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Use of Machine Learning Techniques to Model Wind Damage to 

Forests 
 

1. Machine learning techniques were accurate in predicting wind damage to trees. 

2. Random forests proved the most accurate and discriminating methodology. 

3. Models were sensitive to removal of site and stand but not tree characteristics. 

4. All models were able to accurately replicate a mechanistic wind risk model. 

5. Machine learning techniques could help the management of wind damage to forests. 
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Abstract  1 

This paper tested the ability of machine learning techniques, namely artificial neural networks and random forests, to 2 

predict the individual trees within a forest most at risk of damage in storms. Models based on these techniques were 3 

developed individually for both a small forest area containing a set of 29 permanent sample plots that were damaged in 4 

Storm Martin in December 1999, and from a much larger set of 235 forest inventory data damaged in Storm Klaus in 5 

January 2009. Both data sets are within the Landes de Gascogne Forest in Nouvelle Aquitaine, France. The models were 6 

tested both against the data from which they were developed, and against the data set from the other storm. For 7 

comparison with an earlier study using the same data, logistic regression models were also developed. In addition, the 8 

ability of machine learning techniques to substitute for a mechanistic wind damage risk model by training them with 9 

previous mechanistic model predictions was tested. 10 

 11 

All models were accurate at identifying whether trees would be damaged or not damaged but the random forests models 12 

were more accurate, had higher discriminatory power, and were almost totally unaffected by the removal of any 13 

individual input variable. However, if all information relating to a stand was removed the random forests model lost 14 

accuracy and discriminatory power. The other models were similarly affected by the removal of all site information but 15 

none of the models were affected by removal of all tree information, suggesting that damage in the Landes de Gascogne 16 

Forest occurs at stand scale and is not controlled by individual tree characteristics. The models developed with the large 17 

comprehensive database were also accurate in identifying damaged trees when applied to the small forest data damaged 18 

in the earlier storm. However, none of the models developed with the smaller forest data set could successfully 19 

discriminate between damaged and undamaged trees when applied across the whole landscape. All models were very 20 

successful in replicating the predictions of the mechanistic wind risk model and using them as a substitute for the 21 

mechanistic model predictions of critical wind speed did not affect the damage model results. 22 

 23 

Overall the results suggest that random forests provide a significant advantage over other statistical modelling techniques 24 

and the random forest models were found to be more robust in their predictions if all input variables were not available. 25 

In addition, the ability to replace the mechanistic wind damage model suggests that random forests could provide a 26 

powerful tool for damage risk assessment at the stand or single tree level over large regions and provide rapid assessment 27 

of the impact of different management strategies or be used in the development of optimised forest management with 28 

multiple objectives and constraints including the risk of wind damage. 29 

 30 

Machine learning; forest damage; wind risk, risk models, GALES, forest planning31 
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1. Introduction 32 

Wind causes more than 50% by volume of all damage to European forests and is the major damage agent on the 33 

continent (Schelhaas et al., 2003). On average 2 storms each year cause major damage in some part of Europe, where 34 

major damage is defined as disrupting the normal harvesting and supply of timber in a region. In south-west France there 35 

have been two major storms in the recent past that have threatened the viability of the forest industry in the Nouvelle 36 

Aquitaine region. On 27 December 1999 Storm Martin caused a loss of 26 million m3 of timber (equivalent to 3.5 years 37 

of normal harvest) in the north of the region and on 24 January 2009 Storm Klaus caused 41 million m3 of timber loss 38 

further south. The damage was predominately (37 million m3) to maritime pine (Pinus pinasterAit.) and the damage from 39 

the two storms represented 15% and 32% of the maritime pine standing volume in the region respectively. 40 

 41 

There are also now increasing concerns that wind damage in Europe and many other parts of the world may increase with 42 

the changing climate (Csilléry et al., 2017; Haarsma et al., 2013; Kunkel et al., 2013; Lindner et al., 2010) due to the 43 

increasing intensity of low pressure systems whether extra tropical or tropical (hurricanes and typhoons). Therefore, in 44 

order to plan for the future there is a need for accurate models predicting tree vulnerability to wind damage and the level 45 

of risk. Such wind risk models form part of the risk assessment process that is an integral part of forest management 46 

(Cucchi et al., 2005; Gardiner and Welten, 2013; Hanewinkel et al., 2010) and allow managers and planners to decide on 47 

choice of species, silvicultural/management approaches, and rotation lengths for forest stands as a function of the site 48 

conditions (e.g. soil type, slope, water table depth, wind climate, etc.). 49 

 50 

A number of modelling approaches to wind risk in forests are available. These include mechanistic (Gardiner et al., 2008) 51 

and statistical approaches (Albrecht et al., 2010). Previous attempts to model the observed damage patterns in the Landes 52 

de Gascogne Forest in Nouvelle Aquitaine, France using these two very different approaches are described in Kamimura 53 

et al. (2016). The mechanistic approach used the GALES model (Hale et al., 2015) and the statistical approach was based 54 

on logistic regressions (e.g. Valinger and Fridman, 2011). The results showed mixed success. The models were first 55 

tested on a small forest area that had a detailed survey of tree characteristics and damage following the Martin storm. 56 

Both models made accurate predictions of which individual trees were damaged in the storm. However, when the models 57 

were applied across the whole forest at the regional scale the logistic regression model performed poorly and GALES 58 

only worked well in areas with similar soil conditions to those from previous tree pulling tests used in the model 59 

parameterisation (Cucchi et al., 2004). 60 

 61 

In environmental science there has been an increased use of Artificial Intelligence (AI) techniques in modelling studies 62 
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(Chen et al., 2008). These techniques have also been increasingly used in forestry (e.g. Lagerquist et al., 2017) although 63 

the ideas of using AI in forestry have already been around for a long time (Kourtz, 1990). However, very little attention 64 

has been paid to the use of AI in modelling the risk of wind damage with the exception of the work of Hanewinkel (2005) 65 

and Hanewinkel et al. (2004) who investigated the use of artificial neural networks. They found that the use of artificial 66 

neural networks allowed enhanced identification of damaged trees compared to the more classic approach using a logistic 67 

regression model. 68 

 69 

In this paper we present analysis of the data on wind damage at an individual tree level from the Landes de Gascogne 70 

Forest using two methods that are based on machine learning (ML) techniques (Alpaydin, 2014). This was to determine 71 

if such approaches can provide a better prediction of wind risk than was possible with more conventional approaches as 72 

reported by Kamimura et al. (2016). The approach we took were based on artificial neural networks (NN) (Patterson, 73 

1996) and random forests (RF) (Breiman, 2001). We also developed logistic regression models (LOG) for comparison 74 

with the previous work (designated LR in Kamimura et al. (2016)). We analysed damage from the small Nezer Forest 75 

(~80 km2) containing a set of 29 permanent sample plots that were damaged in Storm Martin in December 1999 and from 76 

a much larger set of 235 plots from the National Forest Inventory in the Landes de Gascogne Forest (~10,000 km2) that 77 

were examined directly after damage from Storm Klaus in January 2009. The purpose was to evaluate the accuracy and 78 

discriminatory ability of the models using all available input data and to test the models both on the data set from which 79 

they were developed and the other independent data set to see how portable the models were. We wanted to test whether 80 

these new approaches provided an improvement in damage prediction and to determine which group of input parameters 81 

are most important for model performance. We do not attempt to directly identify the factors controlling the propensity of 82 

trees to damage, which has been the subject of numerous previous studies (e.g. Albrecht et al., 2010; Colin et al., 2009; 83 

Dobbertin, 2002; Nicoll et al., 2006; Valinger and Fridman, 2011) 84 

 85 

We also tested whether such ML models could replace the mechanistic model GALES by “learning” how to predict the 86 

critical wind speed for tree damage from a large number of GALES runs on data representing the range of conditions 87 

found in the Landes de Gascogne Forest. The purpose was to determine the potential of providing a faster method of 88 

calculating the vulnerability of forests, and one that could be represented in a relatively simple equation. This could allow 89 

rapid calculation of risk over large areas and be extremely helpful in testing different management and planning scenarios 90 

with the consequences immediately available to the end-users. Such ML models could also be used in optimisation of 91 

forest planning when there are multiple objectives and constraints (e.g. risk of wind damage) as previously demonstrated 92 
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by Zeng et al., (2007). 93 

 94 

2. Materials and Methods 95 

2.1. General Approach 96 

The general modelling approach followed was similar to Kamimura et al. (2016) (see their Fig. 2). The main differences 97 

are that models were developed separately using the National Forest Inventory data (NFI data), collected after Storm 98 

Klaus (Inventaire Forestier National. 2009*), and the Nezer Forest data, collected after Storm Martin (Chehata et al., 99 

2014). The models were developed from each data set using a balanced selection of trees (similar number of undamaged 100 

and damaged trees) selected from 90% of the data (see Section 2.3.5 below). The models were then tested against the 101 

remaining 10% of the data (Part 2 of Fig. 1). This was repeated 10 times with a different 10% of the data being used for 102 

testing each time. Finally, both sets of models were tested with the other independent data by creating 10 versions of each 103 

model using a different selection of balanced data and testing against the whole of the other data set. This was to check 104 

how transferable the models were and to check their ability to predict the damage from a different storm from the one 105 

used in their development. In this paper we did not consider the type of damage (breakage or overturning) but combined 106 

all trees known to have been damaged by a storm. 107 

 108 

In addition a set of models was developed to predict critical wind speeds (CWS) using an artificially generated data set to 109 

see if it was possible to substitute for GALES (Part 1 of Fig. 1). CWS calculated both by GALES and by these GALES 110 

substitute models were subsequently used in the development of the damage models along with characteristics of the 111 

individual trees, stand, and site (Part 2 of Fig. 1).  112 

 113 

In the model development and validation we focussed on the CWS and WAsP calculations at 29 m above the ground for 114 

the Nezer Forest and at 40 m above the ground for the NFI data. This was to help maintain the focus of the paper and to 115 

ensure direct compatibility with Kamimura et al. (2016). Results for other calculation heights are presented in Appendix 116 

