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Abstract

Electronic institutions are socially-inspired multi-agent systems, typically op-
erating under a set of policies, which are required to determine system opera-
tion and to deal with violations and other non-compliant behaviour. They are
often faced with a dynamic population of agents, social network, and environ-
ment and their policy should suit this context. However, there is usually a large
space of possible system policies, but no tractable systematic method to find
an appropriate policy given a joint state of the population, social network, and
the environment. We have developed a model of an energy system which en-
compasses several inter-connected community energy systems. We propose two
methods, an offline and an online procedure, which enable this system model
to approximately optimise its performance through adaptation and evolution of
its operating policy. The policies evolved by our procedures clearly outperform a
baseline policy we have designed by hand. Both procedures return policies which
are appropriate for a system, given some performance criterion, without a human
designer’s intervention. This could lay the foundations for the development of a
new methodological paradigm for the engineering of collective adaptive systems.

1 Introduction

Some agent systems are socially-inspired: they are governed by rules and poli-
cies (are “rule-based” or “norm-governed”) and the agents form virtual societies,
referred to as electronic institutions (EIs). These are typically open systems -
with heterogeneous and autonomous agents -, with no central control or decision-
making, and may be characterised by a dynamically changing environment. They
should ideally have mechanisms for dealing with unpredictable changes, respond-
ing adequately when the performance is deteriorating, enabling sustainability
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and durability. In order to determine their operation and to prevent undesir-
able or non-compliant behaviour, a possible consequence of their openness to
autonomous agents acting on behalf of third parties, these systems must have a
policy in place. Examples of the EI paradigm include sensor networks, robotic
swarms, and smart grids.

When this type of system is used to manage the access to a shared resource,
the problem is referred to as common-pool resource (CPR) management. Ostrom
[14] presents several design principles for enduring institutions in the context of
CPR management, including the notion that policies should be mutable in order
to suit the environment. Some authors have proposed mechanisms to opera-
tionalise these principles and apply them to the design of EIs [18], while also
drawing other concepts from political and economic science to enable the agents
to both self-govern and self-organise the adaptation of policies in the face of
potentially unpredictable changes in the environment, such as distributive jus-
tice [19, 18] and knowledge management [17]. Self-governing and self-organisation
both imply the active participation of the actors within an EI in the decision-
making process.

Other approaches for dealing with dynamic environments have been inspired
by Biology. Methods have been proposed to adapt autonomic components using
evolutionary computing (EC) techniques as a response to environmental changes,
e.g. [5, 4]. These components exhibit cognition, namely learning and decision-
making abilities, leading to collective self-awareness. Evolutionary approaches
have also been used in other contexts. For example, genetic programming (GP)
has been widely used to provide approximate solutions to optimisation problems,
e.g. [2], and to evolve and adapt rules of different sorts over multiple time scales
in the face of a problem space whose structure changes dynamically, e.g. [20, 9].

Integrated community energy systems (CESs) may be viewed as EIs for the
management of a CPR. They integrate distributed energy resources, such as pho-
tovoltaic cells and wind turbines, into local energy systems, meeting some or all
of the local energy demands. The local energy systems are connected to a wider
regional/national grid and local communities are not just passive consumers,
but also active prosumers who generate and supply energy and may provide
services to the larger system. This system has a dynamically changing environ-
ment: it faces fluctuations in the availability of resources, load, and demand over
time, caused by seasonality, geographic location, and shifts in weather patterns,
amongst other factors. The literature on CESs is mostly devoted to optimisa-
tion models for the planning and integration of these systems. In this project,
we have modelled and simulated an energy system consisting of many inter-
connected CESs and proposed methods for automatically constructing system
policies.

Our top-level goal is to explore how adaptation through evolution of policies
can assist the design of collective adaptive systems which remain sustainable
over time when faced with a dynamically changing environment, since policy
modification mechanisms are necessary in order to cope with potentially unpre-
dictable environmental changes. In a norm-governed system, a single policy may
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not be appropriate for all situations. For example, an energy system could have
the following modes of operation: decentralised (peer-to-peer) when demands are
low, with all the energy being produced by the local communities; centralised
when the system is overloaded, with communities trading exclusively with the
regional/national grid; or a hybrid approach for normal levels of load and de-
mand. Besides this, surprising events could occur which result in deterioration
of the performance, rendering the current policy no longer fit. This is expected
to be the case in energy systems with several distributed energy resources across
multiple communities: weather can be unpredictable and unstable, affecting the
production rate of intermittent renewable resource converters such as solar panels
and wind turbines. Ideally, systems should be able to recover from performance
losses after a reasonable number of time steps. In general, there could be a very
large space of possible system policies. There is no systematic way of finding an
appropriate policy given a joint state of the population of agents, their social
network, and the environment [16]; it may not be tractable or possible to search
the entire space of possible policies exhaustively.

