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Abstract—The typical traffic models proposed in literature can 

be considered as heuristic models since they only reflect the 
stochastic characteristic of the generated traffic. In this paper, we 
propose a model for M2M communications that generates the 
traffic. Therefore, the proposed model is able to capture a wider 
picture than the state-of-the-art traffic models. The proposed 
model illustrates the behaviour of M2M uplink communication in 
a network with multiple-access limited information capacity 
shared channels. In this paper, we analyzed the number of 
transmitted packets using the traffic model extracted from our 
proposed communication model and compared it with the state-of-
the-art traffic models using simulations. The simulation results 
show that the proposed model has a significantly higher accuracy 
in estimating the number of transmitted packets compared with 
the liteature model. 

Keywords— Machine to Machine Communication; 
Communication Model; Communication System Traffic; Traffic 
Model; Stochastic Process. 

I. INTRODUCTION 
Machine-to-Machine (M2M) communication 

characteristics differ significantly from conventional Human-
to-Human (H2H) communication (e.g., voice calls). The main 
differences are: (i) generally M2M applications generate short 
bursts of periodic data packets; (ii) most of the time M2M 
communications are established through uplink channels; (iii) 
M2M traffic is machine generated and does not usually rely on 
human intervention; (iv) Quality of Services (QoS) 
requirements for M2M communication differ significantly from 
H2H applications such as in the mobility, delay tolerance, 
volume of data, priorities, power consumption, security 
requirements, etc. Therefore, serving M2M Devices (M2MDs) 
over conventional networks built for H2H communications 
raises several challenges [1]–[3].  

An accurate model of the M2M communication traffic is 
critical in the planning and implementing the network of 
M2MDs i.e., the Internet of Things (IoT). In particular, it plays 
a significant role in the following aspects: (i) evaluating the 
Radio Resources Allocation (RRA) algorithm’s energy 
efficiency [4] and throughput performance; (ii) providing a 
better understanding of M2M communications and traffic to 
enable the networks designers to equip the network with the 
efficient resources to handle the predicted massive number of 
devices; (iii) several security threats can be avoided if we could 
identify the difference between the regular traffic transmitted 
by M2M devices and a malicious traffic generated by, e.g., a 
security breach, such as traffic generated by a Distributed 
Denial of Service attack. 

In [5], the traffic models are classified into two main classes 
i.e. (i) Source traffic models and (ii) Aggregated traffic models. 
A Source traffic model considers the traffic of an individual  
M2MD, while an Aggregated traffic model considers the 
resulting traffic characteristics across a broadband network.  
The Source traffic models commonly used in the literature are 
extensions of the H2H traffic models [3], [4]. Hence, they 
cannot be used directly to model M2M traffic, because of the 
differences between the two types of communication discussed 
earlier. In particular, the models in the literature typically 
consider very particular scenarios. Consequently, they cannot 
be generalized for M2M traffic. Further discussion of the 
common models proposed in the literature and their 
shortcomings are presented in section II. 

The main contribution of this paper is to propose a model 
for M2MD communication based on non-deterministic finite 
state machine communication. Unlike the heuristic traffic 
models proposed in the literature, in which the traffic arrivals 
rely only on the statistical characteristics of the traffic, the 
traffic for M2M communications in this paper is extracted from 
the proposed communication model (presented in section III). 
Therefore, the traffic derived from the proposed M2M 
communication model can capture a wider range of settings.  

In particular, the extracted traffic from the proposed 
communication model is assumed to be affected by several 
factors (as shown in Fig.1). The first factor is the channel 
information capacity. That plays a major role in the data 
transmission time. Most traffic models available in the literature 
do not consider the information capacity as they are mainly 
based on the Erlang and Engest Models [2]–[5]. The Erlang and 
Engset models (i.e., Markov Modelled Poisson Process) were 
proposed for telephone networks (i.e., circuit switched 
networks) and are arguably not valid for M2M traffic. The 
second factor not accounted for in the existing M2M traffic 
models is the Blocking Incident in which the users require 
access to the shared channels, but the channels are already fully 
occupied [1]–[3], [5]. Additionally, the multiple-access 
mechanism is missing in the existing M2M traffic models [1]–
[3], [5]. For a shared channel, there are two main multiple-
access approaches as classified in [6] i.e., (i) Centralized 
Scheduled Access, in which a centralized device determines 
what part of the channel is allocated to each user e.g., cellular 
scheduling algorithms [7], and (ii) Distributed Access, in which 
each user locally decides the channel to access e.g., an ALOHA 
mechanism. Using the proposed communication model derived 



