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Statistical Assessment of Peer Opinions in Higher Education 
Rankings: The Case of U.S. Engineering Graduate Programs

Abstract

Unlike many other quantitative characteristics used to determine higher education 

rankings, opinion-based peer assessment scores, and the factors that may influence them, are not 

well understood.  Using peer scores of U.S. colleges of engineering as reported annually in US 

News and World Report (USNews) rankings, this paper seeks to provide some insight into peer 

assessments by statistically identifying factors that influence them.  With highly detailed data, a 

random parameters linear regression is estimated to statistically identify factors determining a 

college of engineering’s average USNews peer assessment score.  The findings show that a wide 

variety of college- and university-specific attributes influence average peer impressions of a 

university’s college of engineering including the size of the faculty, the quality of admitted 

students, and the quality of the faculty measured by their citation data and other factors.  Our 

estimation results show that average peer assessment scores can be readily and accurately predicted 

with observable data on the college of engineering and the university as a whole.  In addition, the 

individual parameter estimates from our statistical modeling provide insights as to how specific 

college and university attributes can help guide policies to improve an individual college’s average 

peer assessment scores and its overall ranking.

Keywords: University rankings; peer assessments; random parameters; linear regression
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1. Introduction 

The national and international demand for graduate degrees in higher education has 

continued to grow as many students seek to continue their education to advance their careers or to 

satisfy professional development.  Many universities have developed policies to handle this influx 

of students including expanding their masters-degree offerings and placing an increased emphasis 

on their doctoral programs. In turn, competition among universities for the best graduate students 

has often focused on the university’s placement in various university rankings (Dill and Soo, 2005; 

Williams and Van Dyke, 2008). With the information provided by these rankings as well as other 

sources, students seek admission at universities or academic programs that best suit their needs 

and abilities, often selecting the most highly ranked university to which they can be accepted.  

From the university perspective, university administrators increasingly use rankings as a marketing 

tool not only to attract the best students, but also to instill alumni pride (and subsequently increase 

donations) and to recruit better faculty members (Grewal et al., 2008).  Moreover, university 

funding from governmental and private entities can be related to ranking results and this has 

affected the operating policies of universities (Hazelkorn, 2008; Lo, 2014).  Thus, universities tend 

to pay very close attention to their position in the rankings and, due to a wide variety of internal 

and external pressures, they often alter policies to seek to improve their ranking whenever possible. 

This can have a long lasting and profound effect on the institutional direction of the university (Li, 

2016).

There are a number of widely-recognized university rankings, but the annual US News and 

World Report (USNews) rankings is arguably the most popular among universities in the United 

States.  In fact, over the years, a number of studies have investigated the effect of USNews rankings 

on university reputations.  For example, Machung (1998) provided evidence that suggested that 
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USNews’ rankings have had a significant impact on university admissions, donations, and so on.  

This study also showed that roughly two-thirds of parents found the information provided by 

USNews to be very useful.  In terms of additional evidence of the influence of these rankings, 

Hansmann (1999) indicated that Yale University’s admissions significantly increased when Yale 

reached the top position in the USNews ranking of law schools the year before.  Bowman and 

Bastedo (2009) also found that moving up to the top USNews ranking list provided a substantial 

increase in the following year’s admissions indicators.  In other work, Luca and Smith (2013) 

found that a one-rank improvement in the USNews ranking led to one percent increase in the 

number of college applications.  More recently, Yeung et al. (2018) found evidence that USNews 

university rankings were significantly correlated with university presidential salaries at public 

universities.  And many other studies have explored various dimensions and nuances of USNews 

rankings and their effect on higher education (Dichev, 2001; Merideth, 2004; Pike, 2004; Sweitzer 

and Volkwein, 2009; Bougnol and Dula, 2015). All of these studies suggest that USNews rankings 

can potentially play an important role in guiding university policies. 

Like most other university rankings, USNews ranking methodologies are not particularly 

transparent, meaning that the ranking formulas have not been published and universities are not 

able to directly predict their positions in the ranking.  While a few studies have tried to develop 

predictive techniques (for example Gnolek et al. (2014) provided a simple method based on the 

weights provided by the USNews to predict the USNews rankings), success in unraveling the 

determinants of rankings has been limited.

