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Abstract: With the increasing of energy demand and electricity price, researchers gain more and 
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achieve electricity saving. In this paper, we discuss the system framework of NILM and analyse 
the challenges in every module. Besides, we study and compare the public datasets and accuracy 
metrics of non-intrusive load monitoring techniques. 
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1 Introduction 

Nowadays, with the rapid urbanisation and greenhouse 
effect, people put more attention on energy saving and 
environment protection. Related statistics show that 
residential energy account for almost 30% of the total 
carbon dioxide in the UK and the figure can achieve 10% 
reduction by taking some simple energy efficiency measures 
(Sundramoorthy et al., 2011). Domestic energy 
consumption makes up over one fifth of the total energy use 
in the USA and over 40% of this power is wasted (Alahmad 
et al., 2012). Apart from administrative interventions and 
energy management (Wang et al., 2016), statistics show 
direct feedback methods (i.e., real-time energy consumption 
information of appliance-specific) can achieve maximum 
energy saving instead of indirect feedback methods (i.e., 
monthly bills and irregular energy usage suggestions) 
(Ehrhardt-Martinez et al., 2010). Motivated by this, 
appliance load monitoring (ALM) has been put forward to 
reach the goal of energy conservation and emission 
reduction depends on the use of internet of things (IoT) 
technologies (Talpur et al., 2015). ALM not only can 
provide useful feedback to the residents, but also be 
qualified in fault detection for industry. This can be 
achieved by two major approaches: 

• Intrusive load monitoring – ILM requires individual 
device and appliance to be installed a sensor with 
digital communication function to acquire energy 
usage, then the local area network takes charge of 
gathering and sending electricity consumption 
information (Rid et al., 2014). 

• Non-intrusive load monitoring – NILM was first 
proposed by George Hart in the 1980s (Hart, 1992), 
which only needs to set one sensor to gather aggregated 
energy information of the total load at the house entry 
point. Then the raw current and voltage data will be 
analysed to estimate the appliances that are turned on. 

Although ILM have potential high accuracy, the hardware 
cost and difficulty of implementation will relevantly 
increase (Froehlich et al., 2011). Due to the existence of 
multi-sensors, some reliability problems may occur if any 

sensor does not work, which could lead to a system failure 
(Laughman et al., 2003). In addition, ILM is not scalable 
and has poor user acceptance. On the other hand, NILM 
approaches need no more additional devices and can be 
easily accepted by consumers because of its convenience 
and economic efficiency. 

The aim of NILM is to disaggregate the whole-house 
energy consumption data into the information of working 
appliances that contribute to it. This problem can be stated 
as follows: The aggregated power signals at the entry point 
of the residence as P(t) and NILM methods decode the 
overall data into all kinds of components Pi(t) that are 
attributed to individual appliances n, which can be 
mathematically defined as 

1 2( ) ( ) ( ) ( )nP t p t p t p t= + + +  (1) 

Non-intrusive load monitoring system is analysed in this 
paper, and we sum up a formal system framework, which 
can apply to existing methods of NILM through others’ 
works. We also discuss the potential challenges of every 
module in NILM system framework. Besides, we study 
different public datasets and tell the difference between 
them. Some evaluation criterions are proposed to test 
accuracy and feasibility of diverse load disaggregation 
algorithms. Finally, we summarise the reasons why NILM 
can not be put into commercial so far. 

In this paper, we explain the resources and algorithms of 
non-intrusive load monitoring. In Section 2, we introduce 
some basic concepts of NILM methods. In Section 3, we 
describe the system framework of NILM approaches. In 
Section 4, the public datasets are listed and compared. In 
Section 5, we introduce the accuracy metrics of event 
detection and load disaggregation algorithms. Challenges 
and conclusions are finally presented. 

2 Concepts and definitions in non-intrusive load 
monitoring methods 

2.1 Load signature 

Load signature means reliable and unique load feature, 
which represents the significant electrical behaviour when 
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individual appliance is working. Load signature is the 
amount that can distinguish the operating state and temporal 
behaviour of appliances. Since every appliance has its own 
internal structure, working pattern and working 
environment, load signature is highly contributing to the 
identification of different appliances, and it is one of the 
most fundamental elements of the energy disaggregation 
problems. 

2.2 Categories of load signature 

In Liang et al. (2010), the authors have divided two forms of 
load signature. The first one is called snapshot form. In this 
form, the signature is shown by transient snapshot of 
appliances’ electric behaviour at any fixed time intervals. 
This form usually contains more than one appliance’s 
operating behaviour simultaneously, which refers to the 
composite load. The second one is named delta form. This 
form tells the difference between two sequential snapshot 
form load signatures. If the time interval is small enough, 
we can regard the delta form signature as a single 
appliance’s load behaviour more likely than composite load. 

