together. This
solution neatly solves the Santa Claus problem although is now getting into territory perhaps
too complicated for the initial introductory problem Trono first proposed. These barriers are

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 3

located as part of the Santa process, meaning that Santa is recieving messages before he is
awoken, acting against the requirement that he sleeps untill the required number of Reindeer
or Elves have arrived. If this architecture was to be kept without Santa doing any work before
he should be working then external Stable or vestibule processes would be needed, which
could only be used in a non-networked program, and not for our distributed requirements.

In his dissertation Severin Fichtl [5] used a server to act as stable and vestibule to the
Reindeer and Elves. This solution was reached due to Bluetooth limitations on the Lego
NXT robots he was using to act as individual processes. They could only manage a limited
number of connections and so had to each connect to a controller, rather than to each other.
This meant that for initial experiments most of the programming was done on this external
controller process. Through numerous experiments eventually the PC was reduced to just a
hub for communications, though it did still contain various stable and vestibule processes to
help manage the Reindeer and Elves. This meant it was easy to count each process in to each
stage correctly, but means the solution is far less distributed that Fichtl suggests.

These problems are seen repeated through the literature, such as in the multiple exam-
ined solutions in Solving the Santa Claus Problem, A Comparison of Various Concurrent
Programming Techniques[6]. Some solutions rely on Santa doing the counting in, thereby
acting against the first sentence of the original problem, where Santa should only be woken
once everything is ready. Alternatively, solutions use external processes to manage the Rein-
deer and Elves. Most commonly these are stable and vestibule processes, but they could also
be barriers or the like. Some of these solutions also end up ignoring the last sentence of the
problem, where the last Reindeer should wake Santa. In any case, none of the previously
available solutions would be implementable on a distributed system such as over multiple
machines without a central controller/hub, or additional external processes.

1.4. Requirements for a Distributed Solution

From the analysis of the problem set out by Trono, and from reading several available so-
lutions we can define the requirements for the solution developed in this paper in Table 1.
Most of these requirements come from the original problem, though requirement 4 has been
introduced due to the nature of the distributed system. External processes are unfeasible due
to there not being a physical space to host those processes, unless they are on the Santa device
which would contravene requirement 7. Processes can be made up of sub-processes as this is
an effective way of producing re-usable, testable code [1]. Requirements 5 and 6 have been
introduced as otherwise the problem would become trivial, with predetermined Reindeer and
Elf managers.

2. Setup and Investigations
2.1. Hardware

To implement the solution a network of PCs was used. These PCs are all on the same network
as part of a computer lab at Edinburgh Napier University. Each PC is a quad core Intel i5
PC running Windows 10 with a wired internet connection. These machines can run multi-
threaded programs, which is necessary as to solve the Santa Problem each process will be
broken down into multiple sub-processes. The pre-existing network between the machines
will aid communications between them, and reduces the chances of firewalls or other prob-
lems interrupting communications. This means that if a problem does occur it is easier to
conclude that the problem is with the proposed solution, rather than the physical hardware.
As these machines meet all requirements, they are determined to be sufficient for the needs
of the project.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

4 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

Table 1. Requirements for solutions proposed in this report

The system should have one Santa process.
The system should have nine Reindeer processes.
The system should have ten Elf processes.

AW N =

No other processes should be introduced, though individual Reindeer, Elves or Santa
may be made up of several processes themselves.

9]

All instances of Elves must be running the same code as all other instances of Elves.

6 All instances of Reindeer must be running the same code as all other instances of
Reindeer.

7 Santa must be able to sleep and only sleep when not consulting Elves or leading Rein-
deer.

8 Santa should only be woken once all Reindeer or three Elves are ready to deliver
presents/consult.

9 Santa must always prioritize delivering presents with Reindeer rather than consulting
with Elves unless a consultation is already in progress in which case the Reindeer will
wait till it is over.

10 The Reindeer must go on holiday, each for a random amount of time.

11 When on holiday, each Reindeer should be uncontactable.

12 The last Reindeer to arrive must wake up Santa.

13 The Elves must get to work in the workshop, each for a random amount of time.
14 When building toys, each Elf should be uncontactable.