Our research question is whether we can use GP to generate, adapt, and
evolve policies under which systems operate in order to ensure that they remain
sustainable over time. The specific problem we have addressed in this project is to
automatically find operating policies which are approximately optimal for a given
system according to some performance criterion - i.e., policies we would consider
appropriate. This could assist designers in building systems for which it is hard
to come up with a policy leading to good performance and which may be faced
with a dynamic environment requiring constant modification and adaptation of
policies. Even a human expert might lack not only the knowledge necessary to
determine whether a given policy will result in good performance or to compare
alternative policies, but also the creativity needed to design sufficiently good
policies. The “ideal” policy for a given system may be counter-intuitive to a
person, but an heuristic search over the space of possible policies, which is the
base of what we propose in this work, is not sensitive to that.

In order to address the problem specified above, we have started by creating
a model of an energy system in which several communities produce and consume
energy and used it to run simulations to observe how different policies behave.
We have used binary decision trees to represent policies. The key contributions
of this work are two optimisation methods for automatically finding appropriate
policies for this system model. The first one is an offline procedure which returns
a policy that approximately optimises system performance using GP. The second
method is an online procedure which evolves and adapts a population of policies
over time by applying them to the system in turn and using performance history
to increasingly improve the general quality of the policies in each new generation,
drawing inspiration from reinforcement learning (RL) techniques. Results show
that the policies resulting from these procedures clearly outperform a baseline
policy which we have designed by hand.

The modelling approach we propose and the procedures we have implemented
and tested for finding approximately optimal policies could provide the founda-
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tions for the development of a new methodological paradigm for the engineering
of collective adaptive systems. The results are encouraging and provide insight
into the effects of adaptation and innovation, through evolution of a set of poli-
cies, on the sustainability of a distributed system for CPR management, applied
to the context of CESs. This work is also innovative in the sense that it brings
together the paradigms of socially-inspired and biologically-inspired computing,
as we have drawn notions from EIs when modelling a system in which energy is
treated as a CPR and have used GP to evolve and adapt its policy.

This paper is structured as follows. In section 2, we discuss relevant back-
ground to this work, focusing on EIs, EC and GP, and CESs. In section 3, we
provide a description of the steps we have followed and the methods we have
implemented. In section 4, we discuss experimental results. In section 5, we
present the main conclusions which have emerged from this work and reflect on
directions for future research.

2 Background

In a position paper, Pitt and Hart [16] proposed the integration of the socially-
inspired design patterns of EIs with the biologically-inspired techniques used in
EC and GP to adapt and innovate the policy of a system as a response to dynamic
and unpredictable changes in the environment. In this section, we review some
key concepts which have enabled the implementation of this approach. In section
2.1, we explore the notion of EIs. In section 2.2, we review some work on EC
and GP. In section 2.3, we present concepts and issues related to CESs.

2.1 Electronic Institutions

Agent-based systems which are governed by rules and policies - for example, for
managing collective resources - are referred to as electronic institutions (EIs).
Agents form societies and often seek individual goals, as well as common objec-
tives. In open systems, agents are heterogeneous and may not comply with the
system policy. Self-organisation means that a certain system is able “to change its
organisation without explicit command during its execution time” [6]. This con-
cept has been applied to many fields, among which multi-agent systems (MASs)
[22].

Ostrom [14] proposes a view of self-organising institutions for the manage-
ment of CPRs, in which the rules of an institution govern the appropriation and
provision of shared resources and should be mutable by other rules and adapt-
able to suit the environment. Ostrom also identifies eight design principles for
the management of CPRs in enduring self-organising institutions after arguing
that, unlike predicted by game theory, CPR management does not necessarily
result in a “tragedy of the commons”, in which a group of self-interested and
rational agents eventually depletes a shared resource.