2.3 Categories of consumer appliances 

The goal of NILM methods is to identify individual working 
appliance and determine their operating states and 
corresponding energy consumption. But it is unnecessary to 
track small devices like phone chargers because such 
devices consume too less power compared with other 
appliances in a typical home. Moreover, the load signatures 
of small devices can be covered by large appliances. The 
types of appliances which NILM approaches are intended to 
disaggregate can be classified as follows (Zoha et al., 2012): 

• Type-I: On-off appliances. These are appliances that 
only have two states of operation (ON/OFF), such as 
table lamp, electric kettle, etc. 

• Type-II: Finite state machines (FSM). These refer to 
the appliances with a limited number of operating 
states, including washing machine, electric fan, etc. 
Due to the certainty of the number of operating states 
and the repeatability of switching pattern, it reduces the 
difficulty of multi-state appliances’ identification. 

• Type-III: Continuously variable devices (CAD). This 
type of appliances has no fixed power draw and no 
obvious switching signs when it changes the states. 
Thus it becomes an obstacle to load disaggregation 
algorithm. 

• Type-IV: Permanent consumer devices. In Zeifman and 
Roth (2011), the authors present the type of appliances 
which remains active and has approximately constant 
power draw in a time period. The devices that belong to 
this type are hardwired smoke detectors and cable TV 
receivers. 

Figure 1 Power curves of three types of loads 
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3 System framework of NILM and technical 
challenges 

The general framework of NILM methods can be broadly 
separated into six modules, including data acquisition 
module, data processing module, event detection module, 
feature extraction module, load disaggregation module and 
application module. Figure 2 shows the logic block diagram 
of NILM. Above all, event detection module, feature 
extraction module and load disaggregation module are three 
key factors that greatly affect the accuracy of the load 
disaggregation monitoring. The following section 
introduces the structure and function of every step of the 
framework in detail. 
 

Figure 2 General logic block diagram of NILM 

 
Event series Known appliance 

database 

Known appliance 
feature-base 

Identified appliance 
database 

Data acquisition 
module

Data processing 
module 

Event detection 
module 

Application 
module 

Load 
disaggregation 

module

Feature extraction 
module

Event recorder

 
Source: Liang et al. (2010) 

 



4 Q. Liu et al.  

3.1 Data acquisition module 

Data acquisition module is used to get the measurement of 
aggregated load for follow-up work. Now, there are various 
available commercial power meters on the market. In 
general, the sampling rate of power meters can be classified 
as low-frequency meters and high-frequency meters, which 
decides the features that can be extracted from the acquired 
data. Usually, the power meters measure three values: 
voltage, current and power factor. 

Low-frequency meters: Its aim to capture steady-state 
features. According to the Nyquist-Shannon sampling 
theorem, if sampling rate is two times more than the highest 
frequency of the electrical signal, the digital signal can 
remain the information of original signal completely. In 
order to capture the 5th harmonic of the signals, if the 
fundamental frequency is 60 Hz, the sampling rate should 
be at least 600 Hz. 

High-frequency meters: Its aim to capture transient state 
and collect fine-grained data to get more unique load 
features. Since the sampling rate needs to reach a range of 
10 to 100 MHz to record waveforms, high resolution power 
meters usually need to be custom-made and high cost. 

Challenges: 

1 for the same device, different kinds of power meters 
could gather different data, which leads to the 
mismatching of whole-house data and the sum of 
circuit-level data 

2 the colour noise that generated by variable speed 
devices and white noise that generated by permanent 
consumer devices will reduce the accuracy of raw data 

3 data compression in the power meters will cause the 
loss of raw data as well. 

3.2 Data processing module 

Data processing module is used to adjust and process the 
gathered data, it usually contains three steps: 

• Resampling, it requires aligning the current signal with 
the voltage signal to compute their proper phase 
relationship. With the phase relationship, we can 
compute the power factor and other features. 

• Quantising, with the initial data standardised, we can 
calculate useful features, such as reactive power, 
spectral envelop, higher harmonics and so on. 

• Extracting features, we can get specific features using 
filter bank and down-samples. The task of filtering is to 
get a good approximate of original waveform and 
minimise the loss of information. Down-sampling can 
help us get the appropriate resolution data for further 
use. 

Challenges: Since the information we need is not computed 
from raw data but from the down-sampled data, the loss of 
raw data is unavoidable and the amount depends on the 
resolution that we choose. 