A and indicated where appropriate.  117 

 

 
* https://inventaire-forestier.ign.fr/spip.php?article610 
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118 
Fig. 1 Outline of modelling approach (LOG: logistic regression model, LIN: linear regression model, NN: artificial 119 
neural networks, RF: random forests; CWS: critical wind speed). In Part 1 (top) three modelling approaches (LIN, NN, 120 
RF) were trained to predict the CWS for damage based on a very large set (1970 individual trees) of previous simulations 121 
using GALES. In Part 2 (bottom) three modelling approaches (LOG, NN, RF) were trained (left-hand side) to predict 122 
damage using either the NFI or the Nezer Forest data (90% of data from each forest) together with either the GALES 123 
derived CWS, or the CWS values predicted using the models developed in Part 1. This produced a set of damage models 124 
(LOG/NN/RF) based on the Nezer Forest data and a set of damage models based on the NFI data. All damage models 125 
were then tested on the remaining 10% of the appropriate data set (right-hand side). The pattern of training and testing 126 
was repeated 10 times using 90% of the data for the training and a different remaining 10% of the data each time for 127 
validation. Compare with Fig. 2 in Kamimura et al. (2016). 128 



  

6 

 

 129 

2.2. Machine Learning Methods 130 

Loosely inspired by biological neural networks, artificial neural networks (NN) are able to approximate a non-linear 131 

function to describe a mapping between a set of inputs and outputs. They are able to learn from incomplete and noisy 132 

datasets, making them particularly suitable for applications within forestry where data is hard to collect and likely to 133 

contain inaccuracies due to measurement difficulties. Previous applications of NNs in forestry have dealt with mortality 134 

estimation (Guan and Gertner, 1995; Hasenauer et al., 2001), and uncertainty assessment of forest growth models (Guan 135 

et al., 1997). However, a weakness in the neural network approach is that the learned function describing the non-linear 136 

mapping cannot be easily understood in terms of processes controlling behaviour, e.g. wind damage in forests. They are 137 

therefore tools that can be of practical use but do not easily provide scientific insight. 138 

 139 

Random forests (RF) are a more recent technique (Breiman, 2001) that have also proved successful in developing models 140 

from noisy and unbalanced data. The RF algorithm builds a collection of independent decision trees whose results are 141 

combined to make a prediction for a given data record. The technique has the advantage of being very fast to train, and 142 

typically overcomes overfitting problems associated with decision tree methods. They are becoming extremely popular in 143 

many aspects of forest modelling (e.g. Seidl et al., 2011). 144 

 145 

Logistic regression models (LOG) have been regularly used in assessing the risk of wind damage because their dependent 146 

variables are categorical and if the binary dependent variable is binary (0/1) they are ideal for wind damage prediction 147 

(damaged/undamaged). In particular, logistic regression models can be used to identify which factors are associated with 148 

wind damage. In this paper, a logistic regression model similar to those developed by Albrecht et al. (2012), Valinger and 149 

Fridman (2011) and Kamimura et al. (2016) was used. 150 

 151 

2.3. Software and Methods 152 

The WEKA software "workbench" (Waikato Environment for Knowledge Analysis) incorporates a large number of 153 

standard Machine Learning Techniques (ML) including the methods described above in a freely available tool (Frank et 154 

al., 2016). With it, a specialist in a particular field is able to use ML to derive useful knowledge from databases that are 155 

far too large to be analysed by hand. The workbench can either be used through a supplied Graphical User Interface, or 156 
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incorporated directly in Java code using a supplied library. All experiments described here are conducted using Weka 157 

version 3-6-13. The three models used are described below. The NN and RF can be both be trained as classifiers, i.e. 158 

predicting a class value (damaged/no damage) or to undertake regression, i.e. output a continuous value. We did not 159 

attempt any model tuning in order to determine how well the WEKA software performed “off the shelf”. 160 

 161 

2.3.1. Artificial Neural Network 162 

The artificial neural network contains an input layer consisting of n neurons, each corresponding to one of the selected 163 

inputs variables. In classification mode, the output layer contains two neurons, one indicating the positive class, and the 164 

other the negative class. When used for regression, there is a single output neuron. In addition, there is a single hidden 165 

layer consisting of (inputs+outputs)/2 neurons. Each neuron receives a weighted sum of inputs        
   
   , where vi = 166 

the value of the input and wi the weight connecting the input to the neuron, and outputs a value s(x) using a sigmoid 167 

activation function as defined in Eq. 1: 168 

 169 

     
             (1) 170 

 171 

Weights are initialised at random and the backpropagation algorithm used to find a set of weights that minimizes the 172 

total error at the outputs, summed over all input records: 173 

 174 

    
 
          

         (2) 175 

 176 

Backpropagation is a gradient descent technique that modifies each weight in small steps based on the gradient of the 177 

error function with respect to the weight concerned, e.g. 178 

 179 

         
   

      (3) 180 

 181 

where wn is the total error calculated at each step. The learning rate   is an adjustable parameter that modifies the step 182 

size, but was set to 0.3 in all our experiments. An additional momentum term is used that enables the gradient descent 183 

algorithm to escape from local minima, and is set to a default value of 0.2. Backpropagation is applied for a fixed number 184 

of 500 iterations for each model. These represent the default settings in the WEKA software. 185 



  

8 

 

 186 

2.3.2. Random Forests 187 

The Random Forests algorithm uses a bagging approach, combined with a Random Tree learning algorithm. In bagging, 188 

multiple random subsets of the dataset are created by sampling n instances with replacement from the dataset.  For each 189 

subset, a random tree classifier is grown: at each node, m variables are selected at random, from which the one that 190 

optimizes the information gain is chosen. We use the default Weka parameters: a forest of 100 random trees are created; 191 

each tree has unlimited depth and is grown without pruning; at each node m = log2(number_of_attributes) + 1 are 192 

randomly selected. 193 

 194 

2.3.3. Logistic Regression 195 

Logistic regression estimates the probability of a binary response variable based on the set of predictor inputs. The Weka 196 

implementation of the multinomial logistic regression model with a ridge estimator is loosely based on the description 197 

given by Le Cessie and Van Houwelingen (1992).  198 

 199 

Given k classes, and n instances with m attributes, an m*(k-1) parameter matrix β is calculated. The probability of class i 200 

is given by Eq. 4 where Yi are the mutually independent response variables (1,0), p(Xi) is the probability that Yi = 1, and 201 

Xi are the m-dimensional rows of covariates. 202 

 203 

              
            

      (4) 204 

 205 

The log likelihood is given by Eq. 5. A ridge estimator is used to improve the parameter estimates and diminish the error 206 

made by further prediction. In order to find the matrix   for which l is minimised, a Quasi-Newton Method is used to 207 

search for the optimized values of the m*(k-1) variables. Before Weka runs the optimization procedure, the matrix   is 208 

compressed into a m*(k-1) vector.  The default Weka parameter for the ridge estimator   of 1x10-8 is used. 209 

 210 

                                           
   (5) 211 

2.3.4. Models 212 

We evaluate the models above with respect to two functions:  213 

 214 
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x Damage Prediction: We adopted a dichotomous model which predicts damage at the level of individual trees in 215 

two categories, damaged or undamaged. A separate model was trained for each of the two data sets. For each of 216 

the three classification methods described, the default parameters supplied with Weka were used to train the 217 

model. 218 

x Critical Wind Speed Prediction: A linear regression model (LIN) was used instead of the logistic regression model 219 

(LOG) because it is more appropriate for a variable output (non-dichotomous). All models (LIN, NN, RF) were 220 

trained to predict critical wind speeds for breakage and overturning at tree level using values obtained from 221 

running a GALES simulation as training data (see 2.4.1 below). The variables used to train the models are given 222 

in Table 1. 223 

 224 

2.3.5. Training and Pre-Processing 225 

Cross-validation is used to obtain an unbiased estimate of the performance of each model on unseen test data. For each 226 

model, the dataset is randomly divided into 10 subsets (folds) of equal size. 9 folds are combined to train a model, with 227 

the left-out fold used for testing the trained model. The procedure is repeated leaving each of the 10 folds out in turn. The 228 

final reported accuracy is the average of the accuracy value obtained on each of the 10 folds. 229 

 230 

For damage prediction, given that the data is unbalanced in terms of the ratio of damaged/undamaged trees, it is 231 

preferable to bias the data used to train the models towards a uniform class distribution. The Weka SpreadSubsample 232 

filter is applied to the subset of data used in each training fold during cross-validation: this produces a new dataset twice 233 

the size of the minority class, by selecting all instances of the minority class (damaged tree in this case) and randomly 234 

sampling from the majority class (undamaged trees in this case). In order to eliminate variability due to the effects of 235 

random sampling in this way, 10 new data-sets were created as just described. All models are trained and tested as 236 

described above using each sub-sampled data-set, with mean results, standard deviations and/or boxplots used to report 237 

findings. 238 

 239 

2.3.6. Outputs from each model 240 

 241 

Damage-prediction models: For the NN, Weka returns a probability distribution based on the outputs from the network 242 

defining the probability of a tree being damaged, for each input vector. The discrimination threshold is set at 0.5, such 243 
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that a probability of greater than or equal to 0.5 results in the tree being classified as damaged. The same threshold is 244 

used with the LOG and the RF models. No adjustment of this threshold was made in order to determine how well the 245 

models performed without any tuning. 246 

 247 

Critical wind-speed models: the LIN, NN and RF models output a single real-valued number for the critical wind speed 248 

for breakage and a single real-valued number for the critical wind speed for overturning. 249 

