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ABSTRACT
Dense 3D face reconstruction plays a fundamental role in visual
media production involving digital actors. We improve upon high
fidelity reconstruction from a single 2D photo with a reconstruction
framework that is robust to large variations in expressions, poses
and illumination. We provide a global optimization step improv-
ing the alignment of 3D facial geometry to tracked 2D landmarks
with 3D Laplacian deformation. Face detail is improved through,
extending Shape from Shading reconstruction with fitted albedo
prior masks, together with a fast proportionality constraint between
depth and image gradients consistent with local self-occlusion be-
havior. Together these measures better preserve the crucial facial
features that define an actor’s identity, andwe illustrate this through
a variety of comparisons with related works.

CCS CONCEPTS
• [I.3.7 Computer Graphics]: Three-Dimensional Graphics
and Realism→ Color, shading, shadowing, and texture; • [I.4.8
Image Processing and Computer Vision] Scene Analysis →
Shading;
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1 INTRODUCTION
The problem of 3D face reconstruction from stills and video is a
hot research topic across Computer Vision and Computer Graphics
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(a) (b)

Figure 1: Our single image to 3D reconstruction results
compared with related referenced works. Robustness and
feature-preservation are twomajor components of 3D recon-
struction. (a) demonstrates robustness under a varied poses,
and (b) retaining detail of the actors’ facial identity.

with foundations in face recognition [2, 30] and face alignment
[13, 17, 36], as well as core applications in face reenactment [29],
Animoji [8], 3D relighting, avatar [11, 16], and augmented real-
ity [4], etc.. The aim of face reconstruction is to reproduce facial
geometry features that give strong depiction of one’s identity. Al-
though reconstruction from video andmultiple views typically have
higher reconstruction accuracy [5], single frame methods are still
of great importance in image based applications [12, 14, 20].

As 3D face reconstruction from a single image is an ill-posed
problem, the key ingredient in a reconstruction algorithm is the face
shape priormodel. However, this entails a difficult trade-off between
robustness and detail preservation, especially in the presence of
complex real-world illuminations, large pose variations, expressions
or occlusions.

In our experiments, we find current state-of-the-art works are
either insufficiently robust [25], fail to capture fine facial features [9,
21], or overly smooth thin geometry details [5] (See Fig. 1)). In this
paper, we propose a redesigned 3D face reconstruction framework
that enhances robustness and improves the ability to preserve fine
detailed face identity features. Specifically, the main contributions
of this paper are:

1. A global shape correction stage enhancing the alignment be-
tween the coarse geometry and the 2D facial landmark features
through 3D Laplacian deformation.

2. Improving beyond Shape-From-Shading approaches, we pro-
vide an iterative optimization procedure, introducing a masked
albedo prior to improve detail recovery that would otherwise be
lost to albedo estimation.
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3. A faster method incorporating explicit consideration of self-
occlusion for fine grained geometry reconstruction.

4. The resulting system comprises a robust reconstruction pipeline
that handles variations in large expressions, poses and illumina-
tions.

2 RELATEDWORKS
2.1 Face Prior
Earlier research provides reliable priors of face shape, expression
and albedo. Blanz andVetter [2] presents 3DMorphableModel(3DMM)
as a low-dimensional representation of the geometry and albedo
of faces, which is obtained via principle component analysis (PCA)
on registered scanned real 3D faces. FaceWarehouse [6] builds a
bi-linear face model that encodes 150 individual identities and 47
expressions. Booth et al [3] create a large-scale 3DMM from 10,000
scanned faces from a huge variety of the human population, and
further creates domain-specific 3DMM. The application of this
representation includes but not limited to: 3D face reconstruction
[9, 21], face recognition [2, 30], face alignment [13, 17, 36] and face
reenactment [29]. These priors are generally helpful to obtain rough
face geometry and albedo, but it cannot model the crucial face fea-
tures to describe the refined identity of a person, for example, the
shape of eyes, the nose, or the mouth, and face details, like wrinkles
and folds.

2.2 3D Face Reconstruction
3D Face reconstruction focusing on single image [12, 21, 25, 26, 28,
31] or image sequence [5, 8, 9, 22, 23] is not a new topic. Many are
based on 3DMM face priors [5, 8, 9, 12, 21, 25], whilst Trigeorgis
et al [33] directly solve face normals with fully convolutional net-
works. Other recent CNN approaches [9] perform reconstruction in
real-time sacrificing some identity detail. Although some unsuper-
vised methods exist [21, 28], a CNN is often trained in a supervised
way, except where synthetic data [9, 20] are employed. While deep
learning approaches require careful training design and appropri-
ate datasets whether real or synthetic, they can be thought of as
more generalistic perhaps being lossy to a person’s uniqueness and
identity, alternatively analytic methods can be applied generally
without training data dependence and directly perform to observed
principles, and therefore fall into the focus for this work.