3.3 Event detection module 

Event detection module is used to decide whether an actual 
appliance’s state switching event occurs by analysing the 
total power-level changes. The reason for taking this step is 
to filter out useful information from all captured data 
because too much indiscriminate data will affect the 
computational efficiency and data storage. The methods to 
detect events are major divided into two kinds: using edge 
detection on the aggregated power curve and probability-
based approaches. The detected event can be one of the 
following types: 

1 the changes of one or more devices’ operating states 

2 the power curve fluctuation caused by noises 

3 one part of the working appliance which does not 
change its operating mode. 

Event-based methods usually calculate the difference of 
continuous values in a sample and compare it to the 
predefined threshold. In Azzini et al. (2014), the authors 
present two event detection algorithms to run over the 
whole house power consumption curve, including the 
window with margins method and the shifted sample 
method. The window with margins method uses two 
different windows and calculates the averages value over 
the active power consumption curve only with the initial 
and final samples. Figure 3 illustrates the window with 
margins method, this method contains four parameters for 
users to choose: width of the primary window, width of the 
second window, the number of samples on each margin and 
threshold of a possible event. The shifted sample method 
based on the derivative of power also uses two continuous 
windows to calculate the difference between the averages of 
the primal and final halves. If the valve is greater than the 
threshold, the event will be detected and recorded. 
Compared with the former method, the shifted sample 
method can reduce computational complexity but with 
lower detection accuracy. Some methods compare two 
windows of samples using a probabilistic way to judge 
whether an event occurs. In Wang and Zheng (2012), the 
authors record fast switching events as a triangle and steady 
working events as a rectangle. Figure 4 illustrates the two 
unit graphics with combined triangles and rectangles in the 
signal. Rectangle including the data items which are 
starttime, peaktime, peakvalue, steadytime and steadyvalue. 
Triangle contains the data items which are starttime, 
peaktime, endtime and peakvalue. With these data items, the 
basic unit can be expressed well and since triangles and 
rectangles cannot cover each other, it will reduce the 
overlaps of similar features and improve the success rate of 
event detection. Considering the edge happens as an average 
distribution, the Poisson probabilistic model is used to 
calculate the probability of overlaps of edges. In recent year, 
non-event-based methods have been proposed which do not 
depend on the edge detection. The examples can refer to 
hidden Markov model, which take every sample of total 
power into account for classification and inference. 
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Figure 3 Diagram of the window with margins method  
(see online version for colours) 
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Figure 4 Diagram of the two unit graphics with combined 
triangles and rectangles in signal 
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Source: Wang and Zheng (2012) 

Challenges: Between the event-based methods and non-
event-based methods, the former is more computationally 
efficient because not the whole data needs to be calculated 
and estimated. But due to the threshold of edge, if the value 
is too small, the rate of false detection may increase; if the 
value is too big, the rate of miss detection may raise up. 

3.4 Feature extraction module 

Feature extraction module is used to capture features around 
the event points. The features can be divided into two types 
according to the sampling frequency: steady-state features 
and transient-state features. We discuss the advantages and 
disadvantages of each kind of features below. 

3.4.1 Steady-state features 

• Power change. Choosing the variation of real power 
and reactive power as features can easily identify the 
high-power electrical appliances, but it only works well 
with on-off devices. Because of the overlapping 
features in P-Q plane, the performance in identifying 
type-II, type-III and type-IV appliances is poor. 

• Time-frequency analysis of V-I waveform. It needs 
higher sampling rate to get steady-state harmonics. 
According to the harmonics, we can easily tell the 
difference between resistive, inductive and electronic 
loads. But the accuracy for type-III appliances is low 
and it is difficult to identify the events that happen at 
the same time. 

• V-I trajectory. It mainly analyses the shape features of 
V-I trajectory such as looping direction, area enclosed, 
number of self-intersections and so on (Hassan et al., 
2013) It enables the appliances can be distinguished in 
a detailed way. But it needs complex computational 
work and the devices with small power consumption 
have no unique trajectory features. 

• Steady-State voltage noise. Due to the EMI features, 
motor-based appliances and devices with switching 
mode power supply (SMPS) can be recognised. It is 
also able to detect the simultaneous activation events. 
The shortcomings of this feature are not every 
appliance has SMPS and it is sensitive to signal noise. 

3.4.2 Transient-state features 

• Transient power. The advantages of using spectral 
envelopes are feasibility to recognise type-I, type-II and 
type-III appliances, even including the devices with 
same power characteristics. But it requires continuous 
monitoring at a high sampling frequency. 