 250 

2.3.7. Performance Metrics 251 

For the dichotomous models, we record classification accuracy, i.e. the proportion of true results (both true positives and 252 

true negatives) among the total number of cases examined. In addition, we report the area underneath the receiver-253 

operating curve (AUC). This plots the false positive rate against the false negative rage: a perfect classifier would have an 254 

AUC of 1.0; an area of 0.5 is equivalent to random guessing. Typically, an AUC > 0.7 is considered to be fair, above 0.8 255 

good and above 0.9 to be excellent (Hosmer and Lemeshow, 2000). 256 

 257 

For prediction of numeric values (i.e. critical wind speed) the correlation coefficient is reported. All statistics were either 258 

calculated within the WEKA software or with Matlab 2016a (Mathworks, Natick MA, USA). 259 

 260 

2.4. GALES 261 

GALES is a hybrid mechanistic model for predicting the critical wind speeds (CWS) for damage to forest stands and 262 

trees due to overturning and breakage and is designated a CWS model in the convention adopted by Gardiner et al. 263 

(2008). If wind climate data is available then the probability of such wind speeds being exceeded and damage occurring 264 

is also calculated, and this version of the model is called ForestGALES and is designated a Wind Risk Management tool 265 

(WRM) using the same designation system. GALES requires information on the tree species, tree diameter at breast 266 

height (DBH), tree height, stand mean tree diameter at breast height (DBHmean), stand mean tree height, mean stand 267 

spacing, soil type and rooting depth. Although GALES calculates the CWS for both stem breakage and overturning 268 

(uprooting), in this paper the CWS used in damage model development is always the minimum of the two, i.e. the most 269 

likely to occur and we did not attempt to discriminate between damage types. 270 

 271 

https://en.wikipedia.org/wiki/True_positive
https://en.wikipedia.org/wiki/True_negative
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Full details of the model and its validation can be found in Gardiner et al. (2000) and Hale et al. (2015). The parameters 272 

in GALES used for maritime pine stands are given in Cucchi et al. (2005). 273 

 274 

2.4.1. GALES artificial training dataset 275 

 276 

A large number of potential maritime pine stands with characteristics that covered the full range of possible 277 

characteristics (see Table 1 for details of the ranges sampled) were created as inputs to GALES. The stand characteristics 278 

were selected using Latin Hyper Cube Sampling to give uniform sampling. 10,000 stands were created, which after 279 

filtering for duplicates, constraining the ratio of stand mean tree height to stand mean DBH between 30 (very high taper) 280 

and 130 (very low taper), and constraining individual tree DBH and height to be within ±70% of the stand mean values, 281 

left 1970 simulations.  282 

 283 

GALES was then run for the 1970 stands and the CWS values for tree overturning and stem breakage were calculated at 284 

10 m above the zero-plane displacement (d+10m), which is the standard height for such measurements in Gardiner et al. 285 

(2000) and at 29m and 40m above the ground, which correspond to the maximum tree heights in the Nezer Forest and in 286 

the whole of the NFI data set respectively (Kamimura et al., 2016). 287 

 288 

The outputs from the GALES runs were then used to train LIN, NN and RF models to predict CWS for overturning and 289 

breakage at d+10 m, 29 m and 40 m. The trained models were finally tested by comparing their predictions of CWS 290 

against GALES calculated CWS at d+10 m and 29 m for the Nezer Forest and at d+10 m and 40 m for the NFI data (see 291 

Part 1 in Fig. 1). 292 

 293 

2.5. WAsP predicted wind speeds 294 

The Wind Atlas Analysis and Application Program (WAsP) (Mortensen et al., 1993) was used to estimate the wind 295 

speeds above the forest during the Martin and Klaus storms. A land-use map (elevation range, 0 to 300 m; contour 296 

interval = 50 m) plus an aerodynamic roughness map (water = 0.003 m; unforested areas = 0.01 m; forest =1.0 m) was 297 

used in the simulations. The input wind speeds for WAsP were taken from the coastal meteorological station at Cap 298 

Ferret (approximately 25 km north-west of the Nezer Forest at 44°38’N, 1°15’W). Wind speeds were simulated at a 299 

horizontal resolution of 500 x 500 m, at a height of 29 m (just above height of tallest trees in the Nezer Forest) for storm 300 
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Martin, and at heights of 29 and 40 m (just above height of tallest trees in the NFI data) for storm Klaus. Full details are 301 

given in Kamimura et al. (2016). 302 

 303 

2.6. Data 304 

2.6.1. Study site and data  305 

 306 

The field data used in this study are the same data as used in Kamimura et al. (2016). There are two groups of data. The 307 

first is from a field survey of 29 permanent plots (400m2·plot−1) in the Nezer Forest, located in Nouvelle-Aquitaine 308 

region (44°34’20’’N, 1°2’20’’W). Tree size was surveyed in 1998, and damaged trees were determined after storm 309 

Martin in 1999 (Table 2). Data consist of tree height, stem diameter at breast height (DBH, 1.3 m), tree location, and 310 

damage status for most trees. The data was not sub-divided as was the case in Kamimura et al. (2016). The second data 311 

set was from field surveys of the National Forest Inventory in France (Inventaire Forestier National; NFI, (Robert et al., 312 

2009)) in the same region, which is predominately maritime pine stands. The annual survey plots (1 point for 10 km²) are 313 

chosen in a systematic sub-sample of the 5-year sample covering the entire country. The forest field plots are composed 314 

of four concentric plots allowing the measurement of different tree diameter classes (Robert et al., 2009). We used data 315 

collected from 2007 to 2008 from a total of 235 plots chosen in two ecological regions of the Landes de Gascogne Forest, 316 

and wherever more than half of the trees in each plot were maritime pine. After storm Klaus in 2009, damaged trees in 317 

the NFI plots were identified by an additional follow up field survey to list damaged trees (Table 2). For each plot in the 318 

two data sets we added mean plot height, the mean plot DBH and the average stem spacing derived from the individual 319 

tree data. Spatial information included the distance of each tree from the windward stand edge (west) and the upwind gap 320 

size (distance in a westerly direction between the forest and the next forest block) were also estimated based on the 321 

position of the inventory plot (only accurate to within 500m). However, in this paper we assumed like Kamimura et al. 322 

(2016) that all the trees were effectively at a new edge because the best results were previously found with this 323 

assumption. This assumption is justified by the observation from aerial photography that damage propagated through 324 

stands during the storms and this led to new trees becoming exposed to an advancing damaged forest edge. The NFI plots 325 

were identified either within the Landes (main forest production area inland from the coast) or Dunes (forest along 326 

coastal dunes) areas based on the ecological region given in the NFI survey, whereas all the plots in the Nezer Foret were 327 

designated as Landes. Soil characteristics and hydrological status were derived from the French soils database (GISsol, 328 

2011) and the ecological observations in the NFI plots (Bruno and Bartoli, 2001). Soils are mainly sandy podzols and 329 
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arenosols, respectively in the Landes and in the Dunes areas. Gleys and brown soils are also present but only in the 330 

Landes area. In the Nezer Forest the soils are hydromorphic podzols, and their dominant hydrological status is "slightly 331 

wet". Soil depth is greater in the Dunes and Landes area with a dry hydrological status than in those Landes areas with a 332 

wetter hydrological status. An outline of the data used in the development of the models is provided in Table 3. 333 

 334 

Full details of the data and the calculation of derived parameters is provided in Kamimura et al. (2016) and the location 335 

of the forests and the individual sample plots is given in Fig. 1 of Kamimura et al. (2016). 336 

 337 

Table 1: Characteristics of the data set used to train the LIN, NN and RF models to simulate GALES critical wind speed 338 
predictions for maritime pine 339 
Model Variable Mean Value Range Comment 
Soil 3 None Fixed as podzol 
Rooting 2 None Fixed as Deep rooting ≥ 80 cm 
Upwind gap width (m) 245.6 0-500 When gap = 0m then tree is effectively inside forest 
Position relative to edge (m) 0 None Fixed to always be at stand edge 
Tree DBH (cm) 41.9 2.5-110  
Tree Height (m) 23.6 2.5-40 40 m is just above the maximum tree height of maritime pine 

in Landes de Gascogne Forest 
Tree taper (m/m) 23.6 30-130 Constrained between 30 and 130 so trees not too thin or too 

tapered 
Stand DBH (cm) 43.9 5-65  
Stand height (m) 24.8 2.5-35  
Stand taper (m/m) 60.9 30-130 Constrained between 30 and 130 so trees not too thin or too 

tapered 
Tree DBH/Stand DBH 0.98 0.3-1.7 Constrained that tree size is within range ±70% of stand size 
Tree height/Stand height 0.98 0.3-1.7 Constrained that tree size is within range ±70% of stand size 
Stand density (trees/ha) 1840 30-3600  
 340 