However, aside from the various quantitative measures used by USNews and other national 

and international rankings, almost all rely to some extent on peer evaluations of specific programs.  

In the USNews rankings of graduate engineering programs, peer assessment scores account for a 
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quarter of the total ranking score.  For USNews peer assessment scores, individuals from 

universities (typically engineering deans) are asked to rate the quality of specific programs on a 

scale from 1 (marginal) to 5 (distinguished).  Unlike the overall rankings, which are determined as 

some function of observable data on productivity, faculty size, entrance requirements, and so on, 

peer assessment scores are based on individual impressions of program quality.  These impressions 

are likely to be formed over many years from individuals’ personal experiences with faculty and 

graduates of the schools they are evaluating, the school’s overall reputation, and possibly the 

experiences of their colleagues and others that may influence their opinions (Collins and Park, 

2016).  Their impressions may also be influenced by their exposure to past rankings, and by the 

factual information used to support those past rankings.  Thus, there is little doubt that, at some 

level, past rankings affect peer assessment scores which in turn affect current rankings. 

Clearly one could argue that understanding the determinants of the peer assessment scores 

could be useful in guiding university programs to improve their overall rankings.  As mentioned 

above, in USNews college of engineering rankings, peer assessment scores are one of the key 

elements for ranking colleges of engineering (in fact they carry more weight than any other 

individual measure).  And, perhaps more importantly, they are the only element used to rank 

individual departments within the college of engineering. 

The intent of the current paper is to provide some insight into the determinants of peer 

rankings in higher education by developing a statistical model of the average peer assessment 

scores of U.S. colleges of engineering, as reported in the 2018 Engineering Graduate program 

evaluations provided in USNews.  The paper begins with a description of the methodological 

approach, followed by a discussion of the available data.  Model estimation results are then 
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presented and discussed in detail.  The paper ends with a summary of the findings and the 

conclusions of the study.

2. Methodological Approach 

We seek to develop a statistical model with the average peer program assessment score of 

U.S. graduate engineering programs as the dependent variable.  This average score, reported by 

USNews in their annual program rankings, is based on the averages of an annual survey distributed 

to U.S. universities with engineering programs where university engineering representatives 

(Deans and Department Chairs) are asked to rate all university engineering graduate programs on 

a scale of 1 (marginal) to 5 (distinguished).  USNews provides the resulting average peer 

assessment scores in tenths (such as 2.6, 2.7, 2.8, etc.).  Thus the dependent variable is continuous 

and can be modeled with a standard regression approach as

(1)ε ,  n n ny  βX

where, yn is the dependent variable (average graduate program peer assessment score for university 

n’s college of engineering),  is a vector of estimable parameters, Xn is a vector of explanatory β

variables for university n, and εn is a normally and independently distributed error term with zero 

mean and constant variance σ2.  

From a statistical modeling perspective, it is important to note here that the individual peer 

assessments (to which we do not have access) are bounded between 1 and 5, and could be 

appropriately modeled as an ordered discrete probability model (with discrete outcomes 1, 2, 3, 4 

and 5), such as an ordered probit or logit model (see Washington et al., 2011).  However, because 

we only have access to the average of all individual peer assessment scores, the average is not a 

discrete but instead a continuous variable (as noted above), but the average is still bounded between 

1 and 5.  This suggests that a regression model with both left and right censoring (at 1 and 5, 
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respectively) might be considered.  However, our estimation of a lower and upper censored tobit 

regression that accounted for this restriction (Tobin, 1958; Anastasopoulos et al., 2008; 

Washington et al., 2011) did not produce statistically different results relative to an uncensored 

regression represented in Equation 1.  This is likely due to the fact that our average peer assessment 

score data has few observations near the lower and upper censored values (1.9 is the minimum 

average peer assessment score, and 4.9 is the maximum).

