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Abstract—Policy search in reinforcement learning (RL) is a
practical approach to interact directly with environments in
parameter spaces, that often deal with dilemmas of local opha
and real-time sample collection. A promising algorithm, krown
as guided policy search (GPS), is capable of handling the
challenge of training samples using trajectory-centric méhods.
It can also provide asymptotic local convergence guarantse
However, in its current form, the GPS algorithm cannot operde
in sequential multi-task learning scenarios. This is due toits
batch-style training requirement, where all training samples are
collectively provided at the start of the learning process.The
algorithm’s adaptation is thus hindered for real-time applications,
where training samples or tasks can arrive randomly. In this
paper, the GPS approach is reformulated, by adapting a recety
proposed, lifelong-learning method, elastic weight condidation
(EWC). Specifically, Fisher information is incorporated toimpart
knowledge from previously learned tasks. The proposed algith-
m, termed sequential multi-task, learning-guided policy sarch
(SMT-GPS), is able to operate in sequential multi-task leaming
settings, ensuring continuous policy learning, without ctastroph-
ic forgetting. Pendulum and robotic manipulation experiments
demonstrate the new algorithms efficacy to learn control paties
for handling sequentially-arriving training samples, delivering
comparable performance to the traditional, batch-based GB
algorithm. In conclusion, the proposed algorithm is posité as
a new benchmark for the real-time RL and robotics research
community.

Index Terms—Reinforcement learning, guided policy search,
sequential multi-task learning, elastic weight consolidgon.
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|. INTRODUCTION

As a core component of artificial intelligence (Al), rein-
forcement learning (RL) offers the robotics community, a
framework and set of tools for designing sophisticated and
hard-to-engineer behaviors to interact with the realisticld.

In other words, it enables robots, as agents, to autonomousl
seek optimal behaviors through trial-and-error learnifgt-
ther, instead of explicitly deriving a solution to this usoéved
problem, an objective function is usually used to descritee t
learning task, and its associated feedback [1]. Genetthiy,
agent in RL attempts to maximize long-term rewards, as a
specific form of the objective function, in order to acquire
optimal behaviors for performing the task.

Estimation of expected long-term rewards from raw experi-
ences obtained in the learning process [2], requires usa-of t
ditional methods such as dynamic programming and temporal-
difference (TD) learning. These can address challenges of
filling the complete state-action space with data [3]. Hosvev
they cannot meet requirements of high-dimensional contisu
state and action spaces that are particularly encounterie i
robotics domain. Policy search, a subfield of RL, has been
applied in robotics applications for a wide range of tasks,
such as manipulation [4], grasping [5], and locomotion [6].
This scales application of RL into high dimensional contins
action spaces, using parameterized policies, to avoicsbrapt
ping introduced by traditional value-function approximas.
Direct policy search methods can effectively deal with high
dimensional systems, whereas complex policies, with heohslr
of parameters, frequently present a challenge for such-meth
ods, requiring many samples [3]. Additionally, policy sgar
methods need to address the problem of sample complexity
resulting from high-dimensional, continuous action sgd&é
Furthermore, despite the development of deep reinforcemen
learning, policy search still tends to fall into poor locgliona
[7]1.

