
SmartEdge: An End-to-End Encryption Framework for an
Edge-enabled Smart City Application

Mian Ahmad Jana,∗, Wenjing Zhangb,2,∗, Muhammad Usmanc,∗, Zhiyuan Tand,∗,
Fazlullah Khana, Entao Luoe

aDepartment of Computer Science, Abdul Wali Khan University Mardan, Pakistan
bSchool of Information Science and Technology, Hebei Agricultural University, China

cDepartment of Computer Science and Software Engineering, Swinburne University of Technology,
Australia

dSchool of Computing, Edinburgh Napier University, United Kingdom
eSchool of Electronics and Information Engineering, Hunan University of Science and Engineering, China

Abstract

The Internet of Things (IoT) has the potential to transform communities around

the globe into smart cities. The massive deployment of sensor-embedded devices in

the smart cities generates voluminous amounts of data that need to be stored and pro-

cessed in an efficient manner. Long-haul data transmission to the remote cloud data

centers leads to higher delay and bandwidth consumption. In smart cities, the delay-

sensitive applications have stringent requirements in term of response time. To re-

duce latency and bandwidth consumption, edge computing plays a pivotal role. The

resource-constrained smart devices at the network core need to offload computationally

complex tasks to the edge devices located in their vicinity and have relatively higher

resources. In this paper, we propose an end-to-end encryption framework, SmartEdge,

for a smart city application by executing computationally complex tasks at the network

edge and cloud data centers. Using a lightweight symmetric encryption technique, we

establish a secure connection among the smart core devices for multimedia streaming

towards the registered and verified edge devices. Upon receiving the data, the edge de-

vices encrypts the multimedia streams, encodes them, and broadcast to the cloud data
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centers. Prior to the broadcasting, each edge device establishes a secured connection

with a data center that relies on the combination of symmetric and asymmetric encryp-

tion techniques. In SmartEdge, the execution of a lightweight encryption technique at

the resource-constrained smart devices, and relatively complex encryption techniques

at the network edge and cloud data centers reduce the resource utilization of the en-

tire network. The proposed framework reduces the response time, security overhead,

computational and communication costs, and has a lower end-to-end encryption delay

for participating entities. Moreover, the proposed scheme is highly resilient against

various adversarial attacks.

Keywords: Internet of Things, Smart City, End-to-End Encryption, Smart Devices,

Network Edge, Cloud Data Centers.

1. Introduction

The Internet of Things (IoT) bridges the gap between the real-world ubiquitous de-

vices and the virtual world of Internet [1]. This technological growth has the potential

to transform communities around the globe into smart cities by creating a new era of

urban life [2]. The vast deployment of heterogeneous sensors in smart cities generates

huge volumes of real-time uninterrupted data streams [3]. These streams need to be ef-

ficiently analyzed to provide seamless delivery of various services to the inhabitants of

smart cities [4]. To extend their lifetime, the resource-constrained sensors, also known

as smart devices, need to offload computationally complex operations to the cloud data

centers [5].

The delay-sensitive smart cities’ applications have strict requirements in term of

response time [6, 7]. These applications expect the responses to be received within

the pre-defined deadlines. The conventional cloud computing is unable to meet such

demands due to the presence of unreliable public networks between the smart devices

and cloud data centers. The massive amount of data generated by smart devices su-

persede the storage and bandwidth capabilities of the cloud data centers. Processing

huge volumes of data at the cloud results in a much higher latency and response time

for smart devices, which is unacceptable for delay-sensitive applications [8]. In these
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applications, edge computing plays a crucial role by bridging the gap among the smart

devices and cloud data centers [9, 10]. The resource-constrained nature of these de-

vices means that computationally complex and resource-consuming operations need to

be offloaded to the edge devices and cloud data centers. The migration of computa-

tionally complex tasks ensures that applications experience lower latency and are able

to provide high-quality services to the inhabitants of smart cities. The edge devices

at the network edge are in proximity to smart devices and perform resource-intensive

operations by prioritizing the processing of delay-sensitive services. Moreover, they

offload the delay-tolerant services to the cloud data centers [11].