Moving forward with the uncensored regression in Equation 1, to account for heterogeneity 

(unobserved factors that may vary across universities), we allow for the possibility that each 

university may have its own parameter for one or more of the explanatory variables.  This is 

referred to as a random parameters approach, and these models can be readily estimated with 

simulated maximum likelihood estimation methods (Washington et al., 2011; Mannering et al., 

2016).  For allowing the possibility of random parameters in Equation 1, we write estimable 

parameters (individual elements of the  vector) as,β

 (2)β  β  +   n n 

where β is the mean of the parameter estimate and φn is a randomly distributed term (for example 

a normally distributed term with mean zero and variance σ2).  We also allow for the possibility for 

the mean and variance of the parameter to be a function of explanatory variables so (Mannering, 

2018), 

(3) β βn n kn kn kn n  +  EXP         Z ω W

where β is the mean parameter estimate, Zn is a vector of explanatory variables that influence the 

mean of βn, Θ is a vector of estimable parameters, Wkn is a vector of explanatory variables that 

captures heterogeneity in the standard deviation σkn , ωkn is the corresponding parameter vector, 

and φn is a randomly distributed term that captures unobserved heterogeneity across universities.
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Estimation of the random parameters regression is undertaken by simulated maximum 

likelihood approaches because the required integration for parameter estimation is not closed form. 

Previous studies have shown that Halton draws provide a more efficient distribution of simulation 

draws than purely random draws (McFadden and Ruud, 1994; Bhat, 2003).  We use 1,000 Halton 

draws in our simulated likelihood functions, a number that has been shown to be more than 

sufficient to provide accurate parameter estimates (Halton, 1960; Bhat, 2003; Anastasopoulos and 

Mannering, 2009).  In this study, the normal distribution has been used in estimation of the 

explanatory variables because it provided the best overall statistical fit (other distributions such as 

the log-normal, uniform and exponential were not found to produce statistically better results than 

the normal distribution).

3. Data 

The average peer assessment scores are gathered from USNews’ 2018 rating of U.S. 

engineering graduate programs (published in 2017).  Along with these peer assessment scores, we 

extract other USNews-related data provided with their 2018 graduate program rankings including: 

engineering graduate student enrollment; total number of engineering faculty; number of 

engineering faculty in the National Academy of Engineering; average math Graduate Record 

Exam score of accepted engineering students; percent of engineering applications accepted; 

number of doctoral students graduated in the past year; and research expenditures per faculty.  In 

addition, we supplement this USNews data with information on university membership in the 

American Association of Universities (AAU), and whether the university is public or private.  We 

also gather information on many other factors for the university as a whole, such as national merit 

scholars admitted, incoming students’ average SAT scores, number post-doctoral appointees, and 
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so on (these data are available in Lombardi et al., 2017).  Finally, we gather citation information 

of engineering faculty and university faculty as a whole from Google Scholar including total 

citations, number of documents, h-index, and number of papers cited 10 times or more.  We 

attempted to gather all of these data for the 147 universities included in the 2018 USNews 

engineering graduate program rankings. However, we were unable to obtain all data eventually 

used in model estimation (see below) for 8 of these 147 universities, leaving us with a total of 139 

university observations with complete data.

4. Model Estimation Results 

Summary statistics for the variables found to be statistically significant in the model are 

presented in Table 1, and random parameter linear regression estimation results are presented in 

Table 2 for the 139 universities with complete data available.  Table 2 shows that a total of 13 

variables were found to produce statistically significant parameter estimates.  Of these, 3 were 

found to vary across observations (random parameters as shown in Equation 2).  Interestingly, we 

found no statistically significant evidence of heterogeneity in means and variances (see Equation 

3).  Depending on the structure of unobserved heterogeneity in the data, this is not an uncommon 

finding (Mannering, 2018).  The overall statistical fit of the model is excellent with an R-squared 

value of 0.933 and an adjusted R-squared value of 0.926, which accounts for the number of 

estimated parameters in the model (Washington et al., 2011).  These relatively high R-squared 

values likely reflect the nature of the ranking process used by USNews.  That is, with the exception 

of peer assessments, much of the ranking is determined by quantitative measures. Over time, peers 

observe USNews rankings from previous years (which are driven by these quantitative measures) 

and tend to adjust their peer assessment to more closely align with these past rankings. Thus, 
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quantitative measures, such as those included as explanatory variables in our model, become a 

very strong predictor of peer assessments, and this is reflected in our relatively high R-squared 

values.