Table 2: Levels of damage in the Nezer Forest and within the NFI database. 341 
Data Number of Trees % Damaged % Undamaged 
Nezer Forest 1080 12% (134 trees) 88% (946 trees) 
NFI 1705 33% (566 trees) 67% (1139 trees) 
 342 
  343 
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Table 3: Parameters and their range and standard deviation used in the model development for Nezer Forest and the NFI 344 
database. DBH is diameter at breast height (1.3m above ground) and CI_BAL is a competition index based on the basal 345 
area of all trees larger than the subject tree (Biging and Dobbertin, 1995) 346 
Model Variable NFI: Range (Stdev) Nezer Forest: Range (Stdev) 
Gap size (m) 41-328.2 (66.7) 28.4-262.5 (66.4) 
Stand Mean DBH (cm) 8.0-65.1 (12.9) 3.9-43.4 (10.6) 
Stand Mean Height (m) 4.1-32.8 (6.7) 2.8-26.3 (6.4) 
Stand Density (ha) 28.3-2740.7 (399.7) 200-3594 (676.1) 
Stand Mean CI_BAL 0.00-57.9 (9.7) 1.1-19.6 (6.6) 
Tree DBH (cm) 7.6-111.00 (14.4) 2.5-61.0 (11.3) 
Tree Height (m) 3.60-38.60 (6.9) 2.3-26.7 (6.6) 
Tree CI_BAL 0.00-270.7 (18.1) 0.00-35.9 (9.7) 
Distance from Edge (m) 0 0 
CWS Breakage at d+10m GALES (ms-1) 10.9-45.4 (5.8) 12.7-46.2 (8.0) 
CWS Overturning at d+10m GALES (ms-1) 10.0-32.5 (5.2) 11.3-40.0 (7.2) 
CWS Breakage at 29m GALES (ms-1) 16.0-58.8 (5.5) 24.3-60.8 (7.6) 
CWS Overturning at 29m GALES (ms-1) 13.7-48.2 (5.1) 25.0-53.7 (6.7) 
CWS Breakage at 40m GALES (ms-1) 20.3-63.6 (5.8) Not calculated 
CWS Overturning at 40m GALES (ms-1) 18.8-52.2 (5.3) Not calculated 
WAsP predicted wind speeds at 29m (ms-1) 21-42 (4.5) 26.2-31.8 (1.8) 
WAsP predicted wind speeds at 40m (ms-1) 24-43 (4.4) Not calculated 
Soil (1=Arenosol, 2=brown soils, 3=podzol, 
4=gleys) 

1-4 3 

Hydro (1=very wet, 2=slightly wet, 3=dry) 1-3 2 
Dune (1=Dune area, 0 = Landes area) 0-1 0 
 347 

3. Results 348 

3.1. Predicting CWS 349 

The LIN, NN and RF model simulations of CWS were compared to the actual CWS produced by GALES for the Nezer 350 

and NFI data at 29 m and 40 m above the ground respectively, and are displayed in Table 4. Information for predictions 351 

at d+10 m can be found in Table A1 in Appendix A. 352 

Table 4: Results of comparison of predictions from the trained LIN/NN/RF models and GALES for Nezer at 29 m and 353 
NFI data at 40 m. Numbers are correlation coefficient between trained model results and GALES predictions and root-354 
mean square (RMS) error is given in brackets in ms-1. 355 
Training Set Test Set Output LIN NN RF 
GALES 29 m predictions 
from artificial data 

Nezer CWS for 
breakage 

0.8836 (6.4165) 0.9251 (10.2185) 0.9137 (6.5713) 

GALES 29 m predictions 
from artificial data 

Nezer CWS for 
overturning 

0.9131 (3.0748) 0.9516 (3.838) 0.9394 (4.6022) 

GALES 40 m predictions 
from artificial data 

NFI CWS for 
breakage 

0.7659 (6.0699) 0.8565 (4.8805) 0.8437 (4.6879) 

GALES 40 m predictions 
from artificial data 

NFI CWS for 
overturning 

0.8264 (3.6150) 0.9347 (3.398) 0.9004 (2.8682) 
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 356 

The results show a high level of correlation between the predictions of GALES and those of the models. In all cases the 357 

models are correlated to the GALES predictions with r2 values greater than 0.77 and in most cases above 0.9. In all cases 358 

the predictions of breakage are slightly less well correlated than the predictions of overturning. This might be a reflection 359 

of the fact that only approximately 15% of trees were damaged by breakage during the two storms (trees in the Landes de 360 

Gascogne Forest are more susceptible to overturning), and the models are consequently better trained to predict 361 

overturning than breakage (more examples of overturning). In all cases the LIN models perform least well, the RF second 362 

best and the NN performs best (average correlations of 0.847, 0.899 and 0.917 respectively). However, the RMS errors in 363 

the predictions are quite large with values ranging between 2.87 to 10.22 ms-1, and with an average value of 5.02 ms-1. 364 

This suggests that such models can be used for predictions for multiple trees and forest stands over large areas but not for 365 

precise predictions for a small number of trees or individual stands. Overall the models appear better at predicting the 366 

CWS at d+10 m rather than at fixed heights with r2 values greater than 0.94 (see Table A1 in Appendix A). This is 367 

probably due to the fact that d+10 m is at a relatively consistent height above the modelled trees (<10 m), whereas with 368 

the fixed height values of 29 and 40 m the distance from the top of the trees to the calculation height is much more 369 

variable (22.5 to 37.5 m).  370 

 371 

A large advantage was obtained in computational efficiency. The GALES model used in this paper required 0.37 ms to 372 

calculate the CWS for damage of a single tree using already known tree characteristics, whereas the LIN and NN derived 373 

models only required 0.013 ms per tree. This represents a 28 times increase in calculation speed. The RF derived CWS 374 

model required 0.065 ms per tree, a calculation speed more than 5.7 times faster than GALES. In the GALES version of 375 

Gardiner et al. (2000) there is an iterative solution for calculating the additional moment provided by the overhanging 376 

displaced mass of the canopy during a storm (Neild and Wood, 1999), whereas in in this paper we used a simple 377 

analytical bending equation (Gardiner, 1992). Additional simulations showed that a further computational efficiency of a 378 

factor of 2 would be obtained over the more complicated version of GALES. All calculations were based on 10 runs for 379 

all 1705 trees in the NFI data set using a MathCad program (PTC, Needham, United States) on a Dell Latitude© laptop 380 

(Dell, Round Rock, United States) running at 2.1 GHz (4 CPUs) with 16.0 GB of memory. 381 

 382 
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3.2. Wind damage to individual trees 383 

3.2.1. Nezer Forest 384 

In Fig. 2 the performance of the three damage modelling approaches (LOG/NN/RF) in predicting damage or no damage 385 

for the Nezer Forest is illustrated (LOG_Nez, NN_Nez, RF_Nez). All the parameters in Table 3 were used with the 386 

GALES CWS and WAsP wind speed calculated at 29 m. The accuracy and AUC values are given in the All Variables 387 

column (indicating all possible variables used) in Table 5 and Table 6 respectively. The accuracy of the three models are 388 

all reasonably good (≥ 67%) but the NN model has a significantly higher accuracy than the LOG model with a value of 389 

68.7% and the RF model has a statistically significantly higher accuracy than both other models with a value of 72.5%. 390 

All three models have high values of AUC (≥ 0.8), which indicate good discrimination between damaged and undamaged 391 

trees (Hosmer and Lemeshow, 2000). The AUC values for all three models are higher than the value obtained by 392 

Kamimura et al. (2016) for the Nezer Forest using logistic regression models (AUC = 0.76). However, the accuracies are 393 

lower for the LOG and NN models in comparison to the earlier work, which had an accuracy of between 71.9-72.4% in 394 

the Nezer Forest. However, in Kamimura et al. (2016) the model accuracy was optimized by adjusting the cut points for 395 

the probability of damage between 0 and 1 until the true positive rate equalled the true negative rate (Hosmer and 396 

Lemeshow, 2000). As described earlier, in this paper no model optimisation was performed and the cut point was fixed at 397 

0.5 in order to determine model performance with no tuning. 398 

 399 

The accuracy and AUC of the models for the same data but using the calculated critical wind speeds at d+10 m above the 400 

ground are presented in Fig. A.1 and Tables A2 and A3 of Appendix A. The results are very similar to the results using 401 

the CWS at 29 m and suggest that the height of CWS calculation is not especially critical and the inclusion of the WAsP 402 

calculated wind speeds made little difference to the accuracy or discriminatory ability of the models.  403 

  404 
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405 

 406 

Fig. 2: Accuracy and AUC for the LOG, NN and RF damage model predictions using all data tree, stand and site data and 407 
the GALES predicted CWSs at 29 m against the Nezer Forest data (LOG_Nez, NN_Nez, RF_Nez) and the GALES 408 
predicted CWSs at 40 m against the NFI damage data (LOG_NFI, NN_NFI, RF_NFI). In addition a comparison is made 409 
for the NFI data (LIN_CWS, NN_CWS, RF_CWS) using the CWS values derived (see Part 1 of Fig. 1) from the three 410 
CWS models (LIN, NN, RF) instead of the GALES values. 411 
 412 

3.2.2. NFI data (Landes de Gascogne Forest) 413 

In Fig. 2 there is also the same analysis as presented for the Nezer Forest data but for the NFI data and using the GALES 414 

CWS and WAsP predicted wind speeds at 40 m (LOG_NFI, NN_NFI, RF_NFI). The values are tabulated in Table 5 and 415 
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Table 6. In addition the results using the model predicted CWSs calculated in Section 3.1 were also used (LIN_CWS, 416 

NN_CWS, RF_CWS) in place of the GALES derived CWS. The accuracies of the LOG and NN models are very similar 417 

to the logistic regression model of Kamimura et al. (2016) where the accuracy was 69.6% when the NFI data were used 418 

(see Table 8 in Kamimura et al., 2016), but the RF model is significantly more accurate (76.3%). The discriminatory 419 

behaviour of the LOG and NN models is also similar to the logistic regression model in Kamimura et al. (2016) with 420 

AUC values close to 0.77 compared to their value of 0.74. However, the RF model shows superior discriminatory power 421 

with an AUC value of 0.84. In the simulations using the model predicted CWSs in place of the GALES derived CWS 422 

(LIN_CWS, NN_CWS, RF_CWS) the AUC values are unaffected and only the accuracy of the simulations using the 423 

CWS derived from the linear regression model (LIN_CWS compared to LOG_NFI) showed a significant reduction 424 

(p=0.0164). 425 

 426 

The results for the NFI data using calculations at d+10 m and 29 m and are shown in Fig. A.2 and Fig. A3, and Tables A2 427 

and A3 in appendix A. They are very similar to the results presented here. 428 

 429 

3.2.3. Model Sensitivity to Individual Parameters 430 

The effects of leaving out one variable at a time on the accuracy and AUC value of the models for the Nezer Forest using 431 

the CWS and WAsP wind speed calculated at 29 m are given in Table 5 and Table 6 and plotted in Fig. A.4 of Appendix 432 