The guided policy search (GPS) method introduces trajec-
tory optimization to mitigate the issue of sample efficigncy
for guiding policy search away from local optima. This offer
significant potential for learning robotic tasks with mirdm
trials. The approach mainly utilizes trajectory-centrigtio
mization to generate suitable samples, and also guides the
learning process to train complex, high-dimensional pedic
[8], [9], [10]. Mirror descent guided policy search (MDGPS)
introduced by Montgomery et al. [10], considers GPS as
approximating mirror descent. It provides a total bound for
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global policy cost and an appropriate step size to enharaed scalable manner, based on a sequential multi-taskrigarn
global policy. Recently, Chebotar et al. [11] extended thimechanism. The aim is to incrementally build a predictive
to a global policy sampling scheme, and introduced a Klmodel from data sequences, without catastrophic forggttin
constrained path integralsP{?) approach. This enhanced[28]. As noted earlier, current GPS approaches can onlyleand
its generalization capability, by increasing the diversif scenarios where data from all tasks is simultaneously made
training data. Nevertheless, current GPS schemes can aagilable during the early training stage, which constut
train policies with a batch mode for different tasks, andn impractical constraint for consecutive task learning. B
are known to struggle with challenges of incremental da&xploiting and adapting the recently developed EWC alborit
processing, particularly in robotic applications [12]3[1[14]. [26], we propose incorporation of Fisher information, to
Specifically, GPS methods will not work if all training tasksprotect weights that are important for previous tasks, evhil
are presented sequentially, and not collectively maddablai learning the new task at hand. To some extent, this also
during the early training period. overcomes catastrophic forgetting, in our proposed ambroa
GPS agents can however, learn policies from streaming dagasequential multi-task learning.
for the case of a single task. Most RL algorithms, such as Q-In summary, the main contribution of this paper is novel
learning [15], [2] and Sarsa [16], work in an online modérmulation of a GPS based framework, and its algorithmic
only for one task. On the other hand, there are a numberiofplementation, termed sequential multi-task, learrgoided
online learning models for solving multi-tasks [17], [18]9]. policy search (SMT-GPS). The proposed SMT-GPS algorithm
However, the GPS approach is unable to handle differenstaslan effectively utilize consecutive task information, lelireg
that are not known apriori and specified sequentially, evagents to accomplish new tasks incrementally, withouterg
though it can learn policies by acquiring trajectory infation ting those learned previously. This is demonstrated thioug
online. The ability to continually learn, without catagiloc learning control policies for two dynamical systems, sfieci
forgetting, is of significant importance to enable effeetivcally, upward swinging pendulum and peg insertion tasks.
interaction with the realistic world [20]. When applied to The rest of the paper is organized as follows: Section Il
robotic applications for example, the agent has to meenhgtrogives a brief review of background and related work. Section
real-time requirements that generally present higher delsia lll presents formulation of the proposed framework, itsoalg
for online learning scenarios. Specifically, the robot viié rithmic implementation and theoretical analysis. Compega
required to learn skills to handle sequential tasks in tiead®, experimental results are presented and discussed insé¢tio
and rapidly adapt to the dynamic environment. Finally, concluding remarks and future work suggestiores ar
The problem of sequential multi-task learning in GPS hamitlined in section V.
also been considered part of lifelong learning [21], [2#)ce
the agent aims to add new task knOWledge, while tranSferring 1. BACKGROUND AND RELATED WORK
knowledge between tas_kg. Lifelong learning, _conS|dered aThe agents goal in RL is to seek a polieyto complete a
general approach to efficiently learn consecutive tasks, ha ific task in an environment. At each time stefhe agent
been explored for reinforcement learning for some time.[2 EeCI Ic tas ) : e gent
- : . . . serves a state; and selects an action according to policy
Recently, an efficient lifelong learning algorithm for pyli ((a

gradient methods has been proposed [24], which adopts7T gt|xt|3:’ puro>ducmg a state transition according to dynamics
t+1(4ty Ut )-

linear function to represent the policy. However, thesehoes p . . -
L ) S For the policy search method, it aims to optimize a param-
are currently limited in their application, and deep neuet- . . . -
. ) : . eterized policyry(us|x¢) over actionu, conditioned on the
works are increasingly becoming more popular, particy . . ;
state ;. Given stochastic dynamigs(x;1|x:,u:) and cost

robotic manipulation environments. For multi-task donsaim function £(z:, us), the goal is to minimize the expected cost:
computer vision, Li et al.[25] recently introduced deep raéu t-te), € g P '

networks to address the problem of continuously learnivg ne T
prediction tasks, without accessing training data for jonesty J(0) = Z By [0(21, 11)] (1)
learned tasks. However, current neural network approaches t=1

have still not been able to fully implement continual leagi \yhere the notatiom, (TT) is overloaded to denote the marginals
and there is also inevitable catastrophic forgetting aased mo(r) = pla1) [Ty p(wers|ze, u)mo(usze) with a tra-
with this mode of learning. In an attempt to enable age'}@ctoryT = {z1,m t”‘. w7, ur}. The standard approach to

to continuously learn without catastrophic forgettingmés policy search is computing the gradievit/(4) and using it to
et al. [26] recently proposed training of networks, “SinﬂnproveJ(H) [3].

an elastic weight consolidation (EWC) algorithm, that can

maintain expertise from previously learnt tasks. For grati ] .

policy learning, a deep deterministic-policy gradient (@®) A- Guided Policy Search

algorithm [27] has been proposed to continuously improve Simply put, the gist of GPS is to utilize a series of local

policy, whilst an agent explores its environment. Comparexntrollersp(u|z) to optimize global policyry, represented

to batch algorithms, DDPG is capable of addressing taskyg a deep neural network, that can describe a broad range

for continuous control, which could be explored as a formf behaviors. These local controllers are used to generate

of sequential multi-task learning. guiding samples that can guide policy search to regions of
In this paper, we reformulate the GPS method in an efficienigh rewards. Thus, GPS can efficiently train this deep rdeura
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Algorithm 1 MDGPS learning capabilities. Recently, James et al. proposedvalno
1: for Optimizing for successful peggindp elastic weight consolidation (EWC) algorithm, exploititagk-
2. for position: € {0,..., M} do specific synaptic consolidation, as a potential solution to
3 C-step: pi <« argmin, E, [Zthl ¢(xz¢,u;)] continuous learning [26]. The EWC approach applies neural
S.t.DKL(pi(T)H?T:g(T)) <e networks to adjust the learning process on certain weights,
4:  end for in accordance with the importance of previous tasks. A brief
5. S-step: review of this state-of-the-art method is next presented.
6 w9 < argming ., i Dicr(Touw,, ) |Pi(uelzei)) Assuming there are a sequence of tasks to learn, for sim-
(via supervised Iearhing) v plicity, we only consider two taskel and B here. Generally
7- end for speaking, the agent will employ gradient-descent based-lea