Current state-of-the-art 3D face reconstruction results remain
susceptible to artifacts. The most prevalent work flow (fit 3DMM
coefficients, and then add displacement map or bump map) [9]
produces large silhouettes and component matching errors (Fig. 3),
since low-rank representation of faces only produce the rough
geometry. [12] embed a medium layer for shape correction, but the
solution is not perfect (Fig. 8). Some works tend to capture the most
visibly apparent fine-scale details only [5], and some algorithms
are less robust under various lighting conditions or occlusions [25].

In this paper, we redesign the 3D face reconstruction framework
with a focus on practical facial identity recovery. Our algorithm is
feature preserving, and robust under complex lighting environment
as well as a large range face 3D poses.

In wider context beyond the scope of our work, there are other lit-
eratures focusing on 3D reconstruction of hair [10], glasses [18], or
other reconstruction algorithms which are robust to occlusion [32].

3 OVERVIEW
Our framework is illustrated in the Fig. 2 pipeline diagram flowing
from left to right. 3DMM shape, expression and albedo coefficients,
camera, and lighting parameters are solved in the coarse level re-
ferred as initialization, as discussed in Section 5.1. Given the coarse
geometry of the initialized 3DMM shape, we employ Laplacian
deformation to achieve optimal positions for all vertices of the
rough mesh while fixing landmark points as soft constraints. We
refer to this step as correction in Section 5.2 since it corrects the
geometry to share more resemblance of the input image rather than
limited to the low-level subspace. The final detail is reconstructed
by firstly performing intrinsic imgae decomposition to the input
which results in albedo, residual and shading map. Together with
the medium level depth map, we use shape-from-shading technique
to solve the final detailed depth map in Section 5.3.

4 BACKGROUND
4.1 3D Face Morphable Model
3DMM [2] is a widely-used face model comprising a low-dimension
statistical representation of rough face geometry and albedo. For-
mally, 3D face geometry and albedo can be expressed as:

S = Sµ + Pidα + Pexpγ , (1)

T = Tµ + Palbβ (2)

where S and T are 3D face geometry and albedo, Sµ and Tµ are
shape and albedo matrices of the average 3D face respectively, Pid ,
Pexp and Palb are the principle axes trained on a set of scanned 3D
Faces by PCA. α , β and γ are the corresponding coefficient vectors
which characterize the identity/albedo/expression information of a
certain person.

4.2 Perspective Projection
We use a weak perspective projection to project 3D Face onto the
image plane:

V3D = M4×4 ∗ S, (3)

V2D = f ∗ Pr ∗V3D + t2D (4)

M4x4 is the model-view matrix that transforms S in world space,
which can be expressed by 3D translation vector, uniform scale,
and rotation angles yaw, pitch and roll. V3D is the transformed
face in world space. f , Pr , and t2D are the projection scaling factor,

orthographic projection matrix
(
1 0 0
0 1 0

)
, and 2D translation

vector, respectively. V2D denotes the 2D position of the shape on
image plane.

4.3 Rendering
Following [9], we assume the faces have Lambertian reflectance,
and approximate the global illumination by second-order spherical
harmonics basis functions, then the final rendering color can be
written as:

P = L · ϕ(N3D ) · ρ (5)

where N3D and ρ are the per-pixel mesh normal and albedo after
rasterization. L is the spherical harmonics coefficients, ϕ(N3D ) is
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Figure 2: Algorithm pipeline. (a) is the input image, green dots indicate face landmarks from 2D detectors. (b) shows the face
shape and albedo after initialization step (3DMM fitting). (c) shows the face shape after the correction step, salient features
are preserved (nose shape, etc.) (d) is the resulting face after the detail reconstruction step. (e) and (f) are resulting face albedo
and residual map, respectively. Detailed geometry information is faithfully preserved (wrinkles, etc.).

the spherical harmonics basis for N3D . L · ϕ(N3D ) is also called the
shading term.

In particular, we use the famous Basel Face Model (BFM [19]) for
Sµ , Pid , Tµ , Palb , and FaceWarehouse [6] for Pexp. From above, all
the parameters that characterize a 2D face image are {α , β ,γ ,M4x4,
f , Pr , t2D ,L}.