• Start-up current. The current spikes, size and duration 
can help us distinguish the appliances with multi-states 
and the accuracy is acceptable. But in the situation of 
simultaneous activation, the accuracy can be poor. It 
also does not support type-III and type-IV appliances. 

• Transient-state voltage noise. According to the noise 
fast Fourier transform (FFT), multi-states appliances 
and devices with SMPS can be easily distinguished. 
But it needs complexity and large calculating quantity. 

3.5 Load disaggregation module 

Load disaggregation module is used to do the classification 
by using the extracted features. Current NILM algorithms 
can broadly be divided into the supervised learning and 
unsupervised learning based on whether the approaches 
using the labelled datasets for training the classifier. The 
supervised learning can further be divided into optimisation 
and pattern recognition approaches. Since the training of 
labelled data is a time-consuming job which increases the 
cost and human effort, researchers are now looking forward 
to seeking a solution based on completely unsupervised or 
semi-supervised methods. We discuss the supervised 
learning and unsupervised learning approaches below. 

3.5.1 Supervised learning 

• Optimisation methods. Optimisation methods try to 
treat the problem of load disaggregation as an 
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optimisation problem. Once an appliance’s event has 
been detected, this approach extracts feature vector of 
target event and compare it with the feature vector of 
known appliance’ event stored in the signature database 
to find the closest possible match. The idea of 
optimisation is quite simple, but it becomes more and 
more complicated when taking the combination of 
appliances into account. Besides, if an unknown 
appliance without training occurs, the accuracy can be 
poor. The algorithms belonging to the optimisation 
methods are integer programming, genetic algorithms 
and so on. 

• Pattern recognition methods. Pattern recognition is one 
of the most common used approaches by researchers to 
deal with the problem of load monitoring. This 
approach classifies the captured features by using 
machine learning techniques. These algorithms includes 
artificial neural networks (ANN) (Xuezhi et al., 2015; 
Gu and Sheng, 2017), naïve Bayes classifier, support 
vector machines (SVM) (Bin et al., 2015; Li et al., 
2016), k-nearest neighbour (kNN) and so on. The 
shortcomings of these algorithms are the lack of test 
samples and the overlapping signatures of low power-
consuming appliances. 

3.5.2 Unsupervised learning 

Since the supervised learning approaches need labelled 
dataset to train classifier and manual labelling is fallible and 
time-consuming, the unsupervised learning approaches 
become a hot research content. These approaches base on 
the mathematical probability models, which including blind 
source separation, genetic k-means, motif mining, factorial 
hidden Markov model (FHMM) and its variety. Although 
these algorithms can reduce human’s work, it is 
computationally expensive because it takes every part of 
samples into account and the load disaggregated accuracy is 
not so satisfactory. Besides, it also needs to assume that the 
number of devices is already known. 

3.6 Application module 

Since the changes of devices’ states have been recognised, 
application module is used to track the operation pattern and 
power consumption of individual appliance. Based on this, 
some personalised and useful suggestions will be provided. 
Besides, some prediction can also be made to help electric 
power company know more about the energy demand side. 

4 Public dataset 

Nowadays, more and more approaches from data mining 
and machine learning have been used to solve the problem 
of energy. Although these advanced techniques are 
presented, it is still hard to put into use and test without the 
public datasets. The reasons why it is not practical to build 
their own datasets by every researcher are including: 

• Time-consuming, building a dataset needs to take a 
duration of time to capture and collate data, at least 
takes a week or much more longer. 

• High-costing, not only need to measure the aggregate 
load at one point, but we also require distributed 
sensors to get the individual appliance load as ground 
truth to train and test load disaggregation algorithms. If 
the features are transient state, high-frequency sampling 
will greatly increase the cost. 

• Hard to compare, just assume that every researcher 
develops different algorithms on their own datasets, it 
is actually unable to evaluate the results and judge 
which method is better. 

• Privacy, recording appliance usage and geographical 
location information may reveal what appliances do 
occupants have and their usage pattern. 

To get a better performance of load disaggregated 
algorithms, the choice of dataset is also a key factor. Here 
we list the main reasons for selecting the suitable dataset to 
evaluate the NILM approaches: 

• Feature. Different datasets contain diverse features, 
such as real power (P) and reactive power (Q) are used 
to make use of the change of power to judge which 
appliance is turned on/off, the V-I trajectory is used to 
make use of the trajectory parameters to uniquely 
define an appliance’s activity, etc. Some external 
features like weather and climate also benefit the 
improvement of accuracy. 