To illustrate the overall statistical fit of the model, Figure 1 presents the observed versus 

predicted values, showing the strong overall statistical fit of the model.  It should be noted that the 

predicted values are determined based on individual-level parameters computed for those 

parameters determined to be random (varying across observations).  In the case of random 

parameters, the individual university parameters are computed using the simulated Bayesian 

approach described in Greene (2004).

Table 2 shows that all parameter estimates are statistically significant from zero at the 99% 

confidence level (except one which is at the 95% confidence level) using a two-tailed t-test. Please 

note that potential multicollinearity among variables in the model does not present an issue in 

model estimation. In the presence of multicollinearity, parameter estimates retain all desirable 

estimation properties with the only adverse consequence being high standard errors (Washington 

et al., 2011). Given the high t-statistics (reflecting low standard errors) of the variables included 

in our model multicollinearity is not playing a significant role in model estimation.

As indicated in Table 2, the variables found to be statistically significant in determining 

college of engineering average peer assessment scores are classified into broad categories of 

attributes relating to the college of engineering, and those related to the university as a whole.  

These are discussed in separate sections below.
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4.1 College of Engineering Attributes

Turning to college of engineering attributes first, Table 2 shows that the average math 

Graduate Record Examination (GRE) scores of incoming graduate students positively increases 

the average peer evaluation.  The parameter estimate shows that an 8 point increase in the math 

GRE scores of graduate students would result in roughly a 0.1 point increase in a college of 

engineering’s average peer assessment score.  It is important to note that even a 0.1 point increase 

can be important in separating out universities.  For example, the 2018 data had 17 universities 

with an average peer assessment score of 2.2, and a 0.1 increase for any one of the schools would 

lift them above this grouping.

Following on in Table 2, we find that universities that admit more than 31% of their 

graduate applicants tend to have average peer assessment scores that are 0.10396 less than 

universities that admit 31% or less.  During estimation this 31% threshold produced the most 

statistically significant results, and is likely an outgrowth of the admission policies of universities 

during this specific graduate-school admission cycle.  This result clearly reflects the importance 

of admission standards in the determination of average peer assessment scores.

The number of doctoral students graduated was also found to be statistically significant in 

determining average peer assessment scores.  The parameter estimate for this variable suggests 

that graduating 34 more doctoral students would result in a 0.1 increase in the average peer 

assessment score.  This seems to reflect the national trend that relates quantity of doctoral students 

graduated with the program quality, and the number of graduated doctoral students is used by 

USNews as an input to their college of engineering rankings.

Faculty size, in terms of total number of faculty, was also found to positively influence 

average peer assessment scores, with larger faculty size more likely to result in a higher score.  
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However, our estimation results show that there is a distinction between public and private 

universities.  For public universities, the model’s parameter estimate suggests that nearly 60 faculty 

would need to be added for a 0.1 increase in the average peer assessment score. In contrast, for 

private universities, the model’s parameter estimate suggests that about 35 faculty would need to 

be added for a 0.1 increase in the average peer assessment score.  This difference likely reflects 

the different expectations between public and private college of engineering faculty sizes, but may 

also reflect differences in overall faculty quality, areas of expertise, publicity-related matters, and 

so on.

The model estimation results also show that a college of engineering faculty-size threshold 

of 200 significantly influences average peer assessment scores.  This smaller-faculty indicator 

variable (1 if the total number of engineering faculty is less than 200, and 0 otherwise) shows that 

faculty sizes less than 200 tend to have an adverse effect on peer assessment scores, but that the 

effect of this indicator variable varies significantly across universities that are in this group (as 

indicated by the statistically significant standard deviation of the normally distributed parameter 

density function).  In estimating individual parameters using the simulated Bayesian approach 

suggested by Greene (2004), we find this smaller-faculty indicator is negative for roughly 68% of 

the universities and positive for 32%.  This indicator variable must be considered along the total 

number of faculty variables discussed above.  The fact that having fewer than 200 faculty can 

increase average peer assessment scores for 32% of universities (relative to having more than 200 

faculty) reflects the unobserved heterogeneity among existing college of engineering faculty.  In 

other words, it is not just about size, but about quality as well.  And, while we have some measures 

of quality relating citation data, a finding such as this (with both positive and negative effects) 

suggest that unobserved heterogeneity is playing an important role (Mannering et al., 2016).
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Increasing the ratio of graduate student enrollment per engineering faculty member was 

found to have a negative effect on average peer assessment scores.  This variable produced a 

statistically significant random parameter indicating significant variance in its effect across 

universities.  In estimating individual parameters for this variable, we find this parameter to be 

negative for all universities, but the fact that the values vary across universities suggests that 

unobserved factors relating to student and faculty quality are affecting the influence that this ratio 

has on average peer assessment scores.