ing of parameterg”, to complete task4, after having been
trained for this task only. When it comes to taBkthe agent is
network with fewer samples than direct policy search [5]equired to train parameteés in order to complete both these
The minimization of expected cost can be rewritten as tii@sks. The EWC algorithm proposes to maintain knowledge of
following constrained problem: task A, by optimizing parameterg to remain in a region of
low error for taskA, centered around’,. Specifically, given
) the training data seD = D4 U Dp (where D4 and Dpg
2};191&[6(7)] s:t. p(udre) = mo(uelwe) Yoy, up,t. (2 represent the training data for task and B, respectively),

A variant of GPS, the mirror decent guided-policy searcﬁﬁﬂg C(r)ig?'t'?ggéb‘i);?bi?'“tﬁ ;ﬂgt)erc?; 2?1 dcorrg%l;{;ﬁt frg;n
(MDGPS) algorithm (7, splits global policy optimizationto ° gata '?D| 0 (bya ':’in e eﬁs s an'% o o {Jaﬂon
several local policy optimizations, in order to estim&td(6). DD ﬂD i Y applying Bay q
There are two loops in this particular algorithm, as shown in — ~4 B):
Algorithm 1. The inner loop (S-step) conducts local policy log p(6]D) = log p(D|0) + log p(6|DA) — logp(Dg). (3)
optimizations, while the outer loop (S-step) is a globaligol _ o ) ) )
optimizer which makes use of whole samples collected frofifcording to [26], the objective functiof(d) in EWC aims
the C-Step. to minimize

During the C-step, the MDGPS algorithm uses a time- _ A £ 2
varying, linear Gaussian controllef(u;|z;) ~ N(Kpz: + ((0) = E5(0) + Z §F"'(9i — 040" )
kt, Cy) as the local controller. The iterative linear-quadratic ) ’ )
regulators (ILQR) algorithm is employed to calculate athts Where the loss-function/(¢) represents the negative of
in p(uz;) at different conditions [5]. For estimation of/Cg-probability of data, given the parameters (that is,
dynamics, the MDGPS adopts a time-varying, linear GaussiariogP(D|0)); £5(0) denotes the negative log-likelihood, or
function to fit these asp(zi1|ze,us) = N(for + furtr + loss-function of taskB; the Fisher information matrix#'

f£.t, F}), where the Gaussian mixture model is used to estimdt@ITies information about tasK; i represents sets for each

the dynamic model [10]. neural network parameter; andquantifies relative importance
Finally, the S-step is set to optimise the global policy bpetween the old task and new taskB.

introducing a deep neural network to mimic local policies Once the EWC has learned appropriate parametefer

generated at each condition. This converts the RL fornanatiS0lVing these two tasks, it moves to a third task Conse-

into a supervised learning problem and traditional methaohs duently, equation (4) is used again to learn new parameters,

be employed to optimize the global policy. both to complete this new tagk, and also keep neural network
However, the MDGPS scheme requires all local policigdrameters close to the learned parameters for complesiesi ta

at different conditions to support the training for gIobaH4 and B.

policy. In other words, the agent cannot learn continuously

when conditions are given sequentially, as part of seqalenti I1l. THE PROPOSEDMETHOD

multi-task learning. Hence, the learning algorithm wilijare A A GPS based Framework for Sequential Multi-Task Learn-

reformulation in order to enable incremental task comotedt g

a new condition, instead of starting from scratch. Spedifica

there is a need to learn policies in an incremental mannFr,

and hence avoid strict requirements of acquiring all coolét 10

together at the initial learning stage.

In this section, we propose a reformulation of the conven-
nal GPS algorithm based on a modified EWC mechanism,
and present a general framework for sequential multi-task

learning.
) ) o The basic GPS setting aims to study incremental learning
B. Elastic Weight Consolidation of policies for solving a task at different conditions, treae

General artificial intelligence (Al) capabilities are knowo  provided sequentially instead of being provided togetiibe
be particularly difficult to realize in real-world settingehis is traditional GPS fails to work in the former setting, since
due to the requirement for agents to continuously learn end it needs to learn global policies with all task conditions.
member previously learnt tasks [29]. Nevertheless, rebeas This fundamental limitation of the GPS can be attributed to
have proposed a range of methods aimed at realizing subbk structure of interaction between global policy (S-step
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Fig. 1: The proposed GPS based framework for sequential-task learning.