Pitt et al. [18] axiomatise these principles, expressing them in logical form.
This formal specification is used to implement a test bed to show that they re-
sult in enduring EIs for the management of CPRs. They note that a strategy
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resulting in a sub-optimal distribution in the short term might prove better in
the long term if the resource is not depleted. They analyse the problem of allo-
cating endogenous resources with an implementation of the Linear Public Good
(LPG) game [7]. They resort to a framework which enables the specification
of a protocol stack which agents can use to alter the policies of a system at
runtime [1]. The specification space is formally defined by a number of degrees
of freedom, such as the allocation method (ration, queue, etc.). The rules are
formalised using Event Calculus [12], which is an action- and event-oriented lan-
guage. The experimental results show that the principles defined by Ostrom do
entail enduring management of CPRs in self-organising EIs.

The principles, however, do not explicitly concern a notion of fairness and
justice. Pitt et al. [15] build on this work by analysing the mechanisms influenc-
ing the fairness of the result of a resource allocation. Agents self-organise the
allocation process by participating in a voting procedure. The authors note that
an outcome which is unfair at a given time step could be part of a sequence of
fair cumulative outcomes, a notion which is important for economies of scarcity.
Rescher [19] presents the concept of distributive justice, identifying several ways
of distributing resources based on legitimate claims. Pitt et al. draw inspira-
tion from Rescher’s work to study mechanisms which influence the fairness of
a resource allocation procedure, with the LPG game being once again used as
an example application. The results reveal robustness to purposeful violations.
Among the assessment metrics used are the number of remaining agents in a
cluster of the LPG game, the utility for the agents, and the fairness of the allo-
cation method.

2.2 Evolutionary Computing and Genetic Programming

Evolutionary Computing (EC), in its broader sense, draws inspiration from bio-
logical evolution to solve problems, involving population-based stochastic search
approaches [2]. Genetic Programming (GP) is based on Darwin’s theory of evo-
lution and the mechanisms it describes, namely natural selection, evolving so-
lutions to problems according to the principle of “survival of the fittest”. These
approaches have been widely used to find approximate solutions to many op-
timisation problems, as well as classification problems. Since it has been used
to evolve rules, which can be functions, heuristics, or other sorts of decisions, it
seems appropriate to apply GP to the evolution and adaptation of the operating
policy of a system.

Sim et al. [20] describe an innovative hyper-heuristic system. They propose
a lifelong machine learning (LML) system called NELLI, which learns contin-
uously over time using prior knowledge, applying it to a combinatorial opti-
misation problem. An Artificial Immune System (AIS) encompasses heuristics
and problems interacting in a network, with problems viewed as pathogens and
heuristics as antibodies. The key idea is that the problems “provide a minimal
representative map of the problem space” and each heuristic solves a niche of
problems. The system continuously generates new heuristics in response to a
stream of incoming problems and it was applied to the 1D bin-packing problem.
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The results show that it is efficient and scalable, outperforming human-designed
heuristics, and adapting efficiently to unseen problems.

Hart and Sim [9] describe NELLI-GP, the successor of NELLI. They address
the Job Shop Scheduling Problem (JSSP), in which several operations are sched-
uled for execution in multiple machines. Heuristics are sequences of rules and
they propose an ensemble of heuristics which are evolved using GP, with base-
line dispatching rules as building blocks. The rules themselves are formulated as
trees of operations, returning a real value which determines the priority of an
operation. GP is used to evolve new heuristics to be included in the ensemble,
as well as new rules to be part of the sequence of dispatching rules which make
up a heuristic. The results show that using an ensemble is preferable over a
single heuristic and that the system generalises well from the training set. The
ensembles are reusable: after being fitted to a data set, they can be used with a
different one (adaptation). Their system outperforms other scheduling rules and
hyper-heuristic approaches for the JSSP.

2.3 Community Energy Systems

Integrated community energy systems (CESs) are “a modern development to
reorganise local energy systems to integrate distributed energy resources and
engage local communities” [11]. They ensure self-supply of energy and are also
capable of supplying the larger energy system. Local communities are no longer
considered passive consumers, but rather active prosumers who also produce
energy. Following the motto “think globally, act locally”, CESs can help tackle
global energy and climate challenges. However, they face challenges; energy gen-
eration using intermittent renewable resources is difficult to forecast. Flexible
generation can be achieved with conventional fuels.

Much of the literature on this subject is concerned about the planning and
optimisation of integrated CESs. Huang et al. [10] review methodologies and
software which address community energy planning (CEP). Linear (LP) and
non-linear programming (NLP) are common techniques to obtain solutions to
this optimisation problem, although many approximation algorithms, such as
genetic algorithms (GAs), have also been developed [3].