traffic achieves a significant enhancement (compared to traffic 
models proposed in the literature) in predicting the number of 
packets as shown in section IV. This paper is concluded in 
section V.  

 
Fig. 1 Factors affecting M2M communication traffic. 

II.  LITERATURE SURVEY OF EXISTING M2M TRAFFIC MODELS 

A.  Fixed Scheduling and Event Driven M2MD traffic model 
The authors in [1] proposed to classify the M2MDs traffic 

in two distinct models according to the periodicity of the 
transmissions. The first model studied the periodic update 
traffic referred to as Fixed Scheduling (FS) nodes e.g., regular 
reports of sensor measurements. The traffic generated by an FS 
node is typically assumed to follow a deterministic process 
representing the periodic transmissions. The second model 
focused on the non-periodic data traffic, referred to as Events-
Driven (ED) nodes e.g., the report of an emergency alarm event. 
The traffic packets generated by the ED notes were modelled as 
a Poisson process.  

 Although the authors in [1] proposed a traffic model that 
highlights the distinctive characteristics that the M2M traffic, 
they made some simplifying assumptions that do not reflect the 
behaviour in a generalized sense. The first assumption was that 
the M2MDs can be either FS nodes or ED nodes. This 
assumption makes the model only applicable for some specific 
M2M devices. These devices are able to perform only a 
particular job, such as to periodically report the temperature, but 
it cannot report an incident in which the temperature is higher 
than a  certain threshold. At the moment, in most practical 
systems most of the M2MDs can be both an FS node and an ED 
node.  The assumption that all the FS nodes are synchronized 
could be considered as an over-simplifying assumption. The 
authors in [8] investigated the synchronization of machine-
generated traffic, such as the routers status update messages 
which report the current link state. They demonstrated 
(analytically and empirically) that behaviour transition from 
asynchronized to synchronized is abrupt even if it was affected 
by an external influencer (such as turning them ON 
simultaneously). Synchronization in the case of M2MDs is a 
bigger challenge since M2MDs are typically connected to the 
network through a wireless connection, consequently, the 
inequality of propagation delays and bit errors play a significant 
role in inhibiting successful synchronization. 

B. Markov Modelled Poisson Process Models (MMPP)  
A two-state Markov process (as shown in Fig. 2) is 

commonly used in the literature for modelling queue arrivals. 
The MMPP model was also used to model the M2M traffic 
arrivals [3], [4]. The first state i.e., ‘Transmit’ or ‘On’ 
represents an M2MD transmitting data. The second state i.e., 
‘Idle’ or ‘Off’ represents an M2MD not transmitting data, also 
known as Sleep Mode. 𝑃",$	 represents the probability of 
changing from the Idle state to the Transmit state and 
𝑃$,"	changing from the Transmit state to the Idle state. 

 
Fig. 2  MMPP model used in [2]–[5]. 

The data transmission in the MMPP model is obtained by 
the steady state probability (i.e., the probability of existing in a 
specific state when time (𝑡) approaches infinity) of the Transmit 
state. Consequently,  the Transmission Probability (𝑃$), can be 
expressed [9] as: 

𝑃$ = 	 lim+→-.𝑃",$	/
+ = lim

+→-
.1 − 𝑃$,"	/

+ = 	
𝑃",$	

𝑃",$	 +	𝑃$,"	
 (1) 