Algorithm 1) and local policies (C-step in Algorithm 1), vahi  of feature information fusion and incremental learningc{su
pre-limits the sequential multi-task learning mode. Inesth as the EWC algorithm), respectively.

words, in order to learn tasks incrementally, the agent lshou Our proposed formulation enables global policy to perform
be able to separate mutual effects between global and loaatask at the current task condition, and at the same time,
policy optimizations when encountering a new task conujtioremember previously learned tasks without catastrophic fo
failing which it would affect both the S-step and C-stegetting. Next, we present an algorithmic implementation of
outcomes. An online approach will require the global policgur proposed framework for sequential multi-task learning

to be learned asynchronously from each single local policy.

Therefore, in contract to the traditional GPS algorithm, we . . ) . .
propose optimize a single local policy directly in the CpsteB' A new algorithmic implementation for sequential muatsk

as follows: learning
- In this subsection, a sequential multi-task, learningdgdi
inE. / 5 policy search (S_MT—GPS)_aIgorlthm is proposed to tackle
b argflm p[; (e, ue)], (5) the problem of tight coupling between the global and local

policies. Specifically, a modified EWC algorithm is develdpe
This breaks the limited relationship between the globaicyol to combine previous results with current information, by
and local policies, where optimization for local policiedlw employing a Fisher information matrix to impart knowledge
not be influenced by the global policy. Nevertheless, théitra of previously learned tasks.
tional GPS can quickly and efficiently train global policyath  Algorithm 2 summarizes our proposed method. Initially,
benefits from local policies at different task conditions & the previous policyp is set to null, owing to the absence
compensation mechanism for the absence of these intamacti@f a previous task. In the inner loop (lines 3-7), the agent
instead of optimizing local policies with a fixed number iraims to learn local policies individually at a given task
[10], we propose to optimize local policies continuouslyilun condition, where an iLQR algorithm is utilized to fit dynarmic
they can complete the task at the current task conditicsnd optimize local policies. As for the outer loop (lines 8-
Thus, we only select “successful samples” generated beth@g, the agent applies local policies collected from the inne
trajectories that complete the task to execute the next stijpp, to optimize global policy. This employs a variant of
Global policy optimization is readily carried out with thes the EWC algorithm to complete optimization under different
“successful samples” generated by local polices. Adddilgn task conditions. More precisely, we use those trajectdriat
in order to learn a task continuously at different task coman complete the task, to generate “successful samples” and
ditions, the global policy needs to remember all previousbmploy the sample seb,, to optimize global policy. This
learned policies and generalize to complete the new task,igntotally different from the traditional GPS scenario, \we
an incremental manner. all samples are collected to carry out optimization. Futthe

Figure 1 illustrates our proposed GPS based framework fiie ability to continuously learn at different task conafits is

sequential multi-task learning. The local poligyis generally realized by this modified EWC algorithm (corresponding to
optimized with iterative linear-quadratic regulators@R) [5] operation® in Figure 1), where different Fisher information
or the path integralsKI?) method [11]. The global policy matrixes are fused, with a sum operation over task condition
7, usually adopts a deep neural network to represent a braattountered to-date (corresponding to operatiom Figure
range of behaviors. Further, the current task informat®n 1). In particular, a variable weight parameteris introduced
evaluated by an information extraction approach, such as to measure importance of different task conditions, whih i
Fisher information matrix. This records the second deiieat different from the constant parameteremployed in primary
of the loss near a minimum, with the guarantee of positMeWC settings. Next, we utilize this modified EWC algorithm
semidefiniteness. The parameterand® represent methods to formulate the following optimization problem:
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T
mg  argmin Y Dicr (7o (welwsm)|[pm (uelt,m))
o t=1 (6)
LA -
— (0—06;) F;(0—0;
2 )

1

=

According to (6), we train a neural network with gradient
descent learning, to optimize global policy for the agent to

learn different tasks continuously. This equates to lemyni
sequential multi-tasks without catastrophic forgettingd con-

stitutes a novel algorithmic implementation of our propbse

framework.

Algorithm 2 SMT-GPS

1: Initialize: p + null
2: for conditionm =1 to M do

3. for iterationk € 1,..., K do

4: Generate sampleB; = 7, ; by runningp;

5 Fit linear-Gaussian dynamics;(z+41|z+, u+) using

samples inD;

6: Optimize local policy:

7: p < argmin, E, [Zthl 0z, ut)]

8: end for

9:  Collect “successful samples” by runnipg and record
asD,,

10:  Optimize global policy withD,,,:

11: o < argming >, D (mg (ue|@e,m)|[pm (e e,m)) +
(0 —0,)TFi(0 - 6;)

12: end for

C. Theoretical Analysis

In this section, we present a theoretical analysis of global
policy cost and provide its upper bound. It is shown that the

global policy limitlessly approaches local policies thava
already completed tasks. Equivalently, the global polkcgble
to complete tasks at different task conditions.