2.4 Summary

In this section, we have reviewed some approaches which have been proposed
so far to deal with unpredictable changes in dynamic environments. Among the
references on EIs, there is a focus on the application of concepts from social, po-
litical, and economic science, such as self-organisation, self-governance, distribu-
tive justice, or knowledge management, to digital organisations as a mechanism
for enabling their actors to collectively adapt and modify policies. The literature
on EC includes studies of how different biologically-inspired techniques may be
used to adapt autonomic components, such as agents, and their social network
as a response to environmental changes. A relevant concept in this context is col-
lective self-awareness, which is achieved when the agents are capable of learning
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from past experience and making decisions autonomously. We have also reviewed
several applications of GP to a number of problems, e.g. optimisation. Rules of
different sorts are represented as trees and are evolved using GP. The sources
on CESs are mainly concerned with planning this sort of system and optimising
energy consumption, making use of tools for modelling and simulation. The ulti-
mate goal of our work has been to draw inspiration from the concepts discussed
in the reviewed literature to propose a new methodological paradigm for the
design of collective adaptive systems. In particular, we have explored methods
for approximately optimising policies in an EI using GP.

3 Methodology

This section describes the methodological approach followed in this work for the
modelling and simulation of an energy system which is capable of adapting its
policy over time.

3.1 Model

The first step towards answering the research question we propose in this work,
whether adaptation and innovation of the policy of a system through evolution
are capable of leading to improved endurance and sustainability, has been to
model an energy system encompassing several CESs. In this model, energy is
treated as a CPR and communities are modelled as agents; they have energy
demands and can generate energy from a number of renewable sources. Three
sources of renewable energy have been considered, namely solar power, wind
turbines, and hydropower converters.

Communities have neighbours and are part of an energy system. The energy
system can also generate and feed energy to compensate for any lack of self-
generated power. Communities are able to trade energy amongst themselves,
using a simplified version of the Contract Net Protocol [21], and with the central
system. At each time step, the energy system uses the current operating policy
to determine the mode of operation of the system for that time step, as explained
in detail in section 3.2. Figure 1 summarises the domain model of the system.

At each time step, the utility of the energy allocation method is calculated
for each community, taking into account the costs of importing energy, both
from other communities and the central system, and storing energy produced
in excess, as well as the revenues from exports. The cumulative satisfaction for
community i at time step t is calculated with the most recent utility value, uit,
as follows:

sit = (1− w)× sit−1 + w × uit, with si0 = 0 (1)

The w parameter weights the importance of past satisfactions and the current
utility when updating a community’s satisfaction.
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Fig. 1. Domain model of the energy system

3.2 Representation, Innovation, and Adaptation of Policies

Given the need to evolve and adapt the operating policy of the system, we
represent it with decision trees. At each time step, the policy is applied in order
to determine a mode of operation. In our model, the mode of operation has three
degrees of freedom:

– What the communities should do with the energy they have produced at the
current time step: either use it to satisfy their own demands (self-supply) or
sell it all to the central system.

– In the case of self-supply, what the communities should do with any excess
of energy: sell to the central system; store as much as capacity allows and
sell the excess; trade it with neighbours and sell the excess; store, trade, and
sell; or trade, store, and sell.

– If any demands have not been satisfied, the central system will ensure they
are met by first reselling the energy which has been purchased from the com-
munities and producing energy on demand (accounting for production costs)
when necessary. The communities receive the energy according to several
possible criteria: greatest demand, greatest production, lowest satisfaction,
random, or ration.

For each degree of freedom, a decision tree selects one of the possible values
with which it can be instantiated. There are therefore 2 × 5 × 5 = 50 possible
modes of operation at each time step. The inner nodes of the tree test the
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values of system-wide variables which are collected at each time step, returning
a Boolean value (i.e., the decision trees are binary). Based on the literature
about EIs, CPR management, and CESs, as well as on knowledge regarding the
system model we have created, we have selected the following system variables
to be collected and tested at each time step:

– Number of communities (fixed)
– Average satisfaction across all communities
– Total energy production at the communities
– Total self-supply of energy
– Average difference between self-supplied energy and demand
– Average difference between current assets (energy produced and stored) and

demand
– Number of unsatisfied agents (negative satisfaction)
– Total energy stored
– Total demand
– Total difference between current assets (energy produced and stored) and

demand
– Average capacity left
– Gini index of satisfaction inequality

As a first step, we devised a default policy whose performance could be
compared to that of the operating policies which are evolved by the procedures
discussed in this paper. Figure 2 shows the default decision tree for selecting
what the communities should do with the energy they produce (the first degree
of freedom), as an example of the type of decision trees which are evolved and
manipulated by our procedures.