• Frequency. Some features are in low-frequency and 
others are in high-frequency, low-frequency features 
can easily get from the smart meters, but may exist 
many overlapping in the feature space. High-frequency 
features can usually distinguish appliances more 
effective and in a higher precision, but it requires high 
rate sampling. 

• Duration and number of households. Some load 
disaggregated algorithms need dataset which takes a 
long period of time to train and get a better prediction 
of appliance usage, especially periodic consumption 
behaviours need to be captured. And more number of 
households is benefit to data statistics for effective 
consumption pattern research. 

• Location. Due to the diversity of electric appliances and 
usage patterns, electric usage of different countries 
varies very much. If one algorithm is aimed at load 
disaggregation for a specific country, it is very 
necessary to use dataset from that country to get better 
performance. What’s more, different countries may 
have diverse voltage and frequency, for example 220 V, 
50 Hz in China, 110 V, 60 Hz in the USA and 240 V, 
50 Hz in the UK
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Table 1 The existing public dataset for energy disaggregation research 

Dataset Country Houses Sensors 
(per house) Features Granularity Duration 

AMPds  
(Makonin et al., 
2013) 

Greater 
Vancouver 

1 19 I, V, PF, f, Q, S 1 min 1 year 

BLUED  
(Anderson et al., 
2012) 

Pittsburg 1 Aggregated I, V, switch events 12 kHz 8 days 

GREEND 
(Monacchi et al., 
2014) 

Austria, Italy 8 9 P 1 Hz 1 year 

iAWE  
(Batra et al., 2013) 

India 1 33 V, I, f, P, S, E, Φ 1 Hz 73 days 

REDD  
(Kolter and 
Johnson, 2011) 

Boston 6 9–24 Aggregated: V, P; 
Sub-metered: P 

15kHz 
(aggregated),  

3 sec  
(sub-metered) 

3–19 days 

Smart*  
(Barker et al., 2012) 

Western 
Massachusetts 

3 25 circuits,  
29 appliance 

monitors 

Circuits: P, S; Sub-
metered: P 

1 Hz 3 months 

Tracebase 
(Reinhardt et al., 
2012) 

Germany 15 158 appliances 
in total  

(43 types) 

P 1-10 sec N/A 

UK-DALE  
(Kelly and 
Knottenbelt, 2014) 

UK 5 house 1:54; 
house 2-4:5-26 

Aggregated: P; 
Sub-metered: P, 

switch-states 

16 kHz 
(aggregated),  

6 sec 
(sub-metered) 

655 days 

 
Since the reference energy disaggregation dataset (REDD) 
was publically released by MIT in 2011, which has been 
widely used in the disaggregation community, the number 
of datasets from different countries is increasing greatly. We 
list the public dataset so far in Table 1. It should be noted 
that the abbreviations of features: current (I), voltage (V), 
power factor (PF), frequency (f), active power (P), reactive 
power (Q), apparent power (S), energy (E) and phase angle 
(Φ). 

5 Accuracy metrics 

Since researchers use the public datasets to test their load 
disaggregation algorithms, the accuracy metrics need to be 
established to evaluate their works. Due to the fluctuation of 
dynamic loads and the threshold value we set in advance, 
the type-I error (i.e., no appliance is changed operating state 
but the event detection module catches an event, which is 
called false detection) or type-II error (i.e., an appliance is 
actually turned on or closed but the event detection module 
misses the event, which is called miss detection) may occur. 

In Anderson et al. (2012), the authors present the true 
positive rate and the true positive percentage to evaluate the 
performance of the event detection. The true positive rate 
can be mathematically defined as 

TPR [0,1]TP
TP FN

= ∈
+

 (2) 

FPR [0,1]FP
FP TN

= ∈
+

 (3) 

where TP stands for the number of true positives, FP stands 
for the number of false positives, TN stands for the number 
of true negatives, and FN stands for the number of false 
negatives or misses. We can also use receiver operating 
characteristics (ROC) to make the trade-off between its true 
positive rate (TPR) and false positive rate (FPR). If the 
event detector is good enough, the TPR will approach one 
and the FPR will close to zero. 

The true positive percentage compares the percentage of 
events that the number of true positives and false positives 
to the ratio of the total number of events E. The true positive 
percentage can be mathematically defined as 

TPP TP
E

=  (4) 

FPP FP
E

=  (5) 

Similar to the rate metric above, the TPP of a good event 
detector would approach one and the FPP would close to 
zero. 