Although the two-state Markov chain model has been 
commonly used in the literature [2]–[5], it is not an optimum 
model for M2M traffic through a shared channel. This is 
because it depends on the Poisson inter-arrival process, and it 
does not hold true here as explained earlier. Further, M2MD 
data packets are typically non-homogenous and cannot be 
treated as identical nor represented as a state in a two-state 
Markov chain. For instance, a periodic update reporting an 
M2MD battery status and a picture of an intruder passing a 
security check cannot be treated as identical data transmissions, 
because of the size and nature of data to be transmitted. Further, 
this model does not consider Blocking Incidents, which occur 
frequently in networks of high user density such as IoT. A 
Blocking Incident occurs when the transmitter (i.e., the M2MD) 
has data to be transmitted, but all the channels designated for 
data in the network are fully occupied.  
C. Empirical Model  

The empirical models rely on experiments and tests for their 
evaluation. Typically, the models proposed using this 
methodology start by running the experiment and afterwards 
trying to fit the data collected into an appropriate statistical 
distribution. Recently, the authors of [10] and [11] used an 
empirical approach and measured the M2M traffic in a cellular 
network. They concluded that the M2MDs’ communications 
would have a significant impact on the smartphones’ 
connectivity. In particular,  an M2MD would compete with the 
smartphones for the available channels and, as a consequence, 
the Blocking Probability would increase.   

Although empirical models illustrate the precise traffic 
measured in M2M communications, they have their 
shortcomings. For example, they are a reactive approach which 
can only describe a precise scenario for which data was 
collected. They are not able to suggest a generalized model. 
Additionally, the approach used in [10] can only model the 
aggregated traffic observed through the network.  
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III. PROPOSED M2M COMMUNICATION MODEL (MCM) 

A.  Overview 
As mentioned in Section I, in this paper we propose a 

communication model for M2M and use it to derive 
communications traffic that considers several factors. We 
assume M2MDs typically are low computational complexity 
finite state machines that mainly consist of sensor(s), a 
microprocessor/controller and a communication unit.  The 
M2MD ’s main function is to monitor the environment and 
sends a report to a centralized node to analyze data. Fig. 3 
illustrates a generic M2MD data communication flow chart. 
Initially, the M2MDs at startup monitors the environment (e.g., 
senses the motion in a room). After a predefined period, the 
M2MD sends a periodic update (i.e., Round Robin states 
update) to the base station or a centralized node. In the incident 
of a triggered interrupt (an event occurs e.g., a movement is 
detected), the M2MD also transmits exceptional, i.e., non-
periodic, data to report it. 

 
Fig. 3 Generic M2MD data communications flow chart. The flowchart 

shows the two types of data generated by an M2MD i.e. periodic updates 
and aperiodic event reporting data. 

 The proposed M2MD’s Communication Model (MCM) is 
shown in Fig. 4. MCM is a discrete stochastic process that 
consists of four states: Sleep (𝑠), Round Robin (𝑟), Interrupt (𝑖) 
and Buffer (𝑏). At any time the M2MD is considered to be in 
one of these four states and would change to another state with 
a certain probability refered to as the Transition Probability 
(TP). The TPs shown in Fig. 4 represent the Starting State and 
Finishing State. For example, a TP 	𝑃7,8 has Starting State 𝑠 and 
Finishing State 𝑏. 

The Sleep state represents the starting state of the finite state 
machine in which the M2MD does not transmit any data. The 
Round Robin state represents the epoch in which the M2MD is 
transmitting routine periodic updates data, e.g., a periodic 

report of room temperature. During the Buffer state, the M2MD 
has data to be sent, but it is still waiting to access the shared 
channels to transmit it. Additionally, in the case of fully 
occupied channels, the M2MD buffers the data packets until it 
can access a channel. The Interrupt state represents an event 
occurring in the M2MD in which it sends data representing the 
event, e.g., a burglar alarm is activated. 

 
Fig. 4 Proposed M2MD’s communication Model i.e. MCM. 