Satisfaction < 0

Unsatisfied > N/4

self-supply

Gini ≥ 0.75

self-supply sell

Production + Stored > Demand

self-supply

Gini ≥ 0.75

self-supply sell

T

T

F

T F

F

T

F

T F

Fig. 2. Default decision tree encapsulating rules which determine what the communities
should do with the energy they have produced at each time step.

We considered two approaches for approximately finding an optimal policy
for the system. The first approach is GP optimisation and is detailed in section
3.3. The second approach consists of adapting and evolving policies in runtime
and is explained in section 3.4.

3.3 Offline Procedure

In order to find an optimal operating policy a priori, we implemented a GP
algorithm which evaluates alternatives by running the model with each of a
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population of policies for the number of time steps corresponding to a week
(168, since time steps represent hours). A performance metric is calculated as
follows, where satisfaction and the proportion of unsatisfied agents are averaged
out after a week has passed:

performance = α× average satisfaction

− β × average proportion of unsatisfied agents
(2)

The α parameter determines how much the average satisfaction favours the
performance measure and the β parameter determines how much the average
proportion of unsatisfied agents penalises it (α > 0 and β ≥ 0). An initial popu-
lation of operating policies (each a tuple with three decision trees, one for each
degree of freedom) is generated randomly using “ramped half and half” [13].
In GP optimisation, the set of function nodes is usually finite; in this case, the
set of possible inner nodes for the decision trees is theoretically infinite, so we
randomly initialise a large set of function nodes at the start of the procedure. At
each iteration of the optimisation procedure, the operating policies are evaluated
in parallel by running instances of the same model for 168 time steps (a week)
and computing a performance value. The performance values are then used as
fitness values to evolve a new generation using standard GP operations, namely
reproduction, crossover, and mutation, which are described by Koza [13]. Re-
production randomly selects individuals to be copied to the following generation
with a probability which should grow monotonically with respect to the fitness
value (we have used Softmax probabilities). The crossover operation randomly
selects pairs of individuals, again with a probability which is higher the higher
their fitness, and crosses them element-wise, each element being a tree in the
triple which makes up an operating policy. The mutation operation also selects
individuals based on their fitness and creates new individuals by replacing parts
of their trees with randomly generated subtrees; its goal is to introduce vari-
ability when searching for new solutions. The procedure keeps track of the best
operating policy it has found so far and returns it after a certain number of
generations have been evolved. This policy is the one which led to the great-
est performance value after running the model, and therefore is approximately
optimal. This procedure is described in pseudocode by algorithm 1.

3.4 Online Procedure

Adapting and evolving policies in runtime poses further challenges. When search-
ing the space of possible operating policies in order to optimise system perfor-
mance, we do not have a way of assigning a fitness value to alternative policies
in order to compare them a priori, as would be necessary to implement “hill
climbing” or other local search methods. The performance of a policy must be
measured by first running the model with it for a certain amount of time. The
method we propose draws inspiration from both GP and RL. An initial popu-
lation of operating policies is randomly generated using the “ramped half and
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Algorithm 1 Finding an optimal policy a priori using GP

Choose model params to generate instances of the same model
Choose parameters for the initial population: max dt depth gen, n dt each,
max ot depth gen, n ot each
Choose parameters for evolution: max dt depth, copy perc, cross perc, mut perc,
elitist
Choose number of iterations: N
population← generate initial population(max dt depth gen, n dt each,
max ot depth gen, n ot each)
max fit ← −∞
best policy ← ∅
for Gen = 1, Gen ≤ N ; Gen← Gen+ 1 do

fits ← ∅
for policy ∈ population do

model← Model(params)
model.set policy(policy)
for i = 0, i < WEEK DURATION , i← i+ 1 do

model.step()
end for
fit = model.get average fitness() (Equation 2)
if fit > max fit then

max fit ← fit
best policy ← policy

end if
fits ← fits ∪ {(policy,fit)}

end for
population← evolve new generation(population,fits,max dt depth, copy perc,
cross perc,mut perc, elitist)

end for
return best policy

half” method and a policy is selected when the model starts running. A deci-
sion is made periodically about which operating policy in the current population
should be tried. An operating policy is selected every 24 time steps (hours) based
on Softmax probabilities calculated from the current fitness values. After a pol-
icy i has been put in use for 24 time steps, a reward is calculated based on the
observed performance:

rti = performancet (3)