5 FEATURE-PRESERVING FACE INVERSE
RENDERING

5.1 Initialization
We fit {α , β ,γ ,M4x4, f , Pr , t2D ,L} from 2D face image as the initial-
ization step of the whole algorithm. The problem is well addressed
in many works [9, 36]. In this paper, the objective function is based
on [9]:

E = Econsistency +wlandmarkElandmark +wr eдEr eд . (6)

Here Econsistency is the per-pixel L2 distance between source im-
age and the rendered image, Elandmark is the 2D distance in image
space between face landmarks detected from source image and
landmarks calculated from the current parameters, Er eд is the reg-
ularization term which restricts the final 3D face around the 3DMM
mean face,wlandmark andwr eд are the weighting parameters. We
simply inherit all the parameter settings from [9]. The optimization
is solved via Gauss-Newton approach.

Note that to produce all the results in our paper, the face land-
mark points from the source image are automatically detected, and
mesh landmark vertices are beforehand manually annotated on the
BFM surface. To make the optimization robust under large pose
variations, we update vertex indices of the face contour landmarks
on the BFM surface after each optimization iteration, since these
landmarks should be restricted to the face silhouette, as in most 2D
image landmark detectors.

5.2 Face Shape Correction
3DMM fitting restricts resulting the 3D face to the PCA linear sub-
space and is often over-regularized to get visual-acceptable results,
however, a real person’s face shape has its unique shape features
in nose, mouth, and contour areas, which are very important for
face and expression recognition. As before, we note these fail to be
described sufficiently by current 3DMMs.

The resulting landmark positions from 2D detectors and from
3DMM fitting parameters do not align very well, shown in Fig. 3.
Silhouettes matching is a very hard problem in 3DMM fitting. In
our experiments, we find that 2D image landmark detectors can
generate much more accurate landmark positions (especially along
silhouettes) than subspace shape modeling. To solve silhouette
matching and shape preservation then, we propose a simple algo-
rithm that explicitly uses 2D landmark information from detectors
and successfully corrects the face shape obtained from 3DMM fit-
ting.

We define 2D landmark positions from detectors as VM
2D . After

3DMM fitting, S , V3D , V2D of landmark vertices can be calculated
via Equ.1,3 and 4. The shape correction problem can be formulated
as a 3D mesh deformation problem with all the landmark vertices
defined as control points. The deformation should transform these
3D control points from V3D to VM

3D , and V
M
3D must satisfy:

VM
2D = f ∗ Pr ∗VM

3D + t2D . (7)

However VM
3D is still ambiguous for solving since it is only a 2D

constraint, thus we must also constrain its distance to the camera
(z-coordinate in camera space). Heuristically, we find the following
simple constraint is enough to produce good results:

V3D .z = V
M
3D .z (8)

Here .z means fetching z component from a 3D vector. That
means, for landmark vertices, the deformation changes the 2D
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projection position on image plane, but preserves its distance to the
camera. After calculatingVM

3D , we apply Laplacian Deformation [27]
to get the deformed mesh, SM .

Experimental results (Fig. 3) show that this step greatly reduces
silhouettes and landmark matching errors, while capturing global
shape features.

The formulation of our deformation approach is similar to [34],
but we are addressing two different issues. They try to move the
tracked mesh based on constrained vertices, but not too much along
the scene flow to avoid destroying the integrity. On the contrary,
we want the landmarks to move exactly to their target positions
while maintaining a reasonable global mesh structure. During our
evaluations we find that despite the errors of 2D landmark detec-
tors, we still provide better results. 2D landmark detector error is
the lower bound of fitting error, thus, it is rather meaningful to
minimize such errors utilizing deformation. The error caused by
deformation from inaccurate landmarks is much less than those
from over-regulated 3DMM coefficients both qualitatively (Fig. 6)
and quantitatively (Table. 1).

5.3 Face Detail Reconstruction
Similar to [9], our face detail reconstruction algorithm is based on
a Shape from Shading framework (SfS [7]). Given face image, I , we
estimate a depth map, D, that captures fine-scale surface details
such as wrinkles, an albedo map, A, that captures albedo details
and a residual map, B, that captures smooth highlights and smooth
shadows which our lighting model cannot explain. Hence, I , A, B
and D should satisfy:

I = A · S + B, (9)

S = L · Depth2Normal(D) (10)

where S indicates the shading map, andDepth2Normal(D) trans-
forms depth map to normal map (see [7]). Given rasterization from
3DMM fitting and our face shape correction results, we can get an
initial albedo map A∗, shading map S∗ and depth map D∗.