In research (Liang et al., 2010), the authors propose 
three different kinds of accuracy metrics. First of all, the 
total number of detected events is defined as Ndet in  
formula (6) 

det true wro missN N N N= + −  (6) 
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where Nture is the true number of events that actually 
happened, Nwro is the number of events that false detected, 
and Nmiss is the number of events that the event detector 
missed. The accuracy measures are proposed as follows. 

1 Detection accuracy det( )η  refers to the accuracy of 
disaggregation including the effect of false detected 
events, which can be mathematically defined as 

det
det

disN
N

η =  (7) 

2 Disaggregation accuracy ( )disη  refers to the accuracy 
of disaggregation excluding the effect of false detected 
events, which can be mathematically defined as 

det

dis
dis

wro

N
N N

η =
−

 (8) 

3 Overall accuracy ( )allη  refers to the accuracy of 
disaggregation including the effect of false detected 
events and missing detected events, which can be 
mathematically defined as 

det

dis dis
all

tru wro miss

N N
N N N N

η = =
− +

 (9) 

Apart from the accuracy metrics of event detection and load 
disaggregation, the authors in Batra et al. (2014) introduce 
an open source toolkit for non-intrusive load monitoring 
which is called NILMTK. This toolkit provides a parser to 
transform a range of public datasets into the standard data 
structure which is called NILMTK-DF. The statistical and 
diagnostic functions can help researchers make a detailed 
understanding of public dataset. The NILMTK provides two 
benchmark disaggregation algorithms including 
combinatorial optimisation (CO) and factorial hidden 
Markov model (FHMM). Some accuracy metrics are also 
mentioned in this article including errors in total assigned, 
EMS errors in assigned power, true positives, false 
positives, false negatives, true negatives, precision and 
recall. With this toolkit, researchers can evaluate their load 
disaggregation algorithms in a more fair and convenient 
way. 

6 Challenges and conclusions 

In this paper, we introduce the system framework and its 
challenges in individual module. Besides, the public 
datasets are also studied and compared. Although the non-
intrusive load monitoring gains a lot of attentions in recent 
year because of the economic efficiency and convenience, it 
is still difficult to put the NILM into commercial due to the 
following reasons: 

1 The compatibility of load signatures. Since the factors 
of different kinds, manufacturers and sizes of 
appliances will affect the performance of load 
disaggregation algorithms. Moreover, there are no 

widely applicable load signatures can model the 
operations of the four types of appliances well. 

2 The comparison of load disaggregation algorithms. As 
mentioned in Section 4, without the standard and 
unified public reference dataset, it is quite difficult to 
fairly compare and test different load disaggregation 
algorithms. And we look forward to the coming of the 
testing platform to evaluate the algorithms more easily 
and equitably. 

3 The overlap of load features. Low-power appliances 
have similar power consumption characteristics and it 
is difficult to discern them at low-frequency sampling, 
due to the ambiguous overlapping of steady-state 
features in the P-Q plane. 

4 Manual labelling. For supervised learning approaches, 
it is quite boring and fallible to turn on/off every 
appliance in proper order to build a signature database 
and train the algorithms for classification. 

5 The update of signature database. The supervised 
learning approaches need signature databases to do off-
line training. Since any unknown appliance which is 
not in the appliance signature database appears, the 
precision of load disaggregation will be poor. 

6 Imperfect appliance models. For unsupervised learning 
approaches, the appliance model generated by the 
HMM and house power consumption established by the 
FHMM suffer from non-Gaussian. And since the 
imperfect manufacturing process and the influence of 
environment, the precision will decline. 

7 Different types of appliances. The precision of load 
disaggregation for on/off appliances is quite high (more 
than 90%) so far. But to multi-state appliances, 
continuously variable devices and rarely used devices, 
the result is not so satisfactory. And the simultaneous 
switch events of appliances (like PC and printer etc.) 
make the disaggregation of load more complex. 

8 The security of data transmission. Because most of the 
data transmission approaches are wireless, thieves may 
analyse the presence of house owner by counting the 
number of packets. So it is necessary to reinforce the 
security of the wireless communications (Jian et al., 
2015; Tinghuai et al., 2015). 

9 The robustness of algorithms. The NILM approach 
should be scalable in the sense because the number of 
used appliance of a typical family can up to 20–30 
(Zeifman, 2012). 

Although NILM needs to be improved and upgraded before 
it can be widely spread, the advantages of NILM should be 
recognised. Compared with ILM, NILM costs less money 
and time to be implemented and maintained. On the other 
hand, NILM approaches need no more additional devices 
and can be easily accepted by consumers because of its 
convenience and economic efficiency. Since more and more 
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algorithms are proposed to increase the accuracy of NILM, 
NILM has a lot of potentials. 