The observed system performance, performancet, is calculated as in equa-
tion 2, considering the average satisfaction and average proportion of unsatisfied
agents over the most recent 24 time steps. The fitness value of a policy i, fiti,
is initialised to 0. After applying policy i on the system for 24 time steps, its
fitness value is updated as follows:
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fiti ←

{
rti if the policy had not yet been tried

(1−Ω)× fiti +Ω × rti otherwise
(4)

Ω is the learning rate, weighting the importance of the most recent reward
to the overall fitness of the operating policy. At each 336 time steps, two weeks’
time, the fitness values are used to evolve a new generation of operating policies,
using standard GP techniques as those described earlier. In order to promote
variability among the members of the population, new random policies are added
to each generation, besides those resulting from the reproduction, crossover, and
mutation operations; this is the hypermutation step proposed by Grefenstette
[8] and it is introduced here because the population size should be small1. When
calculating Softmax probabilities for selecting policies to be tried on the system,
we have found it beneficial to divide all fitness values by a temperature parame-
ter, which is a positive value that is decremented over time, divided by 2 every
168 time steps (a week’s time) until it reaches 1. This is intended to promote
early exploration of many different policies and thereby to prevent premature
convergence to good but sub-optimal policies. The population size is also de-
creased linearly over time. If an elitist strategy is employed, the best policies
found so far are guaranteed to be passed on to the following generation, thus
becoming increasingly likely to be selected as less and less exploration takes
place. A high-level pseudocode description of this runtime procedure is given in
algorithm 2.

This approach does, in our view, address the problem of reconciling the fol-
lowing:

– We want to evolve and adapt the current set of policies, converging to an
approximately optimal performance.

– We are unable to know how good a policy is until it has been tried on the
system model.

– Policy selection and adaptation must be done in runtime; the system must
not backtrack after trying a policy and policies must be tried sequentially.

The method we propose is intended to be a mechanism for enabling explo-
ration of different policies, ideally converging to policies which maximise perfor-
mance. Past history is taken into account when iteratively updating the fitness
values of the operating policies which have been tried, drawing inspiration from
RL techniques in the sense that we reward good policies and penalise bad policies
after their performance on the system has been observed. The GP part of the

1 Testing policies every 24 time steps and evolving a new generation every two weeks’
time means that a maximum of only 14 policies out of each generation can be tested.
Fitness values are initialised to 0, which could be an overestimation. Large population
sizes would cause many policies not to be tested, which could result in many bad
policies being added to following generations. Hypermutation promotes variability
in smaller populations.
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Algorithm 2 Evolving a population of operating policies in runtime

Choose model params
Choose parameters for the initial population: max dt depth gen, n dt each,
max ot depth gen, n ot each
Choose parameters for evolution: max dt depth, copy perc, cross perc, mut perc,
elitist, lr, initial temperature, gen threshold
model← Model(params)
population← generate initial population(max dt depth gen, n dt each,
max ot depth gen)
current policy ← select random policy(population)
model.set policy(current policy)
temperature← initial temperature
fits ← ∅
initial population size← len(population)
population size← initial population size
generation← 1
while not terminated do

model.step()
if timestep mod DAY DURATION = 0 then

reward← model.get last avg fitness()
fitness ← update fitness(current policy, reward) (Equation 4)
if current policy not in fits then

fits ← fits ∪ {(current policy,fitness)}
else

Update fits with (current policy,fitness)
end if
current policy ← select random policy(population,fits, temperature)
model.set policy(current policy)

end if
if timestep mod WEEK DURATION = 0 ∧ temperature > 1 then

temperature← max(temperature/2, 1)
end if
if timestep mod (2×WEEK DURATION) = 0 then

if generation > gen threshold∧population size > initial population size/2
then

population size← max(population size− initial population size/3,
initial population size/2)

end if
population← evolve new generation(population,fits, population size,
max dt depth, copy perc, cross perc,mut perc, elitist)
generation← generation+ 1

end if
end while
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procedure is the search method, intended to find a population of policies which
approximately optimise system performance by taking the iterative updates to
the fitness values into account.

4 Experimental Results

In this section, we present and discuss the results of the experiments we have
carried out with our system model and proposed methods.

4.1 Performance of the offline optimisation procedure

Regarding the offline procedure for the optimisation of a single operating policy a
priori, experiments have been carried out as an attempt to answer the following
questions:

1. For the same model instance, to what extent is the quality of the evolved
policy (in terms of the resulting system performance) robust with respect to
the stochastic nature of the optimisation procedure?