Previous algorithms cannot model real fine-scale surface details
well, as demonstrated in Fig. 6. Some algorithms tend to capture only
visibly apparent fine-scale features [9], while some algorithms tend
to create toomuch fine-scale geometry [25]. Generally, each of these
algorithms are insufficient to capture real face identity features
perfectly. We carefully redesign each component of the framework,
and propose a novel, identity feature-preserving solution.

5.3.1 Solving Albedo Map. Unlike previous works, we utilize
an albedo prior map, A∗, to inform our albedo estimation, A. We
assume albedo is almost constant across the skin region, whilst
we can confidently capture high-frequency albedo details in some
sensitive regions like eyes, nose and mouth.

To reflect this, we manually prepare a smooth mask in a face
texture space map indicating regions of high confidence of uniform
skin albedo (Fig. 4). After rendering the texture on fitted 3DMM
using fitted camera matrix, we get conforming skin mask,M . Fol-
lowing [7], we solve albedo map A and residual beta map B by
minimizing the following equations via iteration:

min
A

| |AS∗ + B − I | |2 + qAs
∑
j ∈Li

ωi
j (Ai −Aj ) + qApM | |A −A∗ | |2;

(11)

min
B

| |AS∗ + B − I | |2 + qBs
∑
j ∈Li

ωi
j (Bi − Bj ). (12)

The first term (data term) of Equ.11 and Equ.12 ensures the
correctness of such decomposition, the second term (smooth term)
of Equ.11 and Equ.12 makes resulting albedo map and beta map
smooth, here wi

j is the color affinity between pixel i and pixel j
(in pixel i’s neighborhood, notated as Li ), which is given more
weights when neighboring pixels are similar. The third term of
Equ.11 restricts the resulting albedo map A to albedo priori map
A∗, and is only valid when current pixel is within the masked skin
regionM .

In our implementation, the number of iterations is 3. qAs , qAp and
qBs are relative weights and we set qAs =3.0, qBs =2.0 for all iterations,
and qAp =2.0, 1.0, 0.0 in each successive iteration. The iteration grad-
ually transfers parts of the image that our lighting model failed
to explicitly explain into the residual map, which results in less
artifacts during our final depth reconstruction. The relaxing of the
albedo priori constraint gives data term more weight to be opti-
mized in the last iteration, when residual map already consists
mostly of smooth highlights and shadows of I .

5.3.2 Solving Depth Map. After calculating A and B, we intend
to solve fine-scale depth map D. The objective function is defined
as follows:

min
z

{Lossdata + Losspr ior i + Losssmooth + Lossocclusion }. (13)

where the data term ensures the correctness of such decomposi-
tion:

Lossdata = | |L · Depth2Normal(D) · A + B − I | |2. (14)

the priori term restricts resulting depth map D close to initial
depth map D∗:

Losspr ior i = q
D
p | |D − D∗ | |2. (15)

and the smooth term controls resulting depth map smoothing
behavior:

Losssmooth = q
D
s | |∆D | |2. (16)

lastly, the occlusion term explicitlymeasures self-occlusion, which
is a crucial component in appearance, but not accounted for by our
spherical harmonics lighting model. As shown in Fig. 11, deep wrin-
kles are affected heavily by ambient occlusion, which makes the
image darker in the wrinkle crevices. Inspired by [1], we define our
occlusion term with the following to conform image gradient to
depth gradient:

Lossocclusion = q
D
o | |▽I − rDo ▽D | |2 (17)

where ▽ denotes the gradient vector of an image. This is based on
the observation that in a very small patch (for example 3px*3px)
of I , both albedo and depth can be plausibly assumed to be con-
stant, thus gradients of image color are only due to self-occlusion
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(a) (b) (c) (d)

Figure 3: Landmark fitting demonstration. (a) input image, (b) shows the landmark points detected, (c) the result of [9], and
(d) is our result. One can observe the necessity of the deformation, given that our reconstruction preserves more identity
information of the input image.