The massive deployment of smart devices and the presence of network edge in

smart cities increases the reliability and scalability of services. However, as the number

of connected devices increases, management of security credentials becomes a chal-

lenging issue [12]. It becomes impractical for each device to connect to a cloud data

center to update its security credentials. In an end-to-end smart cities’ application,

all the participating entities need to be secured against various malicious threats. For

example, the smart surveillance cameras ensure safety and security of inhabitants by

reducing the overall criminal activities [3]. An adversary may eavesdrop on the im-

ages, audio and video clips, captured by these cameras to infer trajectories of smart

cities’ residents and inherently endanger their privacy. In smart cities, the network

edge perform various tasks such as malware scanning and software updates, on behalf

of resource-constrained smart devices. Unlike the smart devices, the network edge has

abundant of resources and are often the target of various adversarial attacks [13]. A

spyware-infected server in a cloud data center may steal security credentials that may

allow an adversary to steal mission-critical data. The download of maliciously injected

data from the cloud may further expose the residents to various vulnerabilities [14].

Although off-the-shelf encryption, authentication and anonymity algorithms might

be applied directly to address these security and privacy challenges, the adversaries

may still infiltrate a smart city environment. Most of these algorithms involve com-

putationally complex cipher suites that require abundant of storage and computational

power [15]. However, these smart devices are either battery-powered or rely on energy

harvesting techniques [9]. To alleviate the escalation in resource congestion, computa-
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tionally complex and resource-intensive operations need to be offloaded to the network

edge [8]. Each edge device, enacting the role of a gateway, ensures an efficient utiliza-

tion of the cloud data centers’ bandwidth.

To protect the communication among smart core devices, edge devices, and cloud

data centers, we propose an end-to-end encryption framework, SmartEdge, for seam-

less and reliable transmission of multimedia streams. The smart devices forward mul-

timedia streams to edge devices for resource-intensive operations, i.e., encoding and

encryption. The encoded and encrypted data are uploaded to the cloud for partial de-

cryption that can be downloaded and fully decrypted by the end users, upon estab-

lishing a secured session. In view of limited resources of smart devices, most of the

resource-intensive operations are performed at the edge and cloud data centers. The

major contributions of SmartEdge are as follow.

1. A lightweight authentication framework is proposed to secure the transmission

of multimedia streams among the smart devices, located at the network core.

This framework relies on symmetric encryption, i.e., advanced encryption stan-

dard (AES) [16] with a key length of 128 bits, for establishing a secured session

among the smart devices.

2. To verify the authenticity of edge devices, we propose a simple registration pro-

cedure. Prior to data collection from smart devices, each edge device registers

itself with a base station that maintains a database of legitimate smart devices in

a smart city application.

3. A relatively complex authentication framework is proposed to allow the edge

devices to exchange data with cloud data centers. Using high efficiency video

coding (HEVC) [17], each edge device encodes the data, and uploads to the

cloud upon encryption, that can be downloaded by the end users. This framework

executes an AES-256 bit at the network edge and an asymmetric algorithm, i.e.,

RSA 2048-bit, at the cloud end.

The rest of this paper is organized as follows. In Section 2, related works from the

literature are provided. In Section 3, we provide the network model of our proposed

SmartEdge framework. In Section 4, we present a lightweight authentication approach
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adopted by SmartEdge at the network core. In Section 5, the registration and verifi-

cation of SmartEdge at the network edge is presented. In Section 6, a secured data

transmission and storage approach adopted by SmartEdge is presented. In Section 7,

we provide the experimental results of our framework. Finally, the paper is concluded

in Section 8.

2. Related Work

The use of IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN)

makes it possible to interconnect real-world physical devices with the Internet hosts,

e.g. smartphones, laptops, desktops and computing clouds, to form the Internet of

Things [18]. The Constrained Application Protocol (CoAP) is used as the de-facto

application layer protocol for sensor-embedded smart devices of an IoT network [15].

These resource-constrained smart devices are connected to the cloud data centers to

avail their computational and storage capabilities. To secure the exchange of data

among the smart devices and data centers, CoAP mandates the use of Datagram Trans-

port Layer Security (DTLS) protocol at the transport layer of each smart device [19].