15 Only 3 Elves at a time should consult with Santa about toys.

16 If there are two groups of Elves looking to talk to Santa, the first to arrive should be
served first by Santa.

2.2. Software

To program in parallel, JCSP [7] was selected. This was due to both the authors being already
familiar with it. JCSP is a library for Java that provides an implementation of Communicat-
ing Sequential Processes(CSP) [8]. CSP is a mathematical definition for the communication
between numerous concurrent processes. These processes can be run on the same machine,
or separate machines and communicate using synchronus communication. Both the sender
and receiver in a synchronus commuciation system need to be ready to communicate for the
communication to occur, and if one is ready without the other then it will simply wait for
both to be ready.

CSP is a language independent definition, with JCSP being a specific implementation in
Java. It enables concurrent and parallel systems to be built within Java, and provides systems
for their synchronous communication. As such, it is an appropriate language to solve the
Santa Claus Problem, and modified versions of it have already been used in similar projects
to this [9].

JCSP can be paired with Groovy, a language which compiles to Java byte code. With
some related JCSP libraries it can simplify almost all JCSP programming with greatly re-
duced verbosity [10]. The primary author has previously only used JCSP with Groovy but it
was decided to avoid using it in this project. This was as an eventual aim of the researchers is
to have each process be based not on a PC but on robots, and so any programmes potentially
will be extremely limited in the digital footprint available to them. As JCSP can function
adequately without Groovy, and Groovy is particularly large it was decided not to use it to
future-proof the solution.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 5
2.3. Clients and Servers

When constructing a parallel system, as in all systems, care must be taken to ensure that
it does not break or run incorrectly. Within a CSP system, or any other message passing
parallel system, a client/server model [11] may be used to avoid common pitfalls during the
implementation. This is because two common problems in these systems are deadlock and
livelock, which the client/server model will address.

A concurrent system with multiple processes talking to each other synchronously in the
manner of CSP will have several processes potentially trying to communicate with other
processes at any one time. As discussed in the previous section, if these processes are trying
to communicate they need to synchronise, with both the reader and writer process ready to
communicate. If one process of a pair of potentially communicating processes is not ready,
then the other will wait for it to do so. Whilst waiting, a process cannot progress in any other
way and so is blocked until the communication can occur. This is acceptable if the waiting is
finite, as the process will resume eventually, however it is not always a finite wait. Consider
2 processes, A and B. If A wanted to send a message to B it would wait until B is ready.
B is waiting to send a message to A, and so cannot receive from A. Both processes cannot
proceed as they are each waiting to be able to send to the other. This will continue forever.
This is deadlock and should be avoided as it will stop the system prematurely.

One way to avoid this is to adopt the client/server model [11]. This divides processes
into two categories, clients and servers. Clients are processes which can initiate communi-
cations by sending messages to other processes. Servers are processes which receive those
messages, and if a response is expected, must generate one in a finite amount of time. Finally,
if a client expects a response to a message, it must wait immediately after sending its mes-
sage for the response. This architecture guarantees that responses to messages are properly
accommodated without deadlock occurring. If more than two processes are linked together
then at least one of them may act as both a client and a server. If all processes progress in a
finite time, and there are no server to server communications then livelock can be avoided.
This is proved by Welch, Willcock and Justo [11].

Figure 1. Client/Server examples.

In the examples shown in Figure 1 we have some simple systems. In the first we can
see two processes acting as a client and server. This is so simple it cannot deadlock. In the
second the server will send a response to the client and so also will not deadlock. The third
example is of a situation to be avoided, as the two processes are each trying to act as a client
at different points. If they both did this at the same time, then deadlock would occur. This
situation can be identified as the connections of processes interactions forms a loop. When
we come to design the solution to the Santa Claus Problem, if we can map out the process
interactions in such a way we can determine if the system is deadlock free or not. It is worth
noting at this point that an absence of loops of client/server interactions guarantees freedom
from deadlock, but that loops being present may still result in a deadlock free system if such
interactions are properly managed.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

6 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

Livelock is a similar problem to deadlock in that the system does not progress. How-
ever, it is caused by processes being continually busy but not interacting with any external
processes, and so the overall system state is never updated. The client/server model will do
nothing to prevent this, as it assumes that all processes will proceed in a finite time. We can
write our processes to avoid this however, and if we do so then the client/server model will
also guarantee that the interactions are livelock free, though this can only be said for certain
after rigorous testing, to determine that all processes will always complete in a finite time.