Without loss of generality, given task conditions for tiam
we assume that the probabilities of(z) and p(x) follow
different distributions, yet both are bounded @s< a <
mo(x),p(x) < B < 1. Further, each weight parametar
satisfies the constraifit< \; < 1.

1) The State Distribution Difference:

Given e; = maxy, D (mo(ue|ze)||p(ut|zt)), the state
distribution difference satisfieimg(z:) — p(z)|1 < & +

t
da ]y \/2¢.

According to [10], [30], we can express the state distrituti
p(x;) as:

t

p(ze) = [J] (1 = v/2¢)][mo ()

t'=1

—plxe)] +plxe),  (7)

XX, NO. X, NOVEMBER 2017

Applying a second-order Taylor series in KL divergence,
with an assumption oAf — 0

(E:[log go(2)] — E:[log ga(2)])
—E.[Vloggs(2)]A0

1
- EAGT E.[V?log g (2)] A0

1

= —AfT
2

= %AGTFAG,

Drr(qo(2)|lgo+n0(2)) =

E.[~V?log gu(2)] A0

(8)
whereF = E,[—V?log gy(2)]. The proof for this approxima-
tion can be found in [31]. A previously learned global policy
represented byr/@, can be readily used to represent previous
local policies at different task conditions, specificafty; each
policy p;, p; = wé Following optimization of a global policy
by applying (6), we can obtain a new global polncysnuated
in the neighborhood ofrg, represented asy = 7g_rq-
Thus at each task condition by substitutingd = © — A©
and applyingAfd = A© — 0, we can rationally derive the
following:

=Dxr(To_no(@:)||me (i)
= DKL(T"IQ(xt L)||779+A®(xt i)
= DKL(W/Q(xtJ”|W9+A9(Zt’i))

%AHTFAH

Drcr(mo(ze,i)l|p(zt,))

%(9 —0)TF;(0 - 0,),

9)
The above corresponds to the second term of the optimization
problem in (6). Thus, the optimization problem for global
policy can be rewritten as:

Ty ¢ argmin > Dicr(mo (el e m )| [pm (uelze.m))
t

(10)
+ X\ Z Drr(mg(zeq)l|p(we4))-

where p(z;) is some other distribution, and the probability

1 —/2¢, implies thatp(z;) andmy(z) take the same action

at time stept.

Consequently, the state distribution differenéeis
[|7o(z¢) — p(z¢)||1 at time stept and task conditiomn can be
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expressed as follows:
Dis = || Dgp(mg(ue|ze)||p(ue|zt)) Erg(woun U@, ue)] = (mo (e, ue), L2, ue))
= (mo(xt,us) — p(we)mo (Ut|241),
e, ug))
m + (p(@e)mo (ue|we), U2e, ue))
<lee + i ZDKL(WO(xt,i>||p(xt,i)) —p(xt)||1 = (mp(uglae)[mo () — p(we)], e, ue))

<les + DKZ(W@(%)HP(%)) —p(z)lh +l<(i($;)[)7;9(ut|$t) — pug| )],

< |ler + Dya (mo (o) [[p(21)) — p(2e)l1

+ A Z Drcr(mo(we)l|p(ze,:)) — plwe)| |1

i=1

7o () — plzy 2 (11) +Ep(a;t,ut)[l(xt7u )]
= HetJr( : 1)?(:&2))( v @)l < lmo(@e) — p(ae)[|1 L(we, ue)
ey + 2Relzellmo(z) = Pl o o (ela) = plunl) | L, )
! p(xt> +Ep(wt,ut)[l(xtvut)]
! 7T9(l‘t)2 S Ep(xtyut)[l(xt7ut)]

= JTa= Ve - =il
t'=1 + [er + 4o V2€y | L(xy, uy)
41 - Hi’:1(1 Y 2¢€, )] I t/1_=[1
p(r) b + V2e: (s, uz),
where the second step follows from the definitien = (16)
max,, DKL(WO(Ut|1't)||p(ut|xt))l the third step follows where L(mt,ut) = maXg, u, Z(xt,ut), and the pI'0.0f for
DKL(We(xt)Hp(fUt)) = max,, DKL(WG(CUt z)||p(£Ct Z)) and MaXg, ||7T9(ut|mt) (ut|xt)||1 < \/2_6,5 was prese_'nted n [30]
™ X\ = 1, the fourth and fifth steps follow from the Next, summing the above quantity over all tiriewe get:
conclusmnDKL( (x)]lg(x)) < Dy2(p(x)||q(x)) (presentedin T
[32]), the sixth step follows ), and the last inequalityres ZEM(%M) Ty ut)] Z (e u) [1(Te, ut)]
from the fact thad) < my(z) < 1 and||mg(x)—p(a:)|| < 2 for t=1 t=1
discrete distributions. For the continuous case, the reanlbe
obtained through the limit of an infinitely fine discretizati + [er + 4o H V26 | L(xe, ue)
Next, it is noted that t'=1
t t + V26 L(xt, uy)]. a7
1—+/2¢,)>1— v/ 2€, 12
t,l_zll( v)= }1 v (12 This bound on the cost of global policy illustrates that
so we can have: for the case of low cost local policies, we will eventually
' reduce the cost of global policyg(u:|2:). In our setting,
L. (13) local policies adopted in (6) ensure they are capable of
performing tasks by being trained on “successful samplas”,
equivalently, the cost for local policy is kept particujasimall.
Noting ¢; < € in the C-step of Algorithm 1, and by choosing
a small enough, we can keep the difference between global