As is well known, colleges of engineering have focused on recruiting faculty who are 

members of the National Academy of Engineering (NAE), which is an important input into 

USNews college of engineering rankings.  It is thus important to explore how NAE membership 

affects average peer assessment scores.  The estimation results in Table 2 show that the effect of 

this variable varies across universities (as indicated by the statistically significant standard 

deviation of the parameter estimate, indicating a random parameter) with the percent of the college 

of engineering’s faculty in the academy has a mean parameter estimate of 0.02182 (meaning that 

increasing NAE membership of the faculty by 4.5%, on average, will result in a 0.1 increase in 

average peer assessment score). However, the parameter has a large standard deviation of 0.0204.  

In estimating individual parameters, we find this variable to be positive for all universities 

(implying that adding an NAE faculty member always has a positive effect), but the effect ranges 

from a 0.1 increase in the average peer assessment score due to a 1.5% increase in NAE 

membership, to virtually no effect on the average peer assessment score.  This finding likely 

reflects a number of factors.  For example, the effect of NAE membership is likely to be variable 

because various NAE members may be at different stages in their career, thus contributing 

intellectually at different levels.  In addition, there is considerable variance in the academic impact 
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of NAE members (academic credentials are not all that is considered for academy membership), 

and this may also explain the variation in this parameter estimate.  All of this means that adding 

NAE members is likely to have a differential effect across universities with regard to average peer 

assessment scores; although, the effect will always be positive.

Finally for the college of engineering attributes, Table 2 shows that the Google Scholar h-

index of the 10th most cited engineering faculty member has a positive effect on average peer 

assessment scores.  By definition, an author’s h-index value indicates that the author has published 

h papers, each of which has been cited at least h times.  The use of the 10th most cited faculty 

member was found to provide the best statistical fit, with faculty 10 spots down on the college’s 

citation list capturing some measure of the depth of the scholarly output of the college of 

engineering, without unfairly penalizing colleges with smaller faculty numbers (as using the 30th 

or 40th most-cited faculty would).  While many colleges of engineering in the U.S. have been slow 

to adopt citation information available in sources such as Google Scholar, Scopus, and Web of 

Science, for faculty evaluation, it is clear based on this estimation result that such information has 

a statistically significant effect on average peer assessment scores.

Please note that many of the college of engineering attributes found to be significant are 

actual metrics that are used along with average peer assessment scores to determine actual USNews 

graduate college of engineering rankings.  While using the actual USNews ranking in the current 

year (or even in previous years) as an explanatory variable in our statistical model would violate 

fundamental regression assumptions (because it would be an endogenous variable setting up a 

correlation between X and corresponding error term ε), using the data as we have avoids this 

modeling issue (Washington et al., 2011).  However, the finding that many of the factors that 

determine average peer scores are also used to determine overall college ranking in USNews 
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formulas shows the fact that past USNews rankings are likely influencing current peer impressions.  

It is important to keep this dynamic relationship between peer impressions and actual USNews 

rankings in mind when formulating strategies to improve average peer assessment scores. 

4.2 Overall University Attributes

Colleges of engineering do not operate in a vacuum, and it is quite understandable that peer 

impressions of the college will be influenced by their overall impression of the university.  This 

“halo” effect has the reputation of the university inexorably influencing the reputation of the 

college of engineering within that university.  Thus one would expect highly prestigious 

universities to have engineering programs ranked above less prestigious ones even if all of their 

engineering metrics were identical.  The question becomes how to best define this “halo” effect 

with measurable university attributes.