2. For the same model instance, are the solutions obtained with different runs
of the optimisation procedure similar in terms of their consequences, i.e., are
the same modes of operations applied in the same context?

In order to answer these questions, the optimisation procedure described in
section 3.4 was run 30 times on the same model, each time returning an oper-
ating policy which approximately maximises the performance metric given by
equation 2, with α = 1 and β = 5. At each time step, each community’s satis-
faction was updated with w = 0.5 (refer to equation 1). The decision trees in
the initial population had a maximum depth of 3, with a maximum permissible
depth of 5 for new trees resulting from crossover. The initial population size is
182 and, when evolving a new generation, 10% of the new population results from
the reproduction operation, 40% from crossover, and 50% from mutation. This
parameter setting is summarised in table 1. The median maximum performance
value after 30 executions of the procedure was 8.122. The sample standard devi-
ation was 2.94× 10−2, which shows that there is little variation in the maximum
performance value when running the procedure several times. This enables us
to conclude that the procedure is indeed robust with respect to the stochastic
nature of GP, as the performance of the solutions found is approximately the
same for the same model when comparing different executions. The performance
value obtained for the same model with our default policy was 3.519, showing
how hard it is for a system designer to find an optimal policy and the usefulness
of the optimisation procedure. The policy obtained using GP (approximate) op-
timisation results in a clearly better performance when compared to the default
policy we designed.

2 While this would be a small population size for many GP problems, we have empir-
ically determined it to be appropriate in this case.
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α 1

β 5

w 0.5

max dt depth gen 3

max dt depth 5

initial pop size 18

copy perc 0.1

cross perc 0.4

mut perc 0.5

elitist False, apply the reproduction operation (probabilistic copy of in-
dividuals)

Table 1. Parameters for the experiments with the offline optimisation procedure

In order to answer the second question, we then took each of the 30 operating
policies obtained and compared the modes of operation selected at each time
step. Recall that a mode of operation is given by instantiating the three degrees of
freedom mentioned in section 3.1. We then counted the number of unique modes
of operation selected at each time step; the median value was 5. This means
that, in the case of our system model, there are several locally optimal policies,
resulting in different sequences of modes of operation, yielding approximately
the same system performance. There is, however, a certain degree of similarity
between these sequences, given the median value of 5 out of a possible maximum
of 30 unique modes of operation at each time step (given that there are 50
possible modes, as mentioned in section 3.2). Table 2 summarises the results
obtained after 30 runs of the offline optimisation procedure.

Median maximum performance 8.122

Sample standard deviation of the maximum performance 2.94× 10−2

Median number of unique modes of operation at each time step 5

Performance with the baseline default policy 3.519

Table 2. Results after 30 runs of the offline optimisation procedure (baseline default
policy for comparison)

All solutions obtained from different runs have approximately the same per-
formance value. However, the fact that these solutions are fairly diverse in terms
of the sequences of modes of operation in which they result3, as discussed above,
indicates that they are, in fact, local optima and that there could be an even
better solution which the procedure has failed to find. We began the discussion
in this paper by claiming that it is hard to find an optimal policy given a certain

3 This refers to functional diversity (a sequence of modes of operation is a consequence
of applying one or more policies to the system over time), rather than structural
diversity (the shape of the trees which make up a policy).
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environment. Indeed, since the mode of operation chosen at a given time step
will affect future performance in the case of our system model, we would have
to consider all possible sequences of modes up until a certain time step, select
one which maximises performance, and then come up with a set of rules which
results in that sequence. This is a combinatorial problem which quickly becomes
intractable as the final time step grows and this formulation is only applicable
to cases where the final time step is bounded; in real-world cases, the system is
continuously running and our online method for adaptation and evolution of the
operating policy in runtime seems more useful.

4.2 Performance of the online optimisation procedure

The offline optimisation procedure returns a single policy which has been eval-
uated on the system for 168 time steps (a week). The online procedure, on the
other hand, tests several policies on the system over time for a number of time
steps corresponding to many weeks, with one policy affecting the performance
of subsequent policies. In this section, we try to compare the performance of
the online procedure to that of the offline procedure by calculating an average
weekly performance (last 168 time steps), but the reader should keep in mind
that the performance metrics for both procedures are not exactly the same. Re-
garding the online optimisation procedure, experiments have been carried out
as an attempt to answer the following questions:

1. Is the system able to improve its performance over time by evolving and
adapting its policy?

2. For the same model instance, does the system usually converge to approx-
imately the same performance as the one obtained by running the offline
optimisation procedure?