and local polices arbitrarily small so as to learn sequéntia
- < /2€,0. . . ) .
1m0 (2e) = p(ad)lls < e + da H 2¢; (14) multiple tasks without catastrophic forgetting.

t'=1

<|le: +

4 H:’:1 \/E
p(w¢)
Given the lower boundy for p(z;), we can obtain the upper

bound for||mg(x¢) — p(x¢)||1 which is

[Imo () = p(ae)ll < [l +

2) The Global Policy Cost:
For the state-distribution differendéry(z:) — p(a:)||1 <
€ +4a Hi /2¢,/, we can set a bound for the global policy In this section, we employ the proposed SMT-GPS algorith-

IV. SIMULATION |LLUSTRATION

cost as follows m to learn control policies for two dynamical systems shown

T in Figure 2 and Figure 3, specifically, a pendulum swinging

ZEW (woun) (T2, ut)] Z (e (T, ur)] upwards, and a peg insertion environment. By generating
-1 -1 multiple tasks, through varying the initial position of &ac

system (illustrated in Table I), a series of tasks are used to
+ [e: + 4o H /2¢,]L(z,uy)  evaluate the algorithm. First, a pendulum experiment isesr

t'=1 out, to demonstrate the feasibility of the SMT-GPS apprdach
+ V26 L2, ug)], continue learning without catastrophic forgetting, in wast
(15) to a conventional RL algorithm. Next, a robot manipulation
where L(xy, uy) = maxy, u, {(x, uy). experiment is conducted to explicitly illustrate the alilof

In the first step, we specify a bound on the cost of globakquential multi-task learning in SMT-GPS, in comparison
policy at time step according to: with a traditional GPS based method.
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TABLE I: System parameters used for different tasks.

Taskl Task2 Task3 Task4
Pendulum @) 0.557 0.7 0.857 s
Peg Insertion ([x,y])| [-0.12,—0.12] | [-0.12,0.08] | [0.12,0.08] | [0.12, —0.12]

TABLE II: Results of DDPG and SMT-GPS.

. DDPG SMT-GPS
Testing Task No. Average Lossl) | Final Position §) | Average Lossl) | Final Position )
1 —267.7 0.0257 —244.8 0.0035
2 —440.1 0.0251 —401.6 0.0047
3 —639.4 0.0246 —579.0 0.0052
4 —866.2 0.0243 —777.1 0.0058

xy, for actionuy, is given by:

(i) = gunalful P+ Swallpe, ~ 5P + Swnllea, o]l
(18)

wherep,, andv,, are the position and velocity of pendulum at

statex, respectivelyp* andv* represent the target information
9 for position and velocity of the pendulum, and, w, andw,

are weighting parameters. This cost function encourages lo

/ energy actions for target pendulum positions.
2) Results and Discussion:

T In the section, we employ the dynamical system to evaluate

our proposed SMT-GPS algorithm. It is benchmarked against

mg a well-known RL algorithm, termed deep deterministic pplic

gradient (DDPG), which continuously improves the policy
by training a deterministic policy. For each task, we execut
100 steps to generate a trajectory sample, and collect 10
samples during each session (corresponding to one iteratio
in Algorithm 2). The SMT-GPS and DDPG algorithms are
implemented to optimize policy for the sequentially specifi
tasks. When an agent completes learning at taskperiments
are evaluated a total of fifty times for tasks2, - - - ,i.

Table Il shows that both algorithms are capable of complet-
ing previously learned tasks 2, - - - , 4, when learning a new
taski. This is evidenced by the final position of the pendulum
being close to the target upright positich~ 0). Further, this
indicates the proposed algorithm has some ability to oweeco
catastrophic forgetting.