A. For each variable removal the model was always retrained with the remaining variables. The model performance using 433 

the CWS calculated at d+10 m are displayed in Fig. A.5 and tabulated in Tables A.2 and A.3 of Appendix A. 434 

 435 

Variable removal only has an effect for the LOG model where the removal of stand density and mean stand DBH slightly 436 

reduce the accuracy and the removal of stand density slightly reduces the AUC (all significant at the p=0.05 level). 437 

However, for the NN and RF models the removal of no variable had a significant effect on either model accuracy or 438 

AUC. Note that in all the Nezer Forest simulations removing Dune, Hydro and Soil have no impact because they each 439 

only have a single value in this forest (Table 3). 440 

 441 

The response of the models developed using the NFI data and the CWS and WAsP wind speed calculated at 40 m are 442 

also tabulated in Table 5 and Table 6 and plotted in Fig. A.6 of Appendix A. The results for the model performance using 443 

the CWS calculated at 29 m and d+10 m are displayed in Fig. A.7 and Fig. A.8 and Tables A.2 and A.3 of Appendix A. 444 

Removal of Stand_density, Dune and Hydro reduces the accuracy and AUC of the LOG model and additionally the 445 
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removal of Soil and the WAsP calculated wind speed reduces the AUC of the LOG model. The NN model is only 446 

affected by the removal of Hydro, which reduces the AUC of the model. The RF model is not affected by the removal of 447 

any variable. 448 

 449 

Overall there is relatively little impact of parameter removal on model performance. The LOG model is the most 450 

sensitive and the RF model almost completely insensitive. This is probably not surprising because of the way that the 451 

LOG and NN models utilise all the available variables, whereas the RF model creates nodes at each of which m variables 452 

are selected at random, from which the one that optimizes the information gain is chosen. Interestingly the removal of 453 

information on whether in the Dune or Landes area (Dune), the hydrological state of the soil, and to a lesser extent the 454 

soil type itself had an impact on the LOG and NN model developed using the NFI data. This suggests that this 455 

information provides an improvement in discrimination between damage and no damage but, because these variables are 456 

not strongly correlated to other variables, the models cannot create an equally effective alternative model when this 457 

information is missing. 458 

 459 
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Table 5: Mean accuracy of different models with each model variable removed in turn. Standard deviation is given in brackets. * indicates value significantly different (p<0.05) from 460 
the value with using all variables. The superscript letters against the values in the All Variables column (a, b, or c) indicate whether there are significant differences between the 461 
models for that particular height of CWS calculation at the p=0.5 level. 462 
Data 
Set 

Model CWS 
Height 

All 
Variables 

Average 
CI_BAL 

CI_BAL Tree 
DBH 

Stand 
Density 

Dune Gap 
Size 

Hydro Stand 
DBH 

Soil Stand  
Height 

Tree  
Height 

CWS  
Break 

CWS 
Overturn 

WAsP 
Wind 
Speed 

Nezer 

LOG 

29 m 

66.954a 
(0.76) 

67.287 
(0.801) 

67.065 
(0.929) 

67.000 
(0.688) 

65.028* 
(0.772) 

66.954 
(0.76) 

66.954 
(0.76) 

66.954 
(0.76) 

65.593* 
(0.581) 

66.954 
(0.76) 

66.954 
(0.76) 

67.435 
(1.053) 

66.944 
(1.206) 

67.102 
(0.795) 

66.213 
(1.042) 

NN 68.741b 
(1.028) 

68.019 
(1.329) 

67.88 
(0.961) 

67.991 
(1.573) 

68.463 
(1.407) 

68.000 
(1.279) 

67.991 
(1.176) 

68.000 
(1.279) 

68.565 
(1.107) 

68.000 
(1.279) 

68.019 
(1.414) 

68.074 
(1.621) 

69.75 
(2.046) 

68.639 
(1.162) 

67.278 
(1.054) 

RF 72.528c 
(1.02) 

72.167 
(1.164) 

72.519 
(0.801) 

73.056 
(1.011) 

72.259 
(0.83) 

72.565 
(0.903) 

72.287 
(0.952) 

72.611 
(0.704) 

72.352 
(0.783) 

72.481 
(0.877) 

72.454 
(0.836) 

72.491 
(0.918) 

72.843 
(0.95) 

72.426 
(0.864) 

72.065 
(0.924) 

NFI 

LOG 

40 m 

68.094a 
(0.283) 

67.894 
(0.282) 

68.158 
(0.277) 

68.258 
(0.321) 

67.232* 
(0.212) 

66.780* 
(0.324) 

68.094 
(0.283) 

67.120* 
(0.373) 

68.188 
(0.458) 

67.918 
(0.322) 

68.094 
(0.283) 

67.648 
(0.215) 

68.106 
(0.269) 

67.988 
(0.335) 

67.877 
(0.303) 

NN 69.443b 
(0.679) 

69.238 
(0.672)  

69.959 
(0.990)  

70.006 
(0.643)  

69.484 
(0.665)  

69.496 
(0.957)  

69.543 
(0.345)  

68.528 
(0.684) 

68.979 
(0.911)  

68.686 
(0.548)  

69.138 
(1.045)  

69.736 
(1.382)  

69.865 
(0.725) 

69.460 
(0.858)  

69.056 
(0.499) 

RF 76.305 
(0.466)c 

75.701 
(0.342) 

76.587 
(0.632) 

76.493 
(0.483) 

75.900 
(0.528) 

76.534 
(0.723) 

76.076 
(0.431) 

75.742 
(0.437) 

76.082 
(0.575) 

76.328 
(0.430) 

76.100 
(0.474) 

76.211 
(0.348) 

76.217 
(0.495) 

76.416 
(0.455) 

75.672 
(0.530) 

 463 

Table 6: Mean AUC of different models with each model parameter removed in turn. Standard deviation is given in brackets. * indicates value significantly different (p<0.05) from 464 
the value with using all variables. The superscript letters against the values in the All Variables column (a, b, or c) indicate whether there are significant differences between the 465 
models for that particular height of CWS calculation at the p=0.5 level. 466 
Data 
Set 

Model CWS 
Height 

All 
Variables 

Average 
CI_BAL 

CI_BAL Tree 
DBH 

Stand 
Density 

Dune Gap 
Size 

Hydro Stand 
DBH 

Soil Stand  
Height 

Tree  
Height 

CWS  
Break 

CWS 
Overturn 

WAsP 
Wind 
Speed 

Nezer 

LOG 

29 m 

0.798a 
(0.005) 

0.8 
(0.005) 

0.799 
(0.005) 

0.8 
(0.006) 

0.78* 
(0.005) 

0.798 
(0.005) 

0.798 
(0.005) 

0.798 
(0.005) 

0.793 
(0.006) 

0.798 
(0.005) 

0.798 
(0.005) 

0.803 
(0.004) 

0.793 
(0.006) 

0.798 
(0.005) 

0.8 
(0.005) 

NN 0.799a 
(0.011) 

0.799 
(0.012) 

0.804 
(0.01) 

0.794 
(0.011) 

0.795 
(0.015) 

0.797 
(0.013) 

0.793 
(0.012) 

0.797 
(0.013) 

0.791 
(0.021) 

0.797 
(0.013) 

0.796 
(0.011) 

0.797 
(0.011) 

0.8 
(0.01) 

0.795 
(0.011) 

0.797 
(0.013) 

RF 0.834b 
(0.009) 

0.834 
(0.006) 

0.832 
(0.008) 

0.839 
(0.008) 

0.835 
(0.008) 

0.837 
(0.008) 

0.837 
(0.007) 

0.836 
(0.01) 

0.836 
(0.009) 

0.835 
(0.009) 

0.836 
(0.008) 

0.832 
(0.011) 

0.837 
(0.008) 

0.836 
(0.009) 

0.835 
(0.008) 

NFI 

LOG 

40 m 

0.764a 
(0.002) 

0.765 
(0.002) 

0.764 
(0.002) 

0.763 
(0.002) 

0.757* 
(0.002) 

0.751* 
(0.002) 

0.764 
(0.002) 

0.745* 
(0.002) 

0.765 
(0.002) 

0.760* 
(0.002) 

0.764 
(0.002) 

0.763 
(0.002) 

0.764 
(0.002) 

0.762 
(0.002) 

0.758* 
(0.002) 

NN 0.769a 
(0.007) 

0.766 
(0.008) 

0.771 
(0.007) 

0.773 
(0.006) 

0.767 
(0.004) 

0.767 
(0.011) 

0.765 
(0.005) 

0.749* 
(0.008) 

0.765 
(0.006) 

0.759 
(0.008) 

0.764 
(0.006) 

0.769 
(0.009) 

0.772 
(0.009) 

0.768 
(0.006) 

0.764 
(0.006) 

RF 0.836b 
(0.006) 

0.832 
(0.006) 

0.838 
(0.005) 

0.835 
(0.005) 

0.832 
(0.005) 

0.833 
(0.006) 

0.833 
(0.005) 

0.830 
(0.005) 

0.832 
(0.007) 

0.835 
(0.005) 

0.834 
(0.006) 

0.838 
(0.006) 

0.835 
(0.006) 

0.836 
(0.006) 

0.831 
(0.005) 
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3.2.4. Model Sensitivity to Removal of Parameter Groups 467 

The sensitivity of the models to the absence of groups of input variables was also tested. Four parameter groups were 468 

defined as Stand = {Gap Size, Stand Mean DBH, Stand Mean Height, Stand Density, Stand Mean CI_BAL}; Tree = {Tree 469 