Acknowledgements 

This work is supported by the NSFC (61300238, 61300237, 
61232016, 1405254, and 61373133); Marie Curie 
Fellowship (701697-CAR-MSCA-IF-EF-ST); the 2014 
Project of six personnel in Jiangsu Province under Grant 
No. 2014-WLW-013; the 2015 Project of six personnel in 
Jiangsu Province under Grant No. R2015L06, and the 
PAPD fund. 

References 
Alahmad, M.A., Wheeler, P.G., Schwer, A., Eiden, J. and 

Brumbaugh, A. (2012) ‘A comparative study of three 
feedback devices for residential real-time energy monitoring’, 
IEEE Transactions on Industrial Electronics, Vol. 59, No. 4, 
pp.2002–2013. 

Anderson, K., Ocneanu, A., Benitez, D., Carlson, D., Rowe, A. 
and Berges, M. (2012) ‘BLUED: a fully labeled public 
dataset for event-based non-intrusive load monitoring 
research’, in Proceedings of the 2nd KDD Workshop on Data 
Mining Applications in Sustainability (SustKDD), pp.1–5. 

Anderson, K.D., Berges, M.E., Ocneanu, A., Benitez, D. and 
Moura, J.M.F. (2012) ‘Event detection for non intrusive load 
monitoring’, Proceedings of the  38th Annual Conference on 
IEEE Industrial Electronics Society, Montreal, QC, Canada, 
pp.3312–3317. 

Azzini, H.A.D., Torquato, R. and Silva, L.C.P.D. (2014) ‘Event 
detection methods for nonintrusive load monitoring’, Pes 
General Meeting | Conference & Exposition, IEEE. 

Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P. and 
Albrecht, J. (2012) ‘Smart*: An open data set and tools for 
enabling research in sustainable homes’, in Proceedings of 
the 1st KDD Workshop on Data Mining Applications in 
Sustainability (SustKDD), San Diego, California, USA, 
August. 

Batra, N., Gulati, M., Singh, A. and Srivastava, M.B. (2013) ‘It’s 
different: insights into home energy consumption in India’, in 
Proceedings of the 5th ACM Workshop on Embedded Systems 
For Energy-Efficient Buildings, pp.1–8. 

Batra, N., Kelly, J., Parson, O., Dutta, H., Knottenbelt, W., Rogers, 
A., Singh, A. and Srivastava, M. (2014) ‘NILMTK: an open 
source toolkit for non-intrusive load monitoring’, in 
Proceedings of the 5th International Conference on Future 
Energy Systems, pp.265–276, Cambridge, UK. 

Bin, G., Victor, S.S., Keng, Y.T., Walter, R. and Shuo, L. (2015) 
‘Incremental support vector learning for ordinal regression’, 
IEEE Transactions on Neural Networks and Learning 
Systems, Vol. 26, No. 7, pp.1403–1416. 

Ehrhardt-Martinez, K., Donnelly, K.A. and Laitner, S. (2010) 
‘Advanced metering initiatives and residential feedback 
programs: a meta-review for household electricity-saving 
opportunities’, American Council for an Energy-Efficient 
Economy, Washington, DC, USA, June. 

Froehlich, J., Larson, E., Gupta, S., Cohn, G., Reynolds, M.S. and 
Patel, S.N. (2011) ‘Disaggregated end-use energy sensing for 
the smart grid’, IEEE Pervasive Computing, Vol. 10, No. 1, 
pp.28–39. 

Gu, B. and Sheng, V.S. (2017) ‘A robust regularization path 
algorithm for ν-support vector classification’, IEEE 
Transactions on Neural Networks and Learning Systems,  
Vol. 28, No. 5, pp.1241–1248. 

Hart, G.W. (1992) ‘Nonintrusive appliance load monitoring’, 
Proceedings of the IEEE, Vol. 80, No. 12, pp.1870–1891. 

Hassan, T., Javed, F. and Arshad, N. (2013) ‘An empirical 
investigation of v-i trajectory based load signatures for non-
intrusive load monitoring’,  IEEE Transactions on Smart 
Grid, Vol. 5, No. 2, pp.870–878. 

Jian, S., Haowen, T., Jin, W., Jinwei, W. and Sungyoung, L. 
(2015) ‘A novel routing protocol providing good transmission 
reliability in underwater sensor networks’, Journal of Internet 
Technology, Vol. 16, No. 1, pp.171–178. 

Kelly, J. and Knottenbelt, W. (2014) ‘UK-DALE: a dataset 
recording UK domestic appliance-level electricity demand 
and whole-house demand’, ArXiv, April. 