To compare the two algorithms in more detail, we inves-
tigate the average loss accumulated in 100 executing steps,

Fig. 3: Peg Insertion. which indirectly describes the final state of pendulum. As
seen in Table Il, after training at all 4 tasks, SMT-GPS
achieves similar results to DDPG when testing at those 4
A. Pendulum control tasks. However, the proposed SMT-GPS can finish the task
1) Dynamical system: sequentially, gnd delivgrs less Ip_ss than DDPG, both ingerm
. , of loss function and final position of the pendulum. More
The controller of the pendulum aims to swing the pendulum o
. : importantly, SMT-GPS only utilizes samples generated at th
several times to build up momentum to make the pendulum

. current task condition in order to learn the control polioy
upright. It also needs to decelerate the pendulum earlygmoLfhe other hand, the DDPG requires samples in different tasks

to prevent it from falling over. If the maximal load torque : : . .
I is greater than the maximal output torqu&e®, a non- to be randomly presented to train policy. Since previouk tas
mg ' samples need to be collected to update policy, when facdd wit

trivial solution re_sults for this one degfe.e of fre_edom AN a new task, the DDPG places a higher demand, both in the
The state comprises angles and velocities relative to tigetta
manner tasks appear and space samples are stored.

position. The goal is to study a policy for controlling thenpe
dulum swinging upwards. For each task, if the final position )

of the pendulum is close to upright positiof € 0.17), the B- Peg Insertion

task is considered to be successful. The cost function & sta 1) Dynamical system:

Fig. 2: Pendulum.
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This robot manipulation experiment requires controlling @ terms of the distance to target and success rate. However,
seven degree of freedoBD simulated arm with the MuJoCo “Policyl” fails in some areas around the training tasks.
simulation environment [33], to insert a tight-fitting pegad Results show that the SMT-GPS algorithm outperforms
a hole. The state consists of joint angles, velocities, amtl e “Policyl” for completing the insertion task. This is due tseu
effector positions relative to the target position. Fortetask, of the EWC algorithm to optimize the SMT-GPS approach.
if the distancel between the current state and goal position idowever, “Policyl” is capable of self-optimizing only ateth
smaller than a baseline 0.06 (as shown in Figure 4), the tagkrent task without taking Fisher information of previous
is considered to be successful. The cost function preséntedasks into account. Specifically, “Policyl” lacks the seton
[5] is: term on the right-hand of equation (6). Thus, equipped wiéh t

1 EWC algorithm which utilizes previous task informationeth
Uz, up) = §wu||u,g||2 + wpl12(pe, — P°), (19) proposed SMT-GPS is able to complete different sequeptiall
presented tasks in this experiment. Further, it can exploit
whereu, is the robot actiony,, is the position of end effector previously learned information without catastrophic fettng,

for state z;, p* is the desired end effector position, anghat is, it has the ability to learn knowledge continuously.
the norm/,(z) is calculated bys||z[|? 4+ /v + 22 which

corresponds to the sum of afy and ¢; norm. This cost
function comprises two terms, the first weighted fy to 0.12
encourage low energy actions and the other weighted py
to enable the peg to reach target hole precisely.

In this section, the SMT-GPS and MDGPS are employe
to conduct comparative experiments. For the SMT-GPS, tt
global policy for each task is represented by a fully coneect
neural network, with the structuf26 —100—100—7]. In each
manipulation task, only “successful samples” that represe
successful trajectories for completing the task are ctbbc : 2 bosition 3 4
to train the neural network global policy. As for the MDGPS,
environment settings described in [10] are employed.

Specifically, for each task, a trajectory sample is gendratt
for 100 steps, and 5 samples collected during each iteratic ~ **°
The SMT-GPS and MDGPS algorithms are applied to optimiz 80
the policy iteratively. When the agent is learning taskhe
experiment is evaluated at previously visited tasks, - - - , 4.

A further three sub-experiments are carried out to evalua
the efficacy of the proposed SMT-GPS method. The first e i
periment aims to demonstrate the effectiveness ofthegegpo | /= 100% Accuracy
method, by comparing with the same neural network, bt 0 2 N 3 a
without employing Fisher information. Subsequently, a eom posttion
parative experiment of SMT-GPS with MDGPS is designed (b) Accuracy
to demonstrate the formers sequential multi-task learning-ig. 4: The result of comparing SMT-GPS and “Policyl”.
capability. Finally, we utilize Fisher information to cgrout a
concrete analysis of the comparative efficacy of the prappose D) Sequential multi-task learning capability:

SMT-GPS. Comparative results are presented and discussed in this section, experiments are carried out using the pro-

—— SMT-GPS
—— Policyl

/\ ***** Baseline

=}
-
o

o
o
©

Distance to target
o S)
o o
- ()]

o
o
D

o
=3
=]

(a) Distance

60

40

Success rate(%)

—— SMT-GPS
20

the next section. posed SMT-GPS approach and the MDGPS algorithm, in order
2) Results and Discussion: to evaluate the comparative effectiveness of their makkt
a) Overcoming catastrophic forgetting: learning capabilities.