DBH, Tree Height, Tree CI_BAL}, Site = {WAsP 40m, Dune, Hydro, Soil} and CWS+WAsP = {CWS Breakage, CWS 470 

Overturn, WAsP 40m}. The results are illustrated in Fig. 3. 471 

 472 

There are clear differences in the behaviour of the three models. The LOG and NN models are badly affected by the 473 

removal of Site information and this was not compensated for by Tree or Stand information. Site information on its own 474 

reduced the performance of both the models by a large and significant amount and this reflects the findings from the 475 

single parameter removal in Section 3.2.3 that showed the LOG and NN models are sensitive to the removal of Dune, 476 

Hydro, or Soil information. Removal of Stand information had a small but significant influence on the LOG and NN 477 

models, but removal of just Tree information did not significantly affect the results. For the RF model the story is 478 

different and the loss of Stand information is the most important factor. In fact Stand information on its own is enough to 479 

produce high model accuracy and AUC values. In addition, the RF model results were slightly but significantly improved 480 

when Tree level information was excluded. The CWS+WAsP information on its own provided reduced but reasonable 481 

levels of accuracy and AUC for all models, and generally gave higher or equivalent results compared to any other single 482 

parameter group (except Stand with the RF model) suggesting that the GALES model does provide a reasonable 483 

assessment of damage risk in these forests. 484 

 485 

In summary, all models benefit from Stand level information and results are improved in particular by Site information 486 

for the LOG and NN models. The LOG and NN models are unaffected and the RF model is slightly adversely affected by 487 

the inclusion of Tree information and all models performed reasonably, but with reduced accuracy and discrimination, 488 

when just the CWS values and the WAsP wind speed were used. 489 

 490 
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491 

 492 

Fig. 3: Test of impact of leaving out different parameter groups in the damage models on the overall model accuracy and 493 
discriminatory ability (AUC) for the NFI data. Stand = {Gap Size, Stand Mean DBH, Stand Mean Height, Stand Density, 494 
Stand Mean CI_BAL}; Tree = {Tree DBH, Tree Height, Tree CI_BAL}, Site = {WAsP 40m, Dune, Hydro, Soil}, 495 
CWS+WAsP = {CWS Breakage, CWS Overturn, WAsP 40m}. Note change of scales on the y-axes compared to Fig. 2. 496 
 497 
 498 



  

23 

 

3.2.5. Portability of models 499 

Model portability was tested by using the models developed from the Nezer Forest damage/no damage data and applying 500 

them to the NFI damage/no damage data in the same manner as Kamimura et al. (2016). But in addition we also tested 501 

the applicability of the NFI derived models on the smaller Nezer Forest data. In the same manner as discussed previously 502 

(Sections 3.2.1and 3.2.2) the test data was divided into 10 groups to allow 10 evaluations of model performance. Only 503 

calculations using the CSW calculated at d+10 m and 29 m were used because calculations at 40 m were not available in 504 

the Nezer Forest. The results are presented for the calculations at 29m in Fig. 4 and summarized for both heights in Table 505 

A4 in Appendix A. It is clear from the results that there is a severe reduction in model accuracy and discriminatory ability 506 

if the models developed on the Nezer Forest data (small forest area) are applied to the whole maritime pine forest estate 507 

in the Landes de Gascogne Forest (NFI data). In fact the models all fail to provide accurate predictions (all values 508 

between 50 and 55%) and have no discriminatory ability (AUC values close to 0.5). In the Nezer Forest there was a 509 

limited range of tree sizes, and there was no variation in soil or hydrological properties and the whole area was classified 510 

as a Landes ecological region. This meant there was no input data covering the larger range of conditions that exist in the 511 

NFI data. However, the models developed with the much larger data set from across the whole Landes de Gascogne 512 

Forest (NFI data) performed almost as well on the Nezer data set as when tested on the data from which it was originally 513 

developed. In the case of the LOG model the performance appeared to be actually enhanced in terms of accuracy (see 514 

Fig. 4 and compare LOG_NFI_NFI and LOG_NFI_Nez) although the difference was just not significant at the p=0.05 515 

level (p=0.0592). The NN model had reduced accuracy and discriminatory ability (both significant at the p=0.05 level) 516 

and the accuracy was very variable between the 10 tests. The RF model had no loss of accuracy but a reduction in 517 

discriminatory ability (significant at p=0.05 level). 518 

 519 

The results illustrate that the models developed from damage data in January 2009 (Storm Klaus) were able to 520 

successfully predict damage from a previous storm in December 1999 (Storm Martin) when the state of the soil and 521 

meteorological conditions were different. This suggests that such models, and especially the RF model, have the potential 522 

for predicting damage risk to individual trees for future storms if developed on a comprehensive enough data set. 523 

Unfortunately we have no other damage data sets with maritime pine on which to further test the models. 524 

 525 
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526 

 527 

Fig. 4: Comparison of accuracy and AUC for predictions using the Nezer derived models on Nezer data (LOG_Nez_Nez, 528 
NN_Nez_Nez, RF_Nez_Nez), using the Nezer derived models on NFI data (LOG_Nez_NFI, NN_Nez_NFI, 529 
RF_Nez_NFI), NFI derived models on NFI data (LOG_NFI_NFI, NN_NFI_NFI, RF_NFI_NFI), and NFI derived 530 
models on Nezer data (LOG_NFI_Nez, NN_NFI_Nez, RF_NFI_Nez). All calculations used the CWSs calculated from 531 
GALES at 29m height. 532 
 533 

  534 
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4. Discussion 535 

This paper follows on from the earlier work of Kamimura et al. (2016), which developed and tested the ability of logistic 536 

regression model and the hybrid mechanistic model GALES to calculate individual maritime pine trees at risk of wind 537 

damage in the Landes de Gascogne Forest of South-West France. That paper found good agreement of the predictions of 538 

the GALES model against observed damage for specific conditions of soil and soil hydrological status, specifically 539 

hydromorphic podzol, which was the only soil type on which tree pulling experiments in the region had been conducted 540 

and the values from which had been used to parameterise the model (Cucchi et al., 2005). However, when the soil and 541 

hydrological conditions changed the model had poor discrimination success between damaged and undamaged trees 542 

(typically AUC < 0.7). The logistic model was able to simulate well the damage in the Nezer Forest and the region 543 

represented by the NFI if the logistic model was calibrated for each forest area. However, the logistic model developed 544 

for the Nezer Forest had no discriminatory ability when applied to the NFI forest area with a much larger range of 545 

conditions. The logistic model was therefore not easily transferable even when the data from the NFI was filtered to only 546 

investigate soil and hydrological conditions similar to the ones in the Nezer Forest, where the model had been developed 547 

(Kamimura et al., 2016). This is a reflection of the fact that a model “trained” on a dataset with a limited range, and 548 

which tries to minimise errors with that dataset, fails to produce satisfactory results when used with a dataset with a wider 549 

range of characteristics (tree sizes, soil type, hydrological conditions, etc.) 550 

 551 

In this paper we have attempted to determine whether other modelling approaches such as artificial neural networks and 552 

random forests are able to perform more accurately and with greater discrimination than a logistic regression model or 553 

the GALES model. In addition we wanted to determine if the models were more transferable from one area to another 554 

than was previously found in Kamimura et al. (2016). The same data sets were used in this paper and the 555 

parameterisation of the GALES model used in this paper to calculate critical wind speeds was identical to the previous 556 

work. In addition to developing artificial neural network and random forests models we again developed a logistic 557 

regression model for direct comparison with the previous work. 558 

 559 

In addition, we wanted to determine if it was possible to substitute the hybrid-mechanistic model GALES by one of these 560 

modelling approaches if they were previously “trained” using outputs from the GALES model run over a large range of 561 

example stands. This could provide a very rapid method of calculating trees at risk over large areas such as the 790,000 562 

ha of the Landes de Gascogne Forest or in computer simulations of different forest management scenarios such as have 563 
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been conducted in Finland by Zeng et al. (2007). This would allow near rapid simulations of alternative management 564 

approaches for forest management planning and a very quick assessment of the impact of a plan on the current and future 565 

wind damage risk to the forest.  566 

 567 

All the models in conjunction with regional predictions of wind speed during storms Martin and Klaus were successful at 568 

predicting individual tree damage within both the very well defined and measured Nezer Forest as well as across the 569 

whole of Landes de Gascogne Forest. However, overall there was little improvement in the accuracy or discriminatory 570 

ability of the artificial neural network model used in this study over the logistic regression model and results were similar 571 

to those obtained in the previous study both for the Nezer Forest and with the NFI data. This is in contrast to Hanewinkel 572 

et al. (2004) who found enhanced identification of damaged trees with the artificial neural network model compared to 573 

the logistic regression model. However, we did find that the random forests model produced enhanced accuracy and 574 

AUC values over all the other models for all circumstances (both forest test areas and for all heights of CWS calculation) 575 

and showed good discriminatory power (AUC between 0.827 and 0.837).  576 

 577 

The random forests models were also found to be extremely insensitive to removing any individual variable but 578 

performance was adversely affected when all stand variables (Gap Size, Stand Mean DBH, Stand Mean Height, Stand 579 

Density, Stand Mean CI_BAL) were removed. In contrast both the logistic regression and artificial neural network models 580 

were more sensitive to the removal of individual variables and the logistic regression model particularly sensitive to the 581 

removal of the information on whether the stand was in the Dune or Landes area, the soil type and its hydrological status 582 