3. Solving the Santa Claus Problem
3.1. Solution Overview

It was decided that the easiest way to solve the Santa Claus Problem would be to break it into
two main sections, Reindeer and Elves. The two parts function quite differently and can be
treated completely differently as a result. The only point of contact they might have is Santa,
who will also need to be implemented. Each Reindeer and Elf would have to be able to talk
to Santa, and to all the other Reindeer or Elves as will be explained later on. This gives us the
general structure shown in Figure 2.

—> Reindeer 1 < > Santa < > ElIf 1 aa
—> Reindeer 2 < > Elf 2 aa
—p Reindeer 9 < > EIf 10 -

Figure 2. Overall solution architecture. Note that in the implemented solution there are nine Reindeer processes
and ten Elves. Only three of each have been shown for brevity.

3.2. Santa

Santa can be a straightforward design as he just sleeps and is able to listen for messages from
either the Elves or the Reindeer. As this is all he can do according to requirement 7, there is
not much to program within Santa. The process just needs 2 inputs, one from the Elves and
one from the Reindeer. These would receive messages from the Elves or Reindeer respec-
tively, informing Santa that a group of Elves or all the Reindeer are ready to consult about
toys or deliver presents. As Santa may already be busy the messages are stored in a buffer
process before being sent on to the Controller, the Controller being the central process man-
aging Santa’s overall interactions and state. The buffer implements a sort whereby any input
from the Reindeer is always put at the front of the queue, in accordance with requirement 9.
This is all that needs to be done by Santa, with the other requirements on Santa, such as 8
or 12 being implemented within the Reindeer and Elves. This has resulted in a Santa process
made up of four sub-processes with the design shown in Figure 3.

In Figure 3 the four processes internal to the Santa process are shown with a light grey
background. They are also all delimited by the dotted box. The processes beyond that, shown
in the white rectangles are external processes that Santa may interact with. The Elves and
Reindeer processes represent every Reindeer and Elf which will connect to the relevant Lis-

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 7

Santa
[Controller]
cltc
Sw s
Buffer]
) st %5
C C
[Listener Listener]
S F 3 g . F 3 5
C
Elf 1 < — Reindeer 1
C
Elf 2 < — Reindeer 2
C
EIf 10 < — Reindeer 9

Figure 3. Santa network diagram. Note the in the implemented solution there are nine Reindeer processes and
ten Elves.

tener in a many to one connection. Providing the system is implemented as shown, it would
be impossible for such a system to deadlock. The network diagram is very simple, with no
loops of processes acting as both clients and servers. The only time that messages can be sent
by two processes is between the Controller and the Buffer. Note that in both instances the
Controller is acting as the client and the Buffer is acting as the server. This is as the Con-
troller is sending a message and will get a response from the Buffer, the buffer never initiates
communications. All of this is compliant with the client/server model and so we can say that
Santa is guaranteed deadlock free by design.

Consultation done Message from Reindeer
[Consulting] Sleeping] Delivering]
Message from Elves Delivery Complete

Figure 4. Santa state diagram.

The Santa process implements the state diagram shown in Figure 4, with Santa transi-
tioning between sleeping, and consulting or delivering presents. Note that communication
from Santa to the Reindeer or Elves is managed by agent processes sent by the Reindeer or
Elves, and so is not covered by the network diagram. At this point we can say that the Santa
process is complete as it implements all that is required of it.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

8 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

3.3. Reindeer

The Reindeer are a significant challenge compared to Santa. They must be able to arrive back
from holiday and determine if any other Reindeer have already arrived. To do this we shall
use feeler messages. As the Reindeer do not know in advance the order of their arrival, when
a given Reindeer arrives at the North Pole it will not know which, if any, other Reindeer have
also arrived. To get around this, when a Reindeer arrives it will send a message to each other
Reindeer to announce that it is now at the North Pole and ready to start grouping up. As each
Reindeer doesn’t listen when it is on holiday the sent message can only be recieved once the
Reindeer has returned from holiday, and started listening. In other words, when Rudolf is on
holiday he does not know in which order all the Reindeer will return to the North Pole, and
doesn’t know if he will be first, last or somewhere in the middle. Whilst he is on holiday he
doesn’t listen to any other Reindeer and only tries to interact with them once he gets back.
He does this by sending a message to all the other Reindeer to announce that he has arrived.
In our example let us suppose that Dasher has already arrived, in which case Dasher will
recieve this announcement, and so now know that Rudolf is also there. Dasher will also have
sent a notification to all Reindeer, which Rudolf will have recieved upon his arrival, and so
Rudolf will know that Dasher has arrived. If Vixen has not arrived then Vixen will recieve
no messages untill their return to the North Pole, despite having been sent a message by both
Rudolf and Dasher.