In order to answer the questions above, we have executed the online proce-
dure upon the same model instance 30 times. At each time step, average daily
(last 24 time steps) and weekly (last 168 time steps) performance values have
been calculated, with the goal to see how many times the weekly performance
successfully converged to a value close to 8, which is the approximately optimal
value found by the offline procedure. Again, α = 1, β = 5, and w = 0.5. The
maximum depth for the decision trees is the same as before. The initial popula-
tion size is 12, the initial temperature is 320, Ω = 0.5, and, when evolving a new
generation, 20% of the new population is the result of copying individuals using
an elitist strategy, 10% is the result of crossover, 10% is the result of mutation,
and the remaining 60% are new policies generated randomly with the intention
of introducing more variability and preventing early convergence to sub-optimal
policies. This parameter setting is summarised in table 3.

Figure 3 shows the weekly performance after 1800 time steps for each of the
runs. The performance values tend to be close to the one reported in section 4.1,
which means that the online procedure does usually converge to the same per-
formance as the one obtained with the offline procedure. These are good results,
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α 1

β 5

w 0.5

max dt depth gen 3

max dt depth 5

initial pop size 12

initial temperature 320

Ω 0.8

copy perc 0.2

cross perc 0.1

mut perc 0.1

elitist True
Table 3. Parameters for the experiments with the online optimisation procedure

considering that the procedure is essentially testing several policies in runtime,
optimising by means of trial and error. However, convergence is expected to
depend on how easy it is to find an optimal system policy in a particular prob-
lem domain. We argue that it is more important to converge to a population of
good policies than it is to find an optimal policy, even though the method did
converge to the hypothetically optimal performance (the one obtained with the
offline optimisation procedure) in most of the tests which have been carried out.

Fig. 3. Weekly performance after 1800 steps for each of the 30 runs of the online
procedure

The graph of figure 4 shows how the daily and weekly performance values
evolve over time for one of the runs, in which the performance converged to a
value close to the performance obtained with the offline procedure. The graph
shows that the procedure is able to improve system performance over time. With
some initial instability caused by exploration of several different policies (due to
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a larger value of the temperature parameter), the weekly fitness increases over
time, converging to a value close to 8. Online adaptation and evolution of system
policies seems to have more practical advantages if we realistically assume that
the system behaviour over time is not known, or hard to predict, a priori and
that the system is running continuously, without a bounded final time step.
These assumptions seem appropriate for real-world use cases of EIs.

Fig. 4. Daily (last 24 time steps) and weekly (last 168 time steps) performance when
adapting and evolving the operating policy in runtime.

5 Conclusions and Future Work

This paper describes in detail our research into how adaptation through evolu-
tion of policies can assist the design of collective adaptive systems which remain
sustainable over time in the face of dynamic environments that may change un-
predictably. The problem we have addressed has been to find operating policies
which are approximately optimal for a system, given some performance crite-
rion. We have modelled an energy system encompassing several integrated CESs
where each community is an agent and energy is treated as a CPR. We have pro-
posed mechanisms which enable this system model to optimise its performance
over time through adaptation and evolution of its operating policy. The results
show that these optimisation procedures are useful and could lead to a better
understanding of mechanisms which enable a system to remain sustainable over
time. The policies evolved by our procedures clearly outperform the policy we
have initially designed ourselves.

The representation of system policies has been a key issue throughout the
modelling of the system. Representing the policies with binary decision trees has
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enabled us to apply GP operations when generating and evolving them. This
representation is also appropriate for drawing explanations about the output of
our optimisation procedures. The trees can easily be translated into a sequence
of potentially nested if-then-else rules, which may help human designers to
gain insight about the system operation and what makes a good policy, enabling
them to construct better policies themselves or to provide more useful “building
blocks” for the procedures to find policies automatically.

The methods we have presented return policies which are appropriate for a
system, given some performance criterion, without a human designer’s interven-
tion. The contributions of this work are highly significant, since our proposal,
for which we presented a proof of concept, could lay the foundations for the
development of a new methodological paradigm for the engineering of collective
adaptive systems. Our approach could be used to assist system designers, so far
required to rely mostly on their own intuition, in systematically finding good
policies, which could generally lead to better performance and provide support
for adaptation mechanisms in the face of non-deterministic changes in dynamic
environments. In future work, we would like to look into increasing the com-
plexity of the energy system model which we have created in this project and
to further study our optimisation procedures, applying them to other problem
domains and exploring other heuristic approaches besides GP.
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