In MCM, the data traffic is transmitted during two distinct 
states i.e., Interrupt and Round Robin. We differentiate between 
the two states for the following reasons: (i) typically, the data 
that has to be sent in the Round Robin updates is short data 
bursts; while in the Interrupt state data packet size is 
comparatively large. For instance, motion detectors would 
periodically send comparatively short data bursts (e.g., data sent 
containing the device identifier and, say, the battery state 
information). On the other hand, in the case of an exceptional 
event (e.g., a moving object had been detected), the M2MD 
would send a longer data burst that contains information of the 
event (e.g., a picture or the coordinates of the moving object); 
(ii) in the Round Robin state the communication is synchronized 
while communication in the Interrupt state is not; (iii) 
consequently, they would differ in their channel access 
approach, which relies on the network access technique.  

B.  MCM Transitions 
The  MCM is modelled as a discrete stochastic process in 

which at each time unit a state transition occurs. The transition 
can be to any possible state (including the starting state itself). 
The TPs determine which state is the most likely to be moved 
to in the next time slot. The summation of the TPs going out of 
any state must equal to unity, as follows: 

𝑃7,7 +	𝑃7,9	+	𝑃7,8	=	1	
𝑃8,8	+	𝑃8,:	+	𝑃8,7	+	𝑃8,9	=	1	

𝑃9,9 +	𝑃9,7 = 1	
𝑃:,: +	𝑃:,7 = 1. 

(2) 

The self-transition probabilities i.e., staying in the same 
state, rely on several factors. In particular, 𝑃7,7, which represents 
the probability of remaining in the Sleep state, depends on the 
frequency of both the periodic updates and the event occurring. 
The availability of channel resources directly affects the value 
of 𝑃8,8. In particular, 𝑃8,8 value is equal to the channel 
instantaneous Blocking Probability. The length of the M2MD 
data packet and the channel quality, e.g., Signal to Noise Ratio 
(SNR), determines the value of both 𝑃9,9 and 𝑃:,:. Currently, we 
are only considering the SNR to be affecting the information 
data rate. Hence, the maximum achievable information rate by 
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the 𝑘th M2MD in the 𝑗th  channel (𝑅>,?) can be obtained by the 
Shannon capacity formula and can be obtained as:  

𝑅>,? = 	𝐵𝑊	 logD.1 + 𝑆𝑁𝑅>,?/ (3) 
𝑃(9,9)/(:,:) = 	1 𝛾(𝑡)(9,9)/(:,:)⁄  

𝛾(𝑡)(9,9)/(:,:) = L	𝐷𝑅(9)/(:) 𝑅>,?(𝑡)⁄ N (4) 

where 𝐵𝑊is the channel bandwidth, 𝛾 represents the number of 
time units the data needs to be transmitted, ⌈. ⌉ refers to the 
ceiling function, 𝑡 refers to the instantaneous time, and 𝐷𝑅 is 
the state data requirements.  

In a network with shared channels, there are two main multi-
access techniques, as classified in [6]. The first technique is 
Centralized Scheduling, in which the M2MD must send a 
Scheduling Request (SR) to a centralized device (say, a Base 
Station) to access the channel. The Base Station controls the 
M2MDs channel’s multiple-access scheduling [4]. The second 
technique is Distributed Scheduling where each M2MD makes 
a local decision whether it should access any particular channel 
based on channel sensing techniques, such as in [12].  

In a Centralized Scheduling network, a central device (e.g.,  
a Base Station) schedules the M2MD shared channel access. 
Consequently, the M2MD is required to send a Scheduling 
Request (SR) before starting to transmit data. After the Base 
Station receives the SR, it schedules a specified Resource (such 
as time and bandwidth pair) for the M2MD. Thus, when an 
interrupt occurs (i.e., asynchronized data transmission is 
required) the M2MD needs to store the data in its buffer (i.e., 
the Buffer state). The time duration that the data packets spend 
in the buffer represents the time of sending the SR to the Base 
Station, and for a resource to be scheduled. On the other hand, 
in Round Robin update, data packets are transmitted in a 
predefined epoch (i.e., at an explicitly defined time). 
Accordingly, the M2MD sends the SR to the Base Station in 
advance and M2MD periodic updates do not require data 
buffering.  

However, in a Distributed Scheduling network all the data 
transmission (i.e., the data transmission is done by both the 
Interrupt and Round Robin states) has to be buffered until the 
M2MD senses the channel and determines an unoccupied 
channel, before transmitting the data.  Table I illustrates both 
data communication types (i.e., Round Robin state data and 
Interrupt state data in both network channels multi-access 
approaches (i.e., Centralized and Distributed Scheduling). 

Table I: Data procedures for both types of  Network i.e., Centralized and 
Distributed Scheduling. 

Data 
generating 
state  

Data transmission procedure 

Interrupt  

Initially, the M2MD is in the Sleep state. When the data is 
ready to be transmitted to the M2MD stores it in the Buffer. 
The M2MD remains in the buffer state until it either detects 
an unoccupied channel (for Distributed Scheduling) or it has 
been allocated a channel (for Centralized Scheduling). 

Round 
Robin 

In Centralized Scheduling the M2MD changes from the 
Sleep State (i.e. initial state) to the Round Robin State. In 
Distributed Scheduling, the M2MD changes from the initial 
state to the buffer state and stays there until it senses an 
unoccupied channel. 

As mentioned in II-B, the Round Robin updates occur in a 
predefined epoch, so in a Centralized Scheduling network  𝑃7,9 
follows a Deterministic distribution with a rate 𝜆. It is worth 
mentioning that the assumption 𝑃7,9 to be deterministic is only 
acceptable if the SR was sent in a sufficient time for the 
centralized device to allocate a channel resource to the M2MD. 
On the other hand, the interrupts occur in a random manner and 
hence 𝑃7,8 can be modeled as a Discrete Poisson distribution 
with a mean 𝜇. 𝑃8,7 represents the probability of the M2MD 
discarding the packets it has previously prepared to transmit. 
This incident occurs when the packets have been blocked for a 
period of time, therefore, the information represented in the 
packet is not relevant anymore. 

The TPs in the MCM model can be represented as a 
Transition Matrix (𝛿): 

𝛿 =

⎣
⎢
⎢
⎡
𝑃7,7 𝑃7,9 𝑃7,8 𝑃7,:
𝑃9,7 𝑃9,9 0 0
𝑃8,7 𝑃8,9 𝑃8,8 𝑃8,:
𝑃:,7 0 0 𝑃:,: ⎦

⎥
⎥
⎤
 (5) 

where the probabilities in each row have the same Starting State 
and the probabilities in each column share the same Finishing 
State.  

The steady-state probabilities of the Sleep, Round Robin, 
Buffer and Interrupt states are referred to as P], 𝑃9, 𝑃8	and 𝑃: 
respectively. Accordingly, the steady-state probabilities can be 
expressed as a Stationary Vector (𝑄): 

𝑄 = [	𝑃7	𝑃9		𝑃8		𝑃:	]	where 𝑃7 + 𝑃9 + 𝑃8 + 𝑃: = 1. (6) 

The steady-state probabilities for the M2MD  for the MCM 
can be obtained using the Balance equation: 

 𝛿	 × 	𝑄 = 𝑄 or  𝑄(𝛿 − 𝐼) = 0 (7) 

where (𝐼) is the identity matrix. Accordingly, from (5) and (6), 
the expression (7) can be represented as: 

𝑃7.𝑃7,7 − 1/ + 𝑃9.𝑃9,7/ + 𝑃:(𝑃:,7) = 0 (8) 
P].P],c/ + Pc.Pc,c − 1/ = 0 (9) 
P].P],d/ + Pd.Pd,d − 1/ = 0 (10) 

𝑃7.𝑃7,:/ + 𝑃8.𝑃9,:/ + 𝑃:(𝑃:,: − 1) = 0. (11) 

Finally, by solving (6), (8), (9), (10) and (11), the values of 𝑄 
and, hence, steady-state probabilities can be obtained. 