However, the handshake and record layers of DTLS incur 25 bytes of overhead for

each datagram header. The IEEE 802.15.4, on the other hand, specifies a physical layer

Maximum Transmission Unit (MTU) of only 127 bytes. As a result, only 60-75 bytes

are left for the payload after the addition of DTLS, Medium Access Control (MAC),

and upper layers headers. The cloud data centers allow the smart devices to broadcast

and store their measurements in a centralized location accessible by multiple hand-held

devices. With an increase in urbanization, it is expected that a massive number of such

devices will be connected to the Internet. The presence of these devices makes a city

smarter by generating a huge amount of data that can be leveraged for various services

such as, safety and privacy, infotainment, better health facilities, greener environment

and better waste management [3, 20]. To realize these services, the voluminous data

generated by smart devices need to be managed in an efficient manner at the edge of
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the network. The resource-starving smart devices at the network core5 need to offload

the computational tasks to the network edge [8, 11, 9]. Once the data is processed at the

edge, it is forwarded to the cloud for storage that can be used to provide better facilities

to the residents of smart cities.

In literature, there exist various smart applications, such as CloudAware [21], Fem-

toclouds [22], EdgeIoT [23], ParaDrop [24] and HomeCloud [25] that offload com-

putationally complex tasks to nearby edge devices. CloudAware and FemtoClouds

monitor the usage of edge devices for offloading resource-intensive operations by rely-

ing on some specific application programming interfaces (APIs) and scheduling algo-

rithms. EdgeIoT configures the neighboring mobile base stations by deploying virtual

machines (VMs) for migrating various tasks from smart devices to the network edge.

ParaDrop configures the neighboring wireless access points to offload various tasks to

the edge. HomeCloud relies on Software Defined Networking (SDN) for scheduling

its Network Function Virtualization (NFV) capabilities.

The aforementioned solutions [21, 22, 23, 24, 25, 8, 11, 9] for offloading computa-

tional tasks to the network edge focus mainly on scalar data. They lack the support for

processing real-time multimedia streams such as video analysis. The existing works

on video analytics support the offloading of streams directly to the cloud data centers

that incur excessive burden on smart devices. Besides, most of the existing schemes for

offloading computational tasks to the edge lack any support for security and privacy.

The inclusion of edge computing in cloud-enabled IoT platforms raises new and un-

foreseen challenges such as, the interaction among heterogeneous edge devices, their

interoperability with smart devices and the migration of tasks across global and local

scales in smart cities. These challenges enable an adversary to launch various threats

on the network’s core, edge and cloud data centers. There exist very few studies in

this context to combat such threats. In [26, 13, 14, 27], the authors conclude that data

streams stored at the network edge are more vulnerable to threats in comparison to

their storage at the cloud. To prevent such threats, differential privacy need to be used

to protect users’ privacy at the edge.

5due to the presence of sensor at the core of each smart device
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3. Network Model

In a typical smart city, heterogeneous sensors, wired/wireless and cellular devices,

edge devices, and cloud data centers are the essential components. The resource-

constrained multimedia sensor nodes (MSNs) sense and collect the critical data streams

pertaining to various applications. Using the IEEE 802.15.4 standard, the MSNs trans-

mit these data streams to the nearby cluster heads. One or more authorized edge devices

collect these streams from cluster heads using the IEEE 802.11 standard. Finally, the

data is uploaded to the cloud data centers that enable various organizations to provide

reliable and timely services to the inhabitants of a smart city.

In our proposed SmartEdge framework, each participating device needs to be au-

thorized for a seamless and reliable transmission of gathered data. In each application

at the network core, the MSNs and their respective cluster head communicate with

each other for mutual authentication. If the authentication is successful, a session key

is shared with the MSN to enable it for secured transmission of its data to the clus-

ter head. The mutual authentication at the network core prevents the intruders from

accessing the session keys generated by the cluster heads. As a result, the intruders

are no longer capable to inject their malicious data into the network. In our proposed

framework, the base stations located at the network edge maintain a shared database

of all the authorized cluster heads. Each base station is a conventional computing plat-

form that has abundant of computational and storage resources. To communicate with

the cluster heads, each edge device needs to be authorized by the base station. Each

edge device broadcasts a registration request to a base station to retrieve the database of

nominated cluster heads. If the registration request is authorized, the database of nom-

inated cluster heads is provided to the edge device. In SmartEdge, only the authorized

edge devices can communicate with the cluster heads for secured transmission of their

data streams toward the cloud data centers. Each edge device establishes a secured

connection with the data centers for the upload of data gathered from cluster heads.