In this way it is possible for a Reindeer to ‘feel out’ the presence of the other Reindeer
through the use of a feeler message. However, if all Reindeer start by sending out a feeler
message to the other Reindeer then we will have deadlock, as in JCSP if we start writing
a message the code will not progress until the message has been read. This means that if a
Reindeer is not there to receive the message as is stated in requirement 11, then the Reindeer
that has returned and is trying to contact it will hang until its message has been received.
Additionally, as all Reindeer are the same due to requirement 6, we cannot have all Reindeer
writing a message as then no one can listen, so the group will deadlock. The same problem
is encountered if we get all Reindeer to listen initially. It is possible that timers could be
implemented so that Reindeer listen on a timer, and if they receive nothing in a certain time
they try writing. Although extremely unlikely this system would be vulnerable to deadlock
as different Reindeer will be acting as clients and servers effectively at random.

For this reason, the Reindeer process will be broken down into numerous smaller pro-
cesses, in a manner similar to Santa. Each Reindeer will have a dedicated Listener process
that will constantly listen to input from other Reindeer, and immediately output any messages
to a buffer. The Reindeer will also have a dedicated Writer for each other Reindeer. When
the Reindeer returns from holiday it determines which other Reindeer are already waiting by
sending a message to each of the other Reindeer via the Writers. These writer processes will
hang trying to send this feeler message until the Listener in that respective Reindeer is acti-
vated. This is because the Listener will only accept messages from other Reindeer when the
owning Reindeer is not on holiday. When the holiday has finished the Listener will activate
and receive any waiting feeler messages. These feelers will contain the time of arrival of the
sending Reindeer, with the times being compared by each Reindeer once they have received
all eight. This is then combined with their own time of arrival to get a complete list of nine.
The last Reindeer will then contact Santa about delivering presents and they will all be taken
off together to do so.

As a quick aside, the time of arrival contained in each feeler message is taken locally
within each Reindeer, and so may not be in an absoulute chronological order. A global time
could be taken, though it could be a rather complicated process in itself to do so. As an
alternative it could be that the times are taken not by the Reindeer themselves, but upon
their contacting of some central process to count them all in, such as a vestibule or stable.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 9

This also is not a satisfactory solution as the extra vestibule and stable are not suitable for
a distributed solution, as previously discussed in Section 1.3. This means that despite the
timings potentially being out of sync with each other, localised timings are used within the
system. This may be a potential weakness of the system, as it will not necessarily identify the
last Reindeer to arrive, but will identifiy what it thinks is the last Reindeer to arrive. Ultimately
the difference between the two could be said to be meaningless for the purpose of the Santa
Claus problem. As long as a single Reindeer is the one notifiying Santa that all Reindeer have
arrived then requirement 12 has been met in spirit. This hand waving of requirement 12 may
be unsatisfactory however, and future work may address it more completely.

Reindeer

—

Holiday e,
\ J C

cl4s Buffer

\, 7

Sy

’ N S 15
“ C s
Controller g ———————— ———

,
-
lﬁ
=
w
&l
@
=)
1]
=
7 [

cl [clc]c s

C C c [
Sy ¥> *° L & C
Santa Reindeer 1 Reindeer 2 Reindeer 8 Agent
C C c

Figure 5. Reindeer network diagram. Note the in the implemented solution there are eight other external Rein-
deer processes connected to the Reindeer, with eight corresponding Writer processes, each connected to one
other Reindeer. All external Reindeer will connect to the same Listener however.