(Dune, Soil and Hydro variables). This was confirmed by the removal of groups of variables covering tree, stand and site 583 

conditions where the logistic regression and artificial neural network models were very sensitive to the removal of all site 584 

variables (WAsP 40m, Dune, Hydro, Soil), and performed best when site and stand information were available. These 585 

observations support the previous findings of Kamimura et al. (2016) where the logistic regression model lost 586 

discriminatory power if there was no information on whether the plot was in the Dune or Landes area, what the soil type 587 

was, and the hydrological status of the soil.  588 

 589 

Interestingly the removal of either individual tree variables or all tree variables (Tree DBH, Tree Height, Tree CI_BAL) 590 

did not have a negative influence on any model performance and in fact there was a slight but significant improvement 591 

for the random forests model. This may be a reflection of the data distribution for tree variables that make it harder for 592 
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the random forests method to find good unique values on which to split the data and build a good model. However, the 593 

fact that all models were not affected by the lack of tree data might suggest that for severe storms in forests similar to the 594 

Landes de Gascogne Forest the damage is controlled by stand and site characteristics and individual tree characteristics 595 

do not control the effective vulnerability to the wind. This would fit with the accepted view of the nature of damage 596 

within these forests, which is that it is triggered at vulnerable edges resulting from a recent clear-felling and then 597 

propagates through the stand damaging almost all trees regardless of their individual characteristics (Dupont et al., 2015; 598 

Kamimura et al., 2016). 599 

 600 

All models were successful in replicating the outputs of the GALES model using the training data set with r2 values, in 601 

almost all cases, greater than 0.9 between predicted critical wind speeds and the GALES derived critical wind speeds. 602 

This extremely strong correlation meant that substitution of model derived critical wind speeds for the GALES values in 603 

the damage model predictions of damage/no damage had almost no impact. However, the use of the critical wind speeds 604 

calculated by GALES or the CWS models as inputs for the damage models leads to concerns about error propagation. 605 

Therefore, because the performance of all the damage models was unaffected by the removal of critical wind speeds as 606 

inputs, it might be advisable to use damage models developed using only measured data. In addition, all the CWS models 607 

had a large standard deviation in their predictions indicating that the model derived critical wind speeds would only be 608 

appropriate for large areas and multiple simulations, such as investigating management options over a whole forest, 609 

rather than in calculations for individual trees or stands. Another use would be to provide a starting (seed) wind speed in 610 

the iterative calculations used in the GALES model itself (Hale et al., 2015).  611 

 612 

The models developed with the large extensive data set across the whole of Landes de Gascogne Forest (NFI data) 613 

following damage caused by Storm Klaus in 2009 were successful in predicting the damaged trees in the smaller Nezer 614 

Forest for a completely different storm (Storm Martin in 1999). However, the models developed with the Nezer data 615 

showed no predictive ability for the storm damage in the larger NFI data set. This agrees with the findings of Kamimura 616 

et al. (2016), as discussed earlier, who were unable to successfully apply their logistic model developed with the Nezer 617 

data to predict damage in the whole Landes de Gascogne Forest and it is no surprise that models developed within a 618 

limited data set do not work in larger more complex areas. 619 

 620 

Altogether the results suggest that the random forests modelling approach can very successfully predict the trees that will 621 
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be damaged during a storm with an accuracy of up to 76% so long as good quality data are available to “train” the model. 622 

This data can be from any storm so long as there is a sufficient range of input conditions because the models were found 623 

to be transferable to other storms under such conditions. The random forests model could also be used in large-scale 624 

scenario testing to investigate different management options into the future. Such an approach would provide a powerful 625 

planning and public engagement tool because the models are fast and the impact of decisions could be visualised almost 626 

immediately. 627 

 628 

5. Conclusions 629 

The results from this investigation of new approaches to modelling forest wind damage suggest that artificial neural 630 

networks are no better than logistic regression models in their accuracy or discriminatory ability in determining which 631 

trees are likely to be damaged. However, no model tuning was employed with either approach so performance might be 632 

improved with adjustment of parameters such as the damage cut point. Even so, the models based on the random forests 633 

approach were found to be much more accurate and had higher discriminatory power than the logistic regression and 634 

neural network models in all circumstances and to give high accuracy (>75%) and good discrimination (AUC>0.8). In 635 

addition they were almost completely insensitive to the removal of any specific input variable and dependent on only 636 

stand level information to achieve good results. This would mean that they could be used successfully even if specific 637 

data were missing. Tree level information was found to be unimportant in all models suggesting that the dominant 638 

damage mechanism in these forests is propagation of damage from vulnerable forest edges, which affects all trees 639 

regardless of their size. 640 

 641 

The random forests model along with the other approaches was also successfully able to predict the critical wind speeds 642 

(CWSs) predicted by the GALES model if trained on an extensive enough artificial data set. The models are much faster 643 

than GALES due to a lack of a requirement for iteration and so could be used for running large scale “what if” scenarios 644 

as part of scenario modelling and testing or planning exercises involving stakeholders. 645 

 646 

The models that were developed all require extensive data sets of actual damage (large range of input variable values) for 647 

their development and could be transferred to other regions if the forest conditions in the new area are comprehensively 648 

covered within the model training data set. However, if the conditions are different and no detailed damage data from 649 
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storms in the new area are available the models are unlikely to be transferable. In contrast, all the models can be trained 650 

to replace GALES if a large artificial data set covering the range of stand characteristics to be found in the new region is 651 

first used to “train” them and this could be extremely useful for large scale forest planning in any region that has its 652 

specific conditions and species incorporated in the GALES model. 653 

Appendix A.  654 

Supplementary data can be found in Appendix A. 655 
 656 
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Appendix A: Supplementary Material for “Use of Machine Learning 1 

Techniques to Model Wind Damage to Forests” 2 

 3 
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 5 

Fig. A 1: Accuracy and AUC for the LOG, NN and RF model predictions using the GALES predicted CWSs at 6 
d+10 m against the Nezer damage data. All variables in Table 3 were used except the WAsP derived wind 7 
speeds because these are only calculated at a single height above the ground and the d+10 m results are for 8 
variable heights above the ground depending on the calculated value of d. 9 
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11 

 12 

Fig. A 2: Accuracy and AUC for the LOG, NN and RF model predictions using the GALES predicted CWSs at 13 
d+10 m against the NFI damage data. All variables in Table 3 were used except the WAsP derived wind speeds 14 
because these are only calculated at a single height above the ground and the d+10 m results are for variable 15 
heights above the ground depending on the calculated value of d. 16 
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18 

 19 

Fig. A 3: Accuracy and AUC for the LOG, NN and RF model predictions using the GALES predicted CWSs at 20 
29 m against the NFI damage data 21 
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 23 

Fig. A 4: Test of impact of leaving out each parameter in the models on the overall model accuracy and ability 24 
to discriminate between damage and no damage (AUC) for the Nezer Forest using CWS and WAsP wind speed 25 
at 29 m. 26 
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 29 

Fig. A 5: Test of impact of leaving out each parameter in the models on the overall model accuracy and ability 30 
to discriminate between damage and no damage (AUC) for the Nezer Forest using CWS at d+10 m. 31 
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 34 

Fig. A 6: Test of impact of leaving out each parameter in the models on the overall model accuracy and ability 35 
to discriminate between damage and no damage (AUC) for the NFI data using CWS and WAsP wind speed at 36 
40 m. Note change of scale from Fig. A 4 and Fig. A 5 for Accuracy. 37 
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39 

 40 

Fig. A.7: Test of impact of leaving out each parameter in the models on the overall model accuracy and ability 41 
to discriminate between damage and no damage (AUC) for the NFI data using CWS and WAsP wind speed at 42 
29 m. 43 
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 46 

Fig. A.8: Test of impact of leaving out each parameter in the models on the overall model accuracy and ability 47 
to discriminate between damage and no damage (AUC) for the NFI data using CWS at d+10 m. 48 
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Table A 1: Results of comparison of predictions from trained LIN/NN/RF models and GALES for Nezer and 50 
NFI data at d+10 m. Numbers are correlation coefficient between trained model results and GALES predictions 51 
and root-mean square (RMS) error is given in brackets in ms-1. 52 

Training Set Test Set Output LIN NN RF 
GALES d+10m 
predictions from 
artificial data 

Nezer CWS for 
breakage 

0.9668 (3.5072) 0.9738 (6.8321) 0.9616 (5.0649) 

GALES d+10m 
predictions from 
artificial data 

Nezer CWS for 
overturning 

0.9760 (3.2098) 0.9877 (2.8620) 0.9773 (3.1491) 

GALES d+10m 
predictions from 
artificial data 

NFI CWS for 
breakage 

0.9362 (3.1918) 0.9495 (4.2107) 0.9493 (3.0381) 

GALES d+10m 
predictions from 
artificial data 

NFI CWS for 
overturning 

0.9562 (2.0722) 0.9777 (1.7025) 0.9744 (1.7226) 

 53 



Table A 2: Mean accuracy of different models with each model variable removed in turn. Standard deviation is given in brackets. * indicates value significantly different 54 
(p<0.05) from the value with All Variables. The superscript letters against the values in the All column (a, b, or c) indicate whether there are significant differences between 55 
the models for that particular height of CWS calculation at the p=0.5 level. 56 

Data 
Set 

Model CWS 
Height 

All 
Variables 

Average 
CI_BAL 

CI_BAL Tree 
DBH 

Stand 
Density 

Dune Gap 
Size 

Hydro Stand 
DBH 

Soil Stand  
Height 

Tree  
Height 

CWS  
Break 

CWS 
Overturn 

WAsP 
Wind 
Speed 

Nezer 

LOG 

d+10 m 

65.972a 
(0.839) 

65.944 
(0.667) 

65.713 
(0.984) 

66.25 
(0.915) 

65.565 
(0.681) 

65.972 
(0.839) 

65.972 
(0.839) 

65.972 
(0.839) 

66.148 
(0.838) 

65.972 
(0.839) 

65.972 
(0.839) 

66.352 
(0.97) 

67.361* 
(0.863) 

66.648 
(0.913) 

 

NN 67.176a 
(1.346) 

67.259 
(2.433) 

67.509 
(1.854) 

65.824 
(1.339) 

66.528 
(1.504) 

66.509 
92.003) 

66.407 
(0.98) 

66.509 
(2.003) 

66.269 
(0.822) 

66.509 
(2.003) 

66.741 
(2.223) 

66.019 
(1.346) 

66.778 
(1.464) 

66.417 
(1.708) 

 

RF 71.306b 
(1.066) 

70.519 
(1.238) 

71.167 
(1.225) 

71.426 
(1.243) 

71.000 
(1.178) 

70.917 
(0.991) 

71.046 
(1.313) 

71.093 
(0.939) 

71.231 
(1.201) 

71.407 
(1.075) 

71.167 
(1.273) 

70.454 
(1.195) 

71.509 
(0.99) 

71.657 
(1.197) 

 

NFI 

LOG 

d+10 m 

67.202 a 
(0.309) 

67.056 
(0.270) 

67.308 
(0.248) 

67.226 
(0.287) 

67.349 
(0.246) 

65.801* 
(0.518) 

67.202 
(0.309) 

65.982* 
(0.233) 

67.261 
(0.327) 

66.897 
(0.270) 

67.202 
(0.309) 

67.050 
(0.303) 

67.267 
(0.307) 

67.284 
(0.382) 

 

NN 69.267 b 
(0.996) 

67.971 
(1.067) 

68.868 
(0.496) 

69.261 
(0.562) 

68.305 
(0.779) 

67.290* 
(0.995) 

68.657 
(0.864) 

67.713* 
(1.172) 

68.481 
(0.985) 

68.540 
(1.064) 

68.880 
(0.716) 

69.273 
(0.814) 

69.021 
(0.834) 

68.639 
(0.999) 

 

RF 76.240c 

(0.693) 
75.572 
(0.559) 

76.364 
(0.664) 

76.663 
(0.680) 

75.367 
(0.763) 

76.117 
(0.773) 

75.900 
(0.664) 

75.384 
(0.452) 

75.613 
(0.510) 

76.059 
(0.700) 

75.930 
(0.683) 

76.293 
(0.622) 

76.375 
(0.567) 

76.006 
(0.950) 

 

LOG 

29 m 

68.405a 
(0.270) 

68.364 
(0.232) 

68.428 
(0.277) 

68.569 
(0.330) 

67.560* 
(0.303) 

66.798* 
(0.285) 

68.405 
(0.270) 

67.613* 
(0.327) 

68.604 
(0.368) 

68.311 
(0.303) 

68.405 
(0.270) 

68.117 
(0.340) 

68.434 
(0.193) 

68.469 
(0.275) 

68.129 
(0.306) 

NN 69.988b 
(0.673) 

68.815 
(0.435) 

69.672 
(0.623) 

69.947 
(0.726) 

70.041 
(1.064) 

69.760 
(0.999) 

69.601 
(0.654) 

68.698* 
(o.722) 

69.273 
(0.962) 

69.455 
(0.521) 

69.537 
(0.965) 

70.065 
(0.809) 

70.205 
(1.015) 

69.994 
(0.643) 

69.372 
(0.729) 

RF 76.604c 
(0.619) 

76.065 
(0.507) 

76.475 
(0.636) 

76.669 
(0.660) 

76.158 
(0.505) 

76.587 
(0.462) 

76.481 
(0.370) 

76.123 
(0.426) 

76.299 
(0.550) 

76.622 
(0.528) 

76.364 
(0.456) 

76.663 
(0.496) 

76.352 
(0.610) 

76.710 
(0.512) 

75.695* 
(0.354) 

  57 
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 58 

Table A 3: Mean AUC of different models with each model parameter removed in turn. Standard deviation is given in brackets. * indicates value significantly different 59 
(p<0.05) from the value with All Variables. The superscript letters against the values in the All column (a, b, or c) indicate whether there are significant differences between 60 
the models for that particular height of CWS calculation at the p=0.5 level. 61 

Data 
Set 

Model CWS 
Height 

All 
Variables 

Average 
CI_BAL 

CI_BAL Tree 
DBH 

Stand 
Density 

Dune Gap 
Size 

Hydro Stand 
DBH 

Soil Stand  
Height 

Tree  
Height 

CWS  
Break 

CWS 
Overturn 

WAsP 
Wind 
Speed 

Nezer 

LOG 

d+10 m 

0.809a 
(0.005) 

0.812 
(0.004) 

0.81 
(0.005) 

0.811 
(0.005) 

0.809 
(0.005) 

0.809 
(0.005) 

0.809 
(0.005) 

0.809 
(0.005) 

0.812 
(0.005) 

0.809 
(0.005) 

0.809 
(0.005) 

0.815 
(0.003) 

0.802 
(0.004) 

0.803 
(0.005) 

 

NN 0.796b 
(0.015) 

0.792 
(0.009) 

0.805 
(0.016) 

0.791 
(0.012) 

0.791 
(0.014) 

0.794 
(0.01) 

0.789 
(0.012) 

0.794 
(0.01) 

0.791 
(0.011) 

0.794 
(0.01) 

0.795 
(0.014) 

0.791 
(0.008) 

0.793 
(0.009) 

0.795 
(0.011) 

 

RF 0.827c 
(0.009) 

0.823 
(0.011) 

0.82 
(0.012) 

0.83 
(0.01) 

0.825 
(0.01) 

0.825 
(0.009) 

0.827 
(0.01) 

0.826 
(0.01) 

0.826 
(0.009) 

0.826 
(0.01) 

0.826 
(0.01) 

0.821 
(0.009) 

0.826 
(0.009) 

0.83 
(0.008) 

 

NFI 

LOG 

d+10 m 

0.751a 
(0.002) 

0.751 
(0.002) 

0.751 
(0.002) 

0.751 
(0.002) 

0.747* 
(0.002) 

0.733* 
(0.002) 

0.751 
(0.002) 

0.730* 
(0.002) 

0.751 
(0.002) 

0.746* 
(0.002) 

0.751 
(0.002) 

0.751 
(0.002) 

0.751 
(0.002) 

0.753 
(0.002) 

 

NN 0.767b 
(0.004) 

0.755* 
(0.005) 

0.765 
(0.006) 

0.764 
(0.007) 

0.759 
(0.005) 

0.752* 
(0.011) 

0.760 
(0.005) 

0.747* 
(0.006) 

0.757 
(0.007) 

0.759 
(0.006) 

0.761 
(0.006) 

0.765 
(0.006) 

0.764 
(0.008) 

0.763 
(0.007) 

 

RF 0.834c 
(0.005) 

0.828 
(0.004) 

0.838 
(0.006) 

0.836 
(0.005) 

0.828 
(0.005) 

0.832 
(0.005) 

0.831 
(0.005) 

0.829 
(0.004) 

0.831 
(0.005) 

0.833 
(0.006) 

0.831 
(0.005) 

0.836 
(0.006) 

0.834 
(0.005) 

0.833 
(0.005) 

 

LOG 

29 m 

0.766a 
(0.002) 

0.767 
(0.002) 

0.767 
(0.002) 

0.766 
(0.002) 

0.760* 
(0.002) 

0.752* 
(0.002) 

0.766 
(0.002) 

0.747* 
(0.002) 

0.767 
(0.002) 

0.762* 
(0.002) 

0.766 
(0.002) 

0.766 
(0.002) 

0.767 
(0.002) 

0.765 
(0.002) 

0.760* 
(0.002) 

NN 0.768a 
(0.008) 

0.761 
(0.009) 

0.766 
(0.007) 

0.769 
(0.008) 

0.768 
(0.007) 

0.764 
(0.005) 

0.767 
(0.006) 

0.752* 
(0.005) 

0.765 
(0.007) 

0.760 
(0.005) 

0.764 
(0.008) 

0.766 
(0.009) 

0.772 
(0.009) 

0.770 
(0.008) 

0.763 
(0.008) 

RF 0.837b 
(0.005) 

0.833 
(0.005) 

0.839 
(0.006) 

0.838 
(0.005) 

0.834 
(0.004) 

0.836 
(0.004) 

0.836 
(0.004) 

0.832 
(0.004) 

0.836 
(0.004) 

0.837 
(0.005) 

0.837 
(0.005) 

0.839 
(0.005) 

0.836 
(0.005) 

0.838 
(0.005) 

0.832 
(0.005) 

 62 
  63 
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Table A 4: Accuracy and AUC values for the models when tested on other data set (Nezer models tested on NFI data and NFI models tested on Nezer data). Standard 64 
deviations are given in parentheses. Mean value when models were tested on the data sets from which they were developed on second line in square brackets (from Table 5 65 
and 6). 66 

   LOG NN RF 
CWS Height Model Source Area Model Test Area Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC 
d+10m Nezer NFI 53.443 (1.208) 

[65.972] 
0.563 (0.013) 
[0.809] 

50.358 (3.857) 
[67.176] 

0.556 (0.040) 
[0.796] 

54.411 (1.717) 
[71.306] 

0.521 (0.019) 
[0.827] 

29m Nezer NFI 52.657 (1.098) 
[66.954] 

0.549 (0.011) 
[0.798 

53.836 (2.828) 
[68.741] 

0.531 (0.531) 
[0.799] 

52.440 (1.735) 
[72.528] 

0.578 (0.026) 
[0.834] 

d+10m NFI Nezer 69.981 (1.673) 
[67.202] 

0.766 (0.005) 
[0.751] 

59.676 (7.145) 
[69.267] 

0.741 (0.054) 
[0.767] 

73.778 (1.794) 
[76.240] 

0.735 (0.022) 
[0.834] 

29m NFI Nezer 73.102 (1.770) 
[68.405] 

0.756 (0.008) 
[0.766] 

60.787 (10.062) 
[69.988] 

0.724 (0.032) 
[0.768] 

75.537 (1.223) 
[76.604] 

0.713 (0.026) 
[0.837] 

 67 