The end users at different enterprises and organizations can download the data using

an asymmetric encryption approach. In Fig. 1, the network model of our proposed

framework is shown.
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Figure 1: Network Model of SmartEdge

In SmartEdge, we focus on the multimedia data collection. Unlike the conventional

computing platforms, the MSNs and cluster heads are relatively low-energy nodes that

are unable to execute computationally complex cryptographic algorithms. In view of

their resource limitations, we propose an extremely lightweight symmetric encryption

for establishing secured connections among them. The edge devices and cloud data

centers, on the other hand, have ample resources and are capable to perform resource-

intensive operations. As a result, we migrate computationally complex cryptographic

tasks to these entities by using an asymmetric encryption approach.

4. SmartEdge: A Lightweight Authentication at the Network Core

At the network core, we use a lightweight mutual authentication approach to estab-

lish a secured connection between each MSN and its respective cluster head of Fig. 1.

The authentication is performed using four handshake messages. Each message corre-

sponds to an authentication phase. These messages are encrypted using AES-128 bit.

The four phases are as follow.

1. MSN Connection Request

2. Cluster Head Challenge
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3. MSN Response and Challenge

4. Cluster Head Response

The MSN connection request is preceded by a provisioning phase, a prerequisite of-

fline phase during which the MSNs share a 128-bit secret key (λi) with their respective

cluster heads. For each application of a smart city, this prerequisite phase is initiated at

the time of nodes deployment. Here, the λi is known only to the cluster head and the

MSN to whom it belongs. Each cluster head maintains a table of all the λi for a given

application. In this table, the unique identity (αi) of an MSN is associated with λi.

This association enables a cluster head to perform the identity verification. Upon suc-

cessful verification, both the MSN and cluster head communicate with each other for

the exchange of a session key. The session key allows an MSN to transmit the gathered

data to its respective cluster head. It is assumed that the MSNs are tamper-safe to avoid

the compromise of security primitives in accordance with the Internet Threat Model

[28]. This model assumes that λi are hardcoded at the time of node deployment. In

case, if an attacker attempts to tamper with the hardware of an MSN, an alarm is raised

to notify about any security breach. The provisioning phase prevents the intruders from

registering their fabricated λi inside the table of any cluster head.

During the connection request phase, each MSN broadcasts a join-request mes-

sage (Jreq) to its respective cluster head. The payload of Jreq contains αi, where

i ∈ {1, 2, 3, ..., N}, and its header contains the identity of a potential cluster head

(IDCHn ), where n � N . Each αi and IDCHn are 16 bits long. An intruder may

eavesdrop on Jreq and retrieve λi from it. However, it is unable to generate a legiti-

mate session key for the MSN as it was barred from communication with the cluster

head during the provisioning phase.

Upon receiving Jreq , each cluster head retrieves αi and IDCHn from it. If IDCHn

matches with the identity of a receiving cluster head and αi matches with an entry

within the cluster head’s table, a search for a matching λi is made. If a match is

found, it means that the Jreq was received from a legitimate MSN and the cluster head

responds with an encrypted challenge (CHchallenge). This challenge is created by

appending a 128-bit session key (µ) with a 128-bit nonce (ηCH ) and XOR (⊕) with
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λi. The resultant is encrypted with λi and transmitted to αi as a 256-bit challenge, as

shown in Eq. 1.

CHchallenge = AES{λi, (λi ⊕ µ | ηCH)}. (1)

Here, ηCH is a temporary random number that is used only once by a given clus-

ter head, and ⊕ is an extremely lightweight operation found as a component in various

complex cipher suites because it does not leak any information about the original plain-

text. The use of ηCH in CHchallenge makes the latter highly unpredictable.