Figure 5 shows the network layout for the Reindeer process. Note that there is one Writer
for each other Reindeer in the system. By default, this is eight Reindeer so there are eight
Writers each connected to a unique Reindeer. When a Listener receives eight arrival times it
sends them as an array to the Controller who will add its own arrival time. This means that all
nine Reindeer will have an array of arrival times, each of the same length and containing the
same times. The result of this is that when each Reindeer needs to make the decision of which
Reindeer arrived last by comparing the times, all come to the same conclusion as all have the
same data. This is why the distinction between actual last to arrive, and appears to be the last
to arrive discussed in the last paragraph does not matter. It only matters that all nine Reindeer
are making the same decision with the same infomation, which is the case within this system.
Note the dotted line showing communication from the Agent to the Listener. This is because
this communication channel is dynamically created at runtime if the Controller is contained
within the last Reindeer to arrive, and so does not always exist.

By splitting the Reindeer into dedicated Writer and Listener processes it means that
when a Reindeer arrives it can both read and write without deadlocking. This allows all Rein-
deer processes to be identical per requirement 6, and ensures all Reindeer can find all other
Reindeer. Note the interactions between the Controller, Listener and Buffer may potentially
breach the client/server model and so lead to deadlock. However, the Controller only sends
a message to the Listener when the holiday is finished, the Listener sends all incoming mes-

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

10 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

sages to the Buffer, and the Buffer only writes when a complete array of eight received feelers
is recieved. Deadlock cannot occur in this case as none of these events can ever overlap.

Additionally, there is a loop between the Holiday and Controller processes, where each
process acts as a client and initiates communication. Again, these cannot occur at the same
time as a Holiday is a simple timer process, told to start by the Controller and then reporting
its completion to the Controller. The controller will never start a new holiday without having
gone through a whole turn of starting a holiday, finishing a holiday, meeting other Reindeer
and delivering presents. This process cannot start without the Holiday process sending its
completion message to the Controller. This means that the two messages can never be sent at
the same time, and so deadlock cannot occur.

All this means we can still conclude that the system is deadlock free as the two potential
trouble spots are known to not cause deadlock. Note the system does require all Reindeer to
have prior connections to all other Reindeer between the Writers and Listeners. Future work
may remove this limitation.

Delivery complete

Holiday complete Holiday

[Luukingfurﬁeindeer]—[Wait]—’[Delivering]
More to Start

arrive deliveries

Pester Santa

Was last Reindeer Acknowledgement

to arrive from Santa

Figure 6. Reindeer state diagram.

3.4. Elves

The Elves will have a similar internal structure to the Reindeer though will interact very
differently. Where the Reindeer can wait for all Reindeer, the Elves must only wait for a non-
predetermined subgroup of Elves. To model this, we will adopt the idea of a chain. When
Elves start looking for other Elves to consult with, they will only consider feeler from other
Elves that have arrived later than them. Meanwhile any Elf will be able to be recruited by
an EIf that arrived earlier. Each Elf can only have two links, one to an earlier Elf and one
to a later EIf. This means that we can think of the Elves as a chain of machines, with the
top Elf having arrived first and a chronological ordering down along the chain until the latest
Elf is at the bottom. If each Elf can create messages then we need to be extremely careful
about when we do so, so as not to deadlock the system. To do this we shall establish the rule
that Elves may only send messages up the chain, and must respond down the chain to any
messages. No new messages can be sent up the chain whilst an EIf is waiting for the response
to a message. Following this simple rule means the system cannot deadlock as it creates an
alternating chain of clients and servers, with no client to client communications. This also
means we can cut out the inter EIf Writers and Listeners, and have direct communication
from Controller to Controller. This reduces the number of processes a message needs to pass
through, and so helps reduce the error rate in a system due to various parts having seen (or
not) a certain message.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 11

This system relies on their only ever being two links either side of the Elf, and only one
other EIf ever thinking that it is connected to an Elf. In other words, two Elves cannot both
think that they are front linked, or back linked to the same EIlf. This is achieved by an EIf
only attempting to front link to one other EIf at a time, with subsequent attempts conditional
on the previous one having failed. No attempts will be made to back link to other Elves, with
this only happening when one EIf is trying to front link to an Elf. Because the messages are
only sent by later Elves to Elves that have arrived earlier no deadlock will occur, as no Elves
will try initiate communications with each other, as one will always be later. In the unlikely
case of arriving at the same time, the go alphabetically. This system is deadlock free and will
allow for a linked chain of all Elves.