In this experiment, in order to analyze algorithms from theTagE |11 Results of comparing SMT-GPS and MDGPS
perspective of storing previous information, a new polidg-(

noted “Policy1”) is constructed within the same neural retw Algorithm | Distance to Targef Average Cost| Success Rate
; ; : : SMT-GPS 0.009096 —F84.2872 0.9667
framework. However, Fisher information from previous sk MDGPS 0.007466 5375530 0.9833

is not exploited here, whilst the agent learns a new task. In
other words, the training for “Policyl” only depends on the In the MDGPS algorithm, all samples of different tasks are
current task information, with the exception of neural et presented together at the beginning of training, in order to
parameters inherited directly from training previous task  analyse policies in a batch way. For SMT-GPS, the agentdearn
First, we evaluate the SMT-GPS and “Policyl” 280 policies based only on current task samples, after it coteple

positions randomly selected around the 4 initial tasks. Eprevious tasks. We test these two algorithms on a total of 120
perimental results presented in Figure 4 illustrate thateondifferent tasks, with initial positions randomly selecteihin

the agent has learned the control policy for 4 tasks, the SMilie square area constructed by associated training tasks. |
GPS can almost complete peg insertion at all test tasks, bother words, both algorithms are evaluated at 30 similar yet
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different tasks separately, generated around 4 differaimihg previous tasks when learning the current task. Here, Fl is
tasks. employed to record important information of previous tasks
Results are presented in Table Il which show that thehich can be considered a way of communicating information
proposed SMT-GPS algorithm can attain comparable perféwetween different learning tasks. It can also be seen tbat, f
mance to MDGPS in three aspects, including distance betwdba case of the SMT-GPS algorithm, FI differences present
end-effector position and target position, the action @t smaller values compared to“Policyl”. For instance, theee a
success rate of peg insertion. However, the SMT-GPS ordignificant differences around the weight 4500, which show
relies on current task samples, which is totally differeoni that “Policyl” is not capable of learning a perfect global
the MDGPS whose training samples for all tasks need to parameter to represent the previous parameters for edch tas
presented in advance. In other words, the proposed SMT-GPi&refore, we conclude that the proposed SMT-GPS method
can be seen to complete multiple tasks sequentially withdatable to retain key weights for previously learned tasks. |
requiring whole task information, and can also achieveebetiother words, it can recall previous task information to dvoi

results at the neighborhood of these 4 tasks. catastrophic forgetting, whilst executing a new learniagkt
c) Fisher information analysis:
Finally, we carry out an experiment to further analyze the V. CONCLUSIONS

concrete influence of retaining previous information, wéth In this paper. we proposed a novel GPS based framework for
form of Fisher information (FI) incorporated in the EWC Paper, We prop

. sequential multi-task learning. It enables agents to oootis-
algorithm.

As before, we use the “Policyl” method as a contrasti\% learn policies for different tasks, without catastrapffior-

. . . . . etting. In particular, an algorithmic implementation;nted
method, and train policies with the same settings as in t%ﬁ/lT—GPS has been realized, and comparatively evaluated
first subsection. Since FI describes the accuracy of estiina ’ ’

posterior probability for each task parameter, we now make q two dynamical systems, specifically, an upward-swinging

comparison between different tasks in terms of their Fleslu pendulum and Peg Insertion environments. These derr}oe!strat
the algorithms ability to both remember previous task petic

and incrementally learn, new task-specific knowledge. Use o
well-trained local policies, optimised by “successful gd@s

sil . L . ' representing successful completion of trajectories, lentie
s l ML LA SMT-GPS to address the problem of catastrophic forgetting.
3 The latter is of significant importance, for enabling effest
3o g ey &W interaction with the real world.
: I Further, the agents global policy employs a modified EWC
sil . N \ ) algorithm to perform self-optimization at different taskne
81 H T LA | ditions. Here, Fisher information is introduced to represe
5 500 2500 500 5500 o000 parameters for previous tasks. Thus, the agent can generate
Neural network weight a successful policy for completing all encountered tasks.
(@) FI differences in SMT-GPS In contrast to traditional batch algorithms employed in RL,
such as GPS, the proposed SMT-GPS is capable of learning
s ) N i ) . policies incrementally, without requiring all learningsks to
21T [ ””[" LI be presented in advance. The new algorithm is thus posited as

a new benchmark method, for the real-time RL and robotics
. by e . research community.

[ [ M For future work, the proposed framework can be extended
by introducing deep neural networks, to effectively deahwi

-

t2-t4
Gk rwhWe e wh e e w
=+

Bat [ ““M b — visual inputs. This could enable agents to complete taséls an
learn continuously in more complex environments. Further,
0 2000 4000 6000 8000 10000 . .
Neural network weight exploring other learning models for the SMT-GPS, such as
(b) FI differences in “Policy1” learning to reach different target positions for the sansk ta

Fig. 5: The result about FI difference on each weight in laySFting. is another challenging future work direction.

3 for comparing SMT-GPS and “Policyl” methods.
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