During the third phase, αi needs to successfully decrypt CHchallenge in order to

retrieve µ and ηCH . Only a legitimate αi that possesses the required λi can decrypt

CHchallenge. Upon decryption, αi will have access to µ, that is required for data

exchange with its respective cluster head. Upon successful decryption, αi has authen-

ticated itself. However, for data exchange, the cluster head also needs to authenticate

itself. In response to CHchallenge, αi creates its own challenge (αchallenge) by ap-

pending λi with its own generated nonce ηi and ⊕ with ηCH . The resultant cipher is

encrypted with µ to generate a 256-bit αchallenge, as shown in Eq. 2.

αchallenge = AES{µ, (ηCH ⊕ λi | ηi)}. (2)

In our authentication approach, the ηclient and ηserver are generated using a pseudo-

random number (Ri). TheRi is appended to a timer (Ti) to make sure that the intruders

find it extremely difficult to replay their malicious messages. The Ti assures that ηclient

and ηserver are non-reproducible, whereas, the Ri assures that ηclient and ηserver are

non-predictable. The non-predictable nature of Ri and the non-reproducible nature

of Ti make it extremely difficult for the intruders to replay maliciously injected data

streams.

During the final phase, a cluster head receives αchallenge and deciphers it to ob-

serve the presence of ηCH . If ηCH is present, the cluster head retrieves ηi and creates

a 256-bit encrypted response of its own, using Eq. 3. This encrypted response is trans-

mitted to αi and at this stage, the status of αi at the given cluster head changes to

Authenticated.
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CHresponse = AES{λi, (ηi | µ)}. (3)

Upon reception of CHresponse, αi verifies the presence of ηi in CHresponse. If

present, it means that the cluster head had authenticated itself as well, and its status

at the MSN changes to Authenticated. Upon successful verification, the mutual au-

thentication process is completed, and the MSN is now permitted to forward its data

to the cluster head. The detailed operational mechanism of our payload-based mutual

authentication approach is highlighted in Algorithm 1.

Algorithm 1 Authentication at the Network Core
1: Initialization:

• α←− [i, λi], where i ∈ {1, 2, 3, ..., N}
• CH←− [n, λi], where n� N

• Input [λi = ηi = ηCH= 2128]

2: αi → CHn : {Jreq , containing IDCHn
and αi}

3: if IDCHn
and αi matches then

4: CHn → αi : {CHchallenge, containing µ and ηr}
5: else
6: Discard Jreq . MSN is unauthorized.
7: end if
8: if λi matches then
9: αi → CHn : {αchallenge, containing ηi and ηCH}

10: else
11: Discard CHchallenge.
12: end if
13: if ηr exists then
14: αi is authenticated
15: CHn → αi : {CHresponse, containing ηi}
16: else
17: Discard αchallenge. . MSN is unauthentic.
18: end if
19: if ηi exists then
20: CHn is authenticated
21: αi → CHn : {Dαi→CH , data exchanges}
22: else
23: Discard CHresponse. . Cluster Head is unauthentic
24: end if
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5. Smart Edge: Registration and Verification at the Network Edge

Upon successful authentication at the network core, each MSN transmits its gath-

ered data streams towards its respective cluster head. For example in Fig. 1, the MSNs

at the roadside of smart traffic monitoring application gather the happening events, i.e.,

data streams, and transmit to their cluster head. The devices at the network edge col-

lect these streams and broadcast to the cloud data centers. Prior to the broadcast, the

edge devices need to be registered with and verified by the base stations, co-located

at the network edge. Once registered, an edge device attains access to the database of

verified cluster heads and communicate with them for secured data transmission. The

registration process is completed in four simple phases.

1. Registration Request

2. Encrypted Challenge

3. Encrypted Response

4. Registration Response

During the first phase, each edge device (βk) transmits a registration request mes-

sage (Rk) to the base station. The βk generates a 256-bit session key (µk) and XOR

with a 256-bit ηk. The 256-bit resultant is encrypted with k to generate a 256-bit Rk,

as shown in Eq. 4.