However, it is not that simple. There will be occasions where we need to send a message
down the chain. This could occur if a chain of four links forms, and so the third Elf needs
to send a message down the chain to the fourth letting it go. This will have to be handled by
two new processes, the OutOfSyncBuffer and the OutOfSyncWriter. The OutOfSyncWriter
process connects directly to Controller processes within other Elves, but has an assosiated
OutOfSyncBuffer so commands can be saved up. This means that messages sent down the
chain without an immediate preceding message can be sent to this buffered writer, to only be
sent on if the target Elf is free, and ensuring the sending Elf is free to receive any messages
itself. This ensures freedom from deadlock. The ensuing network diagram of an individual
Elf is shown in Figure 7.

IIS

|

| Waorkload I 1
|

¢ |

h 4

S ¥

: C
: L,
: s ¢ e s _
: Listener Controller -l Writer
: s #s |s s |s 4s c |s 45 Is lc ?cis c s |c Ic
H [|
| I |-__I
S | : () Sy Sy 5 ¥
r—— I I I I ”) :
Buffer 1 I | i1 Buffer 2 Buffer 9 QutOfSyncBuffer :
Ny . \ 7 .
s4]s | : 1! st1]s st s
clyc IIII ¥ C clvc cl¥c
'8 "\ 1 I] " A
Writer 1 = I Writer 2 - Writer 9 OutOfSyncWriter
c
— |J'r|I 5T T e
Sle¥S I I I L B slw¥s I
€ 4 1 I L& 1
EIf 1 (-1 -y EIf 2 EIf 9 - - -
cl 1c c 1c c 4c

Figure 7. Elf network diagram. Note that in the implemented solution there are nine other external EIf processes
connected to the Elf, with nine corresponding Writer processes, each connected to one other Elf. All external
Elves will connect to the same Listener however. There is only one OutOfSyncWriter.

The initial discovery of the other Elves is made by the Writer process sending out feeler
messages, as in the case of the Reindeer. These are responded to directly by the Listener
process with an attached boolean denoting if the feeling Elf is acceptable, e.g. arrived later

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

12 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

than the listening EIlf. If the feeler was acceptable or not, the feeler is responded to and the
writer sends the response to its controller. In this way all other Elves will be discovered, but
to make this possible the Listener must always be listening, even if the Elf is supposed to be
working. This conflicts with requirement 14 and further adjustments could possibly be made
to avoid this, but it is not a massive sacrifice for a working system.

In the network diagram shown in Figure 7, three types of inter EIf communication are
demonstrated to and from the three Elves along the bottom of the diagram. The left most
one demonstrates a back linked Elf which will send messages as a client to the Controller,
and receive replies as a client. The middle one demonstrates a front linked Elf who will re-
ceive communications from the Controller, with the Controller acting as a client and receiv-
ing replies as such. Finally, the right most EIf is neither front nor back linked to the Con-
troller, and so any communications would be sent using the OutOfSyncWriter, even if such
an EIf were to send messages to the Listener. Note that any Elf may be sent messages by
the OutOfSyncWriter as its channels are changed dynamically at runtime, hence the dotted
line showing its communications. The two left Elves also have dotted lines between them
and the Controller. This is because once a link has been formed direct communication from
Controller to Controller can take place, providing it is going up the chain.

There is only one point of concern within this architecture regarding the client/server
model, which is the Workload and Controller process. This is functionally identical to the
Holiday and Controller interactions within the Reindeer. For the same reason that the Holi-
day is not a problem, the Workload has also been managed so as not to be a problem. Any
other points that may have formed an issue are taken care of by the OutOfSyncBuffer and
OutOfSyncWriter processes.