Kolter, J.Z. and Johnson, M.J. (2011) ‘REDD: a public data set for 
energy disaggregation research’, in Proceedings of the 
SustKDD Workshop on Data Mining Applications in 
Sustainability (SustKDD), San Diego, CA, USA, August. 

Laughman, C., Lee, D., Cox, R., Shaw, S., Leeb, S., Norford, L. 
and Armstrong, P. (2003) ‘Power signature analysis’, IEEE 
Power and Energy Magazine, Vol. 1, No. 2, pp.56–63. 

Li, B., Ding, L. and Li, J. (2016) ‘Differential evolution-based 
parameters optimisation and feature selection for support 
vector machine’, International Journal of Computational 
Science and Engineering, Vol. 13, No. 4, pp.355–363. 

Liang, J., Ng, S.K.K., Kendall, G. and Cheng, J.W.M. (2010) 
‘Load signature study – Part I: basic concept, structure, and 
methodology’, IEEE Transactions on Power Delivery, Vol. 
25, No. 2, pp.551–560. 

Makonin, S., Popowich, F., Bartram, L., Gill, B. and Bajic, I. V. 
(2013) ‘AMPds: a public dataset for load disaggregation and 
eco-feedback research’, in Proceeding of 2013 IEEE 
Conference on Electrical Power and Energy (EPEC), pp.1–6. 

Monacchi, A., Egarter, D., Elmenreich, W., D’Alessandro, S. and 
Tonello, A.M. (2014) ‘GREEND: an energy consumption 
dataset of households in Italy and Austria’, in Proceedings of 
2014 IEEE International Conference on Smart Grid 
Communications (SmartGridComm), pp.511–516. 

Reinhardt, A., Baumann, P., Burgstahler, D., Hollick, M., Chonov, 
H., Werner, M. and Steinmetz, R. (2012) ‘On the accuracy of 
appliance identification based on distributed load metering 
data’, in Proceedings of the 2nd IFIP Conference on 
Sustainable Internet and ICT for Sustainability (SustainIT), 
October. 

Ridi, A., Gisler, C. and Hennebert, J. (2014) ‘A survey on intrusive 
load monitoring for appliance recognition’, Biochemical & 
Biophysical Research Communications, Vol. 94, No. 4, 
pp.3702–3707. 

Sundramoorthy, V., Cooper, G., Linge, N. and Liu, Q. (2011) 
‘Domesticating energy-monitoring systems: challenges and 
design concerns’, IEEE Pervasive Computing, Vol. 10, No. 1, 
pp.20–27. 

Talpur, M.S.H., Bhuiyan, M.Z.A. and Wang, G. (2015) ‘Energy-
efficient healthcare monitoring with smartphones and IoT 
technologies’, International Journal of High Performance 
Computing & Networking, Vol. 8, No. 2, pp.186–194. 

 
 
 



10 Q. Liu et al.  

Tinghuai, M., Jinjuan, Z., Meili, T., Yuan, T., Abdullah, A., 
Mznah, A. and Sungyoung, L. (2015) ‘Social network and tag 
sources based augmenting collaborative recommender 
system’, IEICE Transactions on Information and Systems, 
Vol. 98, No. 4, pp.902–910. 

Wang, X., Wu, C. and Nathwani, J. (2016) ‘Dynamic response 
forecasting and optimising paths of energy efficiency’, 
International Journal of Computational Science & 
Engineering, Vol. 12, No. 1, pp.86–93. 

Wang, Z. and Zheng, G. (2012) ‘Residential appliances 
identification and monitoring by a nonintrusive method’, 
IEEE Transactions on Smart Grid, Vol. 3, No. 1, pp.80–92. 

Xuezhi, W., Ling, S., Yu, X. and Wei, F. (2015) ‘A rapid learning 
algorithm for vehicle classification’, Information Sciences, 
Vol. 295, No. 1, pp.395–406. 

Zeifman, M. (2012) ‘Disaggregation of home energy display data 
using probabilistic approach’, IEEE Transactions on 
Consumer Electronics, Vol. 58, No. 1, pp.23–31. 

Zeifman, M. and Roth, K. (2011) ‘Nonintrusive appliance load 
monitoring: Review and outlook’, IEEE Transactions on 
Consumer Electronics, Vol. 57, No. 1, pp.76–84. 

Zoha, A., Gluhak, A., Imran, M.A. and Rajasegarar, S. (2012) 
‘Nonintrusive load monitoring approaches for disaggregated 
energy sensing: A survey’, Sensors, Vol. 12, No. 12, 
pp.16838–16866. 