Rk = AES{k, (ηk ⊕ µk)}. (4)

Here, k is a 256-bit identity of a requesting βk, ηk is a 256-bit nonce, and µk is

a potential session key of 256-bit, all generated by βk. In our scheme, there are only

three edge devices, i.e., k ∈ {k1, k2, k3}, as we have a limited number of smart city

applications. However, it can be extended up to K edge devices for a very large-scale

multi-application smart city deployment. We have used AES-256 bit at the network

edge because the edge devices and the base stations have ample resources and are

capable to process computationally complex cipher suites. Similar to the network core,

the AES used at the network edge relies on block cipher mode of operation to provide

authenticity and confidentiality of messages.
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Once Rk is received by the base station, it decrypts and extracts all the embedded

values, i.e., k, ηk and µk. At this point, the base station uses the extracted values

to generate an encrypted challenge (BSchallenge). This challenge is composed of a

registration certificate (Ωk), a time-stamp (δk) and an authentication value (Ψk). To

generate Ωk, the base station performs XOR operation on ηk and µk, both received

from βk. Next, an OR operation (||) is performed using the resultant (ηk ⊕ µk) and

the identity of βk, i.e., k. Finally, the end product is operated by an AND (.) operator

using ηb1 to generate a 256-bit Ωk as shown in Eq. 5.

Ωk = ηb1 .(k || (ηk ⊕ µk)). (5)

Here, ηb1 is a 256-bit nonce generated by the base station. If Rk was received from

a legitimate edge device, the latter will be able to decrypt Ωk using its identity k. The

base station generates two copies of Ωk, one copy is kept for the future communication

and the second copy is used in BSchallenge.

Next, the base station generates a time-stamp (δk) using k and a 256-bit ηb2 . Both

these primitives are operated by an OR operation to generate a 256-bit δk as shown in

Eq. 6. δk represents the total amount of time required by βk to collect the data from

one or more cluster heads.

δk = (k || ηb2). (6)

Finally, the base station generates an authentication value (Ψk) for the βk. The Ψk

is a 256-bit security primitive that is generated by applying XOR operation on k, ηk and

ηb2 , as shown in Eq. 7. The Ψk enables the βk to generate a response for BSchallenge.

Ψk = (k || ηk || ηb2). (7)

Once Ωk, δk and Ψk are generated by the base station, they are transmitted to βk

as a challenge using Eq. 8. At this point, the base station uses the identity k of βk to

encrypt the three security primitives. The encrypted security primitives are embedded

in a single message, i.e., BSchallenge, that has an accumulative size of 768 bits and is
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transmitted to βk.

BSchallenge = AES{k, (Ωk, δk,Ψk)}. (8)

Upon reception of BSchallenge, βk checks for the presence of k and µk in it. As k

and µk were generated by βk, it means that the challenge was received from a legitimate

base station. For the verification of βk and its registration with the base station, βk

needs to successfully decrypt the challenge using its identity (k) to extract Ωk, δk, and

Ψk. βk checks for the presence of µk and k in the challenge. If these primitives are

present, it means that the challenge was received from a legitimate base station and the

latter has access to the session key (µk) of βk. The βk stores Ωk and δk, and uses Ψk

to generate an encrypted response (βresponse) for the base station, as shown in Eq. 9.

In this equation, the resultant of 256-bit security primitives, i.e., Ψk, ηk, and ηb2 , is

encrypted with µk. The Rk generated by βk in Eq. 5 enables the base station to have

access to µk that can be used to decrypt βresponse.

βresponse = AES{µk, (Ψk || (ηk ⊕ ηb2)}. (9)

Upon reception of βresponse, the base station uses µk to decrypt it. The presence

of Ψk means that the response was received from a legitimate βk and the latter is reg-

istered by the base station. After the decryption of βresponse, the base station performs

two operations, a) shares Ωk and δk of the verified βk with all the cluster heads, and b)

forwards the database of cluster heads to the verified βk. At this stage, the base station

generates a registration response (Rresponse) for βk that contains the database having

the identities of all the legitimate cluster heads, as shown in Eq. 10.