Table 2 estimation results show that a university’s membership in the American 

Association of Universities (AAU) results in an improved peer assessment score of 0.1376 holding 

all else constant.  AAU membership requires that a wide variety and high level of research and 

scholarly output be achieved by the university.  While there are a few universities that may have 

been grandfathered in when the selection criteria were less rigorous, membership in the AAU is 

an excellent indicator of university reputation, and the statistical significance of this variable 

confirms the importance of AAU recognition. 

The estimation results in Table 2 also show that universities having 5 or more faculty at 

the university, as a whole, with more than 50,000 Google scholar citations enjoy higher peer 

rankings (an average 0.15848 higher peer assessment scores) than those universities that do not 

have as many of these faculty.  The 50,000 citation threshold seems to be the best statistical 
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measure of elite scholars in highly-citable fields that contribute to the overall “halo” effect of the 

institution. 

Interestingly, the combination of AAU membership and the highly-cited faculty indicator 

means that two identical colleges of engineering (in terms of other attributes) will have roughly a 

0.3 higher peer score (0.296) in a university that is a member of the AAU and has 5 or more faculty 

with more than 50,000 Google Scholar citations relative to a university without these attributes. 

This shows a substantial “halo” effect and, depending on the college of engineering’s overall peer 

score, a 0.3 increase in the peer score could move the college past the average peer scores of 30 or 

more universities.

The number of post-doctoral students at a university reflects the breadth and depth of its 

highest-level research programs and seems to be the hallmark of prestigious universities.  We find 

that the average number of annual postdoctoral researchers employed at the university as a whole 

(averaged over the past 15 years) positively influences the average peer assessment score of the 

college of engineering.  It should be noted that the number of post-doctoral students is a factor in 

AAU membership and other measures of university reputations.

Finally, Table 2 shows that the past 10-year average of math plus verbal (1600 maximum) 

Scholastic Aptitude Test (SAT) scores of students entering the university positively influence the 

average peer assessment scores of engineering programs.  The parameter estimates for this variable 

show that a 150 point increase in the average SAT score of all university students will result in a 

0.1 increase in the average peer assessment score of the university’s college of engineering.  The 

average SAT scores of admitted university students are obviously a strong indicator of student 

potential and the university’s overall reputation.  And, this university “halo” effect significantly 

influences average peer impressions of engineering college quality.
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5. Summary and Conclusions 

Many universities in the United States use USNews annual program rankings to advertise 

and promote their programs (using current rankings and or ranking trajectories over the years), and 

administrators from the university president down to deans and department chairs often use these 

annual rankings as a measure of their and their program’s success.  While the quantitative data 

submitted to USNews to rank colleges of engineering are clearly important in determining overall 

ranking, peer assessment scores (the impressions of others of a university’s program) invariably 

play an important role in overall program ranking.

This paper explored the factors influencing the USNews average peer assessment scores of 

U.S. engineering programs by estimating a random parameters linear regression using data 

extracted from a number of sources (USNews data, the Center for Measuring University 

Performance, Google Scholar).  Our estimation results showed that college-level factors such as 

total number of faculty, average math Graduate Record Examination scores, the percent of 

applicants accepted, number of doctoral students graduated, total number of engineering faculty, 

graduate student enrollment per faculty, percent of faculty in the National Academy of 

Engineering, and Google Scholar h-index all influence average peer assessment scores.  In 

addition, university-level factors such as university membership in the American Association of 

Universities (AAU), number of very highly cited faculty, number of post-doctoral appointees, and 

Scholastic Aptitude Test (SAT) scores of incoming university students were also influential in 

determining college of engineering peer assessment scores. 

Interestingly, although research funding is needed to produce many of the variables that 

were found to be statistically significant in the model (such as number of doctoral students 
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graduated, graduate student enrollment, and number of post-doctoral students), research funding 

itself was found to be statistically insignificant. This is a wake-up call to the many universities 

who blindly pursue research dollars without carefully thinking about the scholarly productivity 

that such dollars can potentially produce.