The state diagram for an Elf is shown in Figure 8. Despite it seemingly being far more
complicated, it is essentially the same as the Reindeer diagram, with Elves working, look-
ing for other Elves, and contacting Santa. The additional states are used to confirm that a
chain has been formed, and to restart looking if an attempted connection did not succesfully

complete.
Consultation
complete
Build presents Consult Acknowledgement
Problem from Santa
encountered

Acknowledgement

from Santa
Asked to

) confirm
Found Look for earlier Part of Pester Santa
earlier Elves l confirmed chain 3
Elf - - i Chain
Front link Asked to
Rejected confirm confirmed
e
Wait
Attempt to form i i
f P o Confirm Chain
ront lin Chain not
long enough
Front link accepted]
P Get place in chain
) Chain long enough

Figure 8. EIf state diagram.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 13

4. Testing the Solution

To test the viability of the proposed solution it was developed within the Eclipse IDE for
Java, using JCSP. The solution was run on twenty machines with one each for Santa, the
nine Reindeer and ten Elves. Santa prints messages to the Eclipse Console to show when it
was either consulting Elves, or delivering presents with Reindeer. This was sufficient for the
Reindeer who must occur as a group repeatedly. The Elves however required the development
of a specially built console window. This window is tied to the Santa process and lists Santa’s
interactions with other processes, a list all the Elves within the system, a counter of how many
times each Elf had consulted with Santa, and how many consultations have happened since
the last time that Elf had been involved in a consultation. This was necessary as it allows us
to check that individual Elves are not deadlocking or livelocking, with the system continuing
without the wider system noticing. As long as the number of misses remains small we can be
certain that the given Elf has not deadlocked or livelocked. A sample output of this system is
shown in Figure 9.

consults misses
Frodo 1190 1
Sam 1193 1
Merry 1198 2
Pippin 1208 2
Gollum 1196 2
Gandalf 1195 0
Boromir 1200 3
Aragomn 1198 1
Legolas 1202 0
Gimli 1199 0
Jolly o' St Nick has finished consulting Elves A

Jolly ol St Nick waiting

Buffer reading

Buffer reading from controller

Buffer read from controller

Buffer writing back to controller

Jolly ol' St Nick doing

Jolly oI’ St Nick going

Jolly ol' St Nick recieving agent from chain Gimli, Gandalf, Legolas,
Jolly ol St Nick recording Gimli's 1199 consult

Jolly ol St Nick recording Gandalfs 1195 consult

Buffer written to controller

Buffer buffer size is 1

Buffer waiting

Jolly ol' St Nick recording Legolas’'s 1202 consult

Jolly ol St Nick about to connect v

Figure 9. Custom console Output. It has been noted that the names used are not the names of elves, but the
author was not aware of any recogniseable groups of 10 elves to use.

The proposed solution implements all the requirements set out in Section 1.4 apart from
requirement 14, that all Elves should be uncontactable when building toys. This is as the
listener process of each Elf always needs to be active to prevent deadlock. This work around
was determined to be easier to implement to accommodate the sheer unpredictability of the
system, with Elves coming and going effectively at random, and messages between Elves
being unpredictable in their timing. With further work this requirement may be kept to. It is
also questionable as to if requirement 12 that the last Reindeer wakes Santa has been met,
due to the use of non-global timers. As has been argued in Section 3.3 this should not affect

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

14 David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System

the solution in anything other than an acadmic sense. It may however be a cause for further
work to do away with this handwave.

4.1. Results

The complete system with Santa, nine Reindeer and ten Elves was run for over 24 hours
without any processes deadlocking, livelocking or encountering a detectable error. Whilst
we could have said that the system is deadlock and livelock free ahead of time from the
client/server modelling that has been done, the test is still informative as it shows that it is free
from processes taking infinitely long, and that the system has been implemented as modelled.
Within the timeframe available to this project this is the best manner of testing available
as there is insufficient time to carry out a complete formal analysis, which is anecdotally
expected to take many months of work and be a project in its own right. The solution has
been tested on a network of machines and so can be considered a distributed system.

4.2. Client/Server

Although a complete formal analysis of this system cannot be done in the time available, the
architecture can be examined with relation to the client/server model as a way of showing
that it is guaranteed to be deadlock and livelock free. Santa, the Reindeer and the Elves have
all been demonstrated how they are deadlock and livelock free in Sections 3.2, 3.3 and 3.4
respectively. All systems together can be easily demonstrated as deadlock free as each one
can be expressed as a single process as shown in Figure 10 below.