Rresponse = AES{IDCHn}. (10)

Here, AES is used only to encrypt the identities (IDCHn
) of legitimate cluster

heads by appending them in the Rresponse message. The AES neither compress nor

affect the size of Rresponse. In Algorithm 2, the registration and verification procedure

for an edge device is shown.
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Algorithm 2 Registration and Verification at the Network Edge
1: Initialization:

• β ←− k, where k ∈ {1, 2, 3, ...,K}

• β ←− [µk, ηk]

• BS ←− [ηb1 , ηb2 , IDCHn
]

. BS represents the base station

• Input [k = 2256, µk = 2256, ηk = ηb1 = ηb2= 2256]

2: βk → BS : {Rk, Registration Request}
3: BS → βk : {BSchallenge, Encrypted challenge of BS}
4: βk → BS : {βresponse, Encrypted response of βk}
5: if Ψk exists then
6: βk is authentic . Edge device verified
7: BS → CHn : {Ωk and δk, share them with CHn}
8: BS → βk : {IDCHn

, share database with βk}
9: else

10: βk is unauthentic
11: end if

6. SmartEdge: Secured Data Storage and Sharing

Upon data collection from the cluster heads, each βk encrypts and encodes the mul-

timedia streams to generate HEVC-Encoded Video Streams (HEVS). For this purpose,

a High Efficiency Video Coding (HEVC) standard is used at the network edge [17].

For encryption of HEVS, βk executes an AES-256 bit algorithm, while at the cloud

data centers, RSA-2048 bit algorithm is used for decryption. Using RSA, a pair of

private key (kpri) and public key (kpub) is generated at the cloud data center. The latter

is transmitted to βk for video encryption. The AES generates a 256-bit secret key (Sk)

for data encryption. The secured data sharing and storage between the network edge

and the cloud data center is accomplished in three steps, as shown in Fig. 2. In this

section, we discuss these three steps.

1. Encoding and Encryption

2. Partial Decryption

3. Full Decryption
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Figure 2: Secured Data Storage and Sharing

6.1. Encoding and Encryption

In this step, each βk receives the multimedia data streams (Dstream) from the

cluster heads and encrypts them using its Sk as shown in Eq. 11. The encrypted

streams (Dencrypt) are then embedded into the encoded videos (f(1)....f(N)). Finally,

these videos are encrypted using kpub to generate HEVS.

Dencrypt = AES{Sk, Dstream}. (11)

The data streams generated by MSNs containN frames. It is impractical to process

and encode an entire video sequence at a time [17]. Furthermore, abundant of hardware

and computing resources are required for executing HEVC standard and high definition

(HD) videos at the network edge. These limitations restrict the encoding of an entire

video sequence of N frames at the network edge. A simple solution to this problem is

to reduce the number of frames to n for encoding, where n < N . Moreover, it is not

mandatory to encrypt an entire HEVS because that incurs extra computational burden
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and time complexity. The encryption of an entire HEVS affects its format as well. To

reduce the computational cost, time complexity, and to preserve the video format, a

part of HEVS is nominated for encryption to enhance the security level. To intact the

contents of a video, i.e., its format, spatial information (SI), motion vectors (MVs) and

intra prediction mode information (IPMI) are used [29]. Once the multimedia streams

are encoded and encrypted, βk uploads these videos, i.e., HEVS, to the cloud data

centers.

6.2. Partial Decryption

At the cloud end, the application system provides three major services, i.e., a key

generator (KG), a secured storage space (SSS), and a partial decryption function (PDF).

During the second step, the KG enables βk to upload the encrypted HEVS which are

stored in SSS. However, prior to this storage, HEVS are decrypted by PDF. To run such

an application system over the cloud, we make certain assumptions.

1. Public clouds allow the users to upload/download their data freely with a trust

factor. The cloud owners can only view the uploaded contents but are unable to

alter them. A robust encryption scheme needs to ensure the security of data in

these environments.

2. Each βk possesses the same Sk.

3. A secured protocol, i.e., Secure Shell (SSH) [30], is used to protect data trans-

mission over wireless channels between βk and the cloud data centers.

These assumptions are crucial and need to be strictly followed to prevent an adver-

sary from uploading malicious videos/data to the clouds. If the encryption scheme is

not robust, an adversary may capture the in-transit video streams, maliciously manipu-

late them, and replay to the cloud data centers. A weak encryption scheme may allow