Over the years, because peer assessments are based on opinions and impressions, U.S. 

engineering colleges have tended to use promotional brochures, website enhancements, and other 

means to influence how peers assess them. However, our statistical analysis suggests that peer 

assessments are rooted much deeper in the measurable accomplishments of the college’s faculty, 

the quality of its students, and the quantifiable achievements of its university as whole. In fact, the 

model estimation results presented herein provide valuable insights as to how universities might 

improve their peer assessment scores.  While our statistical findings are strong and our model’s 

predictive capabilities are as well (see Figure 1), it is important to keep in mind that the 

determinants of average peer sores are likely to change over time, as measures that influence peer 

impressions vary in importance over time and new measures become more widely accepted.  Thus, 

it is important to undertake future statistical assessments in an effort to better understand the factors 

that affect peer assessments, and how the influence of these factors may change over time.
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Table 1. Descriptive statistics of key variables included in the model of average peer assessment 
score.

Variable description Mean Standard 
Deviation

Minimum Maximum

College of Engineering Attributes
Average math Graduate Records 

Examination (GRE) score
161.57 3.47 157 169

Percent of graduate applications accepted 
indicator (1 if greater than 31%, 0 
otherwise)

0.626 0.486 0 1

Number of engineering doctoral students 
graduated in previous year

78.31 73.82 0 398

Total number of engineering faculty if public 
university, 0 if private university

109.22 5.27 0 500

Total number of engineering faculty if 
private university, 0 if public university

32.33 64.42 0 376

Smaller-faculty indicator (1 if the total 
number of engineering faculty is less than 
200, 0 otherwise)

0.833 0.374 0 1

Graduate student enrollment per engineering 
faculty member 

8.95 5.77 2.5 36.3

Percent of faculty in the National Academy 
of Engineering 

2.86 4.18 0 20

Google Scholar h-index of the 10th most 
cited College of Engineering faculty 
member

31.26 20.13 1 85

Overall University Attributes
American Association of Universities (AAU) 

indicator (1 if the university is a member of 
the AAU, 0 otherwise) 

0.361 0.482 0 1

Highly-cited faculty members indicator (1 if 
the number of faculty members within the 
entire university with more than 50,000 
citations is 5 or greater, 0 otherwise)

0.320 0.468 0 1

Average annual number of post-doctoral 
appointees over the last 15 years

286.31 491.74 0 4890

Past 10-year average university Scholastic 
Aptitude Test (SAT) score (math plus 
verbal, 1600 maximum)

1204.95 136.63 744 1521
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Table 2. Random parameters linear regression of average peer assessment score (all random 
parameters are normally distributed).

Variable description Parameter 
estimate t-statistic

Constant -0.9921 -1.46

College of Engineering Attributes
Average math Graduate Records Examination (GRE) score 0.01181 3.18

Percent of graduate applications accepted indicator (1 if greater 
than 31%, 0 otherwise)

-0.10396 -4.45

Number of engineering doctoral students graduated in previous 
year

0.00295 6.80

Total number of engineering faculty if public university, 0 if 
private university

0.00170 5.27

Total number of engineering faculty if private university, 0 if 
public university

0.00285 6.91

Smaller-faculty indicator (1 if the total number of engineering 
faculty is less than 200, 0 otherwise) 
(standard deviation of parameter distribution)

-0.02279
(0.11619)

-0.050
(12.60)

Graduate student enrollment per engineering faculty member 
(standard deviation of parameter distribution)

-0.00269
(0.00466)

-1.57
(5.78)

Percent of faculty in the National Academy of Engineering 
(standard deviation of parameter distribution)

0.02182
(0.0204)

6.36
(11.57)

Google Scholar h-index of the 10th most cited College of 
Engineering faculty member

0.00155 1.97

Overall University Attributes
American Association of Universities (AAU) indicator (1 if the 

university is a member of the AAU, 0 otherwise) 
0.13760 5.01

Highly-cited faculty members indicator (1 if the number of faculty 
members within the entire university with more than 50,000 
citations is 5 or greater, 0 otherwise)

0.15849 5.64

Average annual number of post-doctoral appointees over the last 
15 years

0.00013 6.08

Past 10-year average university Scholastic Aptitude Test (SAT) 
score (math plus verbal, 1600 maximum)

0.00063 5.48

Number of observations 139

R-squared 0.933

Adjusted R-squared 0.926
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Figure 1. Comparison of observed vs. predicted average peer assessment rankings.
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