(a) (b) (c) (d) (e) (f)

Figure 4: (a) input image, (b) is the mask prior in unwrapped UV space (c) is the skin mask M after fitting, (d) and (e) are our
albedo map and residual map after our last iteration of the optimization respectively, and (f) is the final reconstruction

(Fig. 11). Theoretically, self-occlusion is caused by the variance of
depth. Here we directly restrict the gradients of D to be propor-
tional to the gradients of I , and in our experiments we find that
this simple modification makes fine geometry more promising, al-
beit not metrically correct [1]. The proportionality coefficient rDo
can be manually adjusted to control the scale of fine geometry.
In our implementation, we set qDp =2.5, qDs =30, qDo =1.0, rDo =1.0 to
generate all the results. A slower, more complex way of handling
self-occlusion could be modeling the self-occlusion in a sub-space
in advance [24].

6 COMPARISONS AND RESULTS
6.1 Results
We analyze our algorithm with a set of challenging face photos,
including large variations in pose, exaggerated expressions, and
complex illuminations. For all the images listed below, our results
capture the local details at different levels, meanwhile, match closely
to the global shape of the input image (Fig. 5).

6.2 Comparisons
6.2.1 Qualitative Comparisons. We compare our results qual-

itatively with those reconstructed by the state-of-the-art detail
preserving methods. In Fig. 6 we compare results of ours, [21],
and [9]. As shown in Fig. 6 our reconstructions demonstrate better
geometry fitting and facial identity detail preservation.

We also outperform the results of Sela et al [25] (Fig. 7), which
do provide impressive geometry details, however, the depth map
produced by the neural network is not robust to beards or self-
shadowed illumination. Hence, their registration step results in
missing or distorted face region geometry.

We then compare our reconstruction with Cao et al [5] (Fig. 8b),
showing only recovery of the most visual salient wrinkles, and
Jiang et al [12] (Fig. 7e) where severe distortion at the nose and
missing major details can be seen.

6.2.2 Quantitative Comparisons. We ran our method, along
with [32], [37], and [9] on the neutral faces of 100 subjects from
the BU-3DFE dataset [35]. We use dlib [15] to detect landmarks,
and compute the mean absolute error to the ground truth mesh on
facial pixels. Quantitative results are shown in Table 1.

Table 1: Quantitative comparisons: We demonstrate better
reconstructions compared to other state-of-the-art methods

[32] [37] [9] Ours
Mean Absolute Error (MAE) 19.594 17.397 14.154 12.923

6.3 Analysis
Figure 9 demonstrates the critical importance of the medium level
face shape correction. (b) and (e) show that our reconstruction fails
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(a) (b) (c) (d)

Figure 5: Demonstration of our algorithm under different poses and lighting conditions. Columns (a) and (c) are the input
images, (b) and (d) are our reconstruction results. Note that our framework can handle a large range of pose angles, strong
highlights and extreme non-symmetrical, non-uniform lighting

to represent the input image faithfully since the coarse level fitting
does not match the landmark points perfectly. A notable improve-
ment could be seen in (c) and (f) by solving optimal geometric
positions of the coarse level mesh, utilizing Laplacian Deformation.

Fig. 10 indicates the necessity of integrating the albedo prior as
a soft constraint through the optimization process. Compared to

(b), (c) presents better detail preserving since wrinkles remain in
the albedo map without the leveraging the prior.

Fig. 11 shows that the gradient term is necessary since self-
shadows are partially included in the residual map and results in
less satisfactory recovery in the final reconstruction.
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Figure 6: Column (a) are the input images, (b) are results of [21], (c) are results of [9], (d) our results.
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(a) (b) (c) (d) (e) (f)

Figure 7: Robustness Comparisons. (a) and (d) are input images, (b) and (e) are results of [25], (c) and (f) are our reconstructions

(a) (b) (c) (f) (e) (f)

Figure 8: (a) and (f) are input images, (b) is results of [5], (e) is the results of [12] (c) and (f) are our results

6.4 Limitation
We draw the skin mask because eyes, nose and mouth area contains
more identity information, which 3DMM priori have large fitting
errors. Since it is manually drawn on the priori’s UV map, facial
hairs are still blended into the shading when dealing with different
real images.

7 CONCLUSIONS
In this paper, we propose a robust, facial identity feature preserving,
3D face reconstruction algorithm. Our novel global shape correc-
tion step, provides robustness under large face pose variations and
expressions, meanwhile, preserving the shape at nose, eyes, and
mouth regions as well as face silhouettes. Since we employ an itera-
tive optimization procedure to separate albedo from geometry and
consider self-occlusion when optimizing detailed geometry in the
fine level, our algorithm can produce high quality reconstruction
under complex lighting conditions, and different poses.
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