M2MD only transmits data in two states i.e., Round Robin 
and Interrupt. Therefore,  the number of transmitted packets 
(𝑁𝑃) can be derived from the MCM by using the probability of 
a device transmitting data (𝑃$) and the number of devices in the 
area of interest (𝑛): 

𝑁𝑃 = 	𝑃$ 	× 	𝑛 where 𝑃$ = 		𝑃9 ∪	𝑃: (12) 

IV. EVALUATING THE NUMBER OF TRANSMITTED PACKETS  
For simulating the M2MDs a discrete event simulator [13] 

was used to evaluate the network behaviour. In [6] it was shown 



that the Distributed Scheduling approach can outperform the 
Centralized Scheduling approach, where there is delayed 
Channel State Information (CSI). In a high user density network 
(such as a network handling many M2MDs), the probability of 
delay CSI is high, therefore, in this paper, we studied the packet 
transmission in a Distributed Scheduling network. The channels 
access probability is assumed to be equiprobable access across 
the M2MDs, i.e., all M2MDs are considered to have the same 
priority.  For the simulations, five M2MDs (i.e., 𝑛 =5) sharing 
three channels is considered. The parameters and the associated 
values used to obtain the numerical and simulation results are 
given in Table II. The number of packets transmitted by 
M2MDs with respect to the time units is shown in Fig. 6. As 
shown in the figure, the MCM is able to model the simulated 
M2MD traffic more accurately. In particular, in the case of 
𝛾(9,9) and 𝛾(:,:)	are equal to unity and ten respectively i.e.,  
SNR1, the MCM are able to predict the number of transmitted 
packets with a significantly higher accuracy. For instance, in 
SNR1 the number of packets achieved by simulation is 3	 × 10h 
for the 5	 × 10h time unit, and using the MCM is 3.041	 × 10h, 
which is less than 1.4% error. On the other hand, in the SNR2 
scenario is not as accurate. However, using the MMPP model 
which does not adapt with respect to the SNR (referred to as 
Poisson in Fig. 6) the predicted number is 2.5	 × 10h which is 
about 16.7% error.  

TABLE II: NUMERICAL PARAMETERS AND VALUES. 

Parameter Value 
Simulation duration 10	 × 	10h Time Unit 
Number of M2MD 𝑛 / Channels 5/ 3 
SNR 1 𝛾(9,9)/(:,:) 1 for (𝑟, 𝑟)/ 10 for (𝑖, 𝑖)  
SNR 2 𝛾(9,9)/(:,:) 3 for (𝑟, 𝑟) / 30 for (𝑖, 𝑖) 
Round Robin updates 
distribution in MCM Deterministic with a mean of 10 

Interrupts Distribution in MCM Poisson with mean 50 
Data Requirements 𝐷𝑅9 / 𝐷𝑅: 150 / 1500 Kbit 
𝑃$ for the Poisson model Exponential distribution with mean 10 
𝑃8,7 0 

	
Fig. 6 Number of transmitted packets with respect to the time unit.	

V. CONCLUSIONS AND FUTURE WORK 
In literature, several traffic models for M2M 

communications traffic have been proposed. Those models are 

able to represent M2M traffic for a specific set of scenarios, but, 
they do not cope well with a different set of scenarios. In this 
paper, we modelled M2M communications by looking more 
closely at M2MDs’ behaviour. We then used the 
communication model to estimate the transmitted traffic. In the 
proposed method, the data traffic does not only rely on the 
statistical characteristics of the M2MD traffic. The extracted 
traffic has several other factors affecting it, such as the channel 
information capacity and multi-access technique used. We 
simulated the traffic commonly used in the literature using a 
discrete event simulator and compared it to the analytical results 
obtained by the proposed communication model. The results 
showed a significant improvement in predicting the number of 
packets with respect to time by using the proposed model.  

Although this paper proposes a comprehensive model for 
M2M communications, further work can be done in the 
simulations. Hence, the simulation results presented in this 
paper reflect the data transmission in simplified theoretical 
channels. In particular, the information capacity is considered 
to be affected only by the SNR. Furthermore, the channels are 
assumed to have a static SNR. Further work can also be done in 
calculating the value of the TPs. In particular, we assume that 
the TPs are time-invariant; which might not be the case for 
systems that generate traffic according to a specific pattern. 
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