— E
5 C c 5
|_ -—— - b{ Reindeer EIf = — - _l
| |
:
|c lr ¥ 5 F o o |
. c 5 . C 5 5 C [5 ¢
ReindeerAgent = Reindeer > Santa + EIf -+ — Elfagent
r \ r
Ic] L b s 1[cl
| i I
— —
| 5) C C 5
_——— Reindeer Elf = == —

Figure 10. Network diagram of the entire system including agents. Note that all Reindeer are connected to all
other Reindeer, and all Elves are connected to all other Elves. In the complete system there are nine Reindeer
and ten Elves but only three of each have been shown for brevity.

From Figure 10 we can see that no deadlock can occur between the processes as there
are no client/server loops. Note that the interactions between the Reindeer and between the
Elves have not been shown in any depth as at this stage they are irrelevant. Communications
only occur at this level, between Reindeer and Santa or between Elves and Santa if commu-
nications amongst the Reindeer or Elves has completed. Also note there are no communica-
tions between Santa and either of the Agents, as the Agents function more as classes rather
than separate processes that are run. For this reason, it is definitionally impossible for them
to deadlock. As we have demonstrated now that no part of the system can deadlock or live-
lock according to the client/server model, we can conclude that the system is complete and
sufficient for our requirements.

5. Conclusion

This paper set out to demonstrate a working solution to the Santa Claus Problem that could
work on a distributed system, such as between multiple desktop PCs. The requirements of

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

David Marchant & Jon Kerridge / Solving the Santa Claus Problem Over a Distributed System 15

such a system are defined, a system is described and finally it is implemented and tested. The
system breaks down each of Santa, Reindeer and Elves into several sub-processes, enabling
them to attempt to both read and write at the same time without deadlocking. This enables
the processes to dynamically discover each other and sort themselves into the required sets
to contact Santa according to the problem definition. Of particular note is the development
of the EIf process as it uses a novel chain approach, allowing the processes to discover each
other without deadlocking the system. The system has been tested sufficiently to state with
reasonable certainty that no errors exist within it, and the architecture is deadlock and livelock
free. Furthermore, it has been examined using the client/server model to determine that no
deadlock or livelock can occur. For this reason we can conclude that the proposed solution is
correct and complete.

The question then arises whether this still satisfies Trono’s original requirement to pro-
vide an introductory problem for students to better understand concurrent and parallel sys-
tems. Simple solutions do exist if the solution uses vestibule and stable processes, barriers or
even alting barriers. The solution presented here is definitely one that cannot be considered
simple but then it does solve a redefined version of the problem that was not even feasible
when Trono first proposed his problem. However as a means of exploring the problems posed
by distributed systems it could be used as a means of introducing the additional considera-
tions, especially if the caveats of Trono’s original problem are respected.

References

[1] Jon Kerridge. Using Concurrency and Parallelism Effectively. Bookboon, 2014. ISBN: 978-87-403-1038-
2.
[2] J. Trono. A New Exercise in Concurrency. ACM SIGCSE Bulletin, 26(3):8-10, 1994.
[3] M. Ben-Ari. How to Solve the Santa Claus Problem. Concurrency: Practice and Experience, 10(6):485—
496, 1998.
[4] P. H Welch and J. B. Pedersen. Santa Claus: Formal Analysis of a Process-Oriented Solution. ACM
Transactions on Programming Languages and Systems, 32(4):485-496, 2010.
[5] J. B. Fichtl. Using a Parallel Solution to the Santa Claus Problem to Investigate the LEGO Robot’s
Bluetooth Functionality. Unpublished dissertation from Edinburgh Napier School of Computing, 2010.
[6] J. Hurt and J. B. Pedersen. Solving the Santa Claus Problem: A Comparison of Various Concurrent
Programming Techniques. Communicating Process Architecture, pages 381-396, 2008.
[7]1 CSP for Java(JCSP). CSPforJava@bintray.com.
[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-53271-
5.
[9] J. Kerridge, A. Panayotopoulos, and P. Lismore. JCSPre: The Robot Edition to Control LEGO NXT
Robots. Communicating Process Architecture, pages 255-270, 2008.
[10] Apache Groovy. http://groovy-lang.org.
[11] P. Welch, G. Justo, and C. Willcock. High-Level Paradigms for Deadlock Free High Performance Systems.
Transputer Applications and Systems, pages 981-1004, 1993.

CPA 2018 preprint — the proceedings version will have other page numbers and may have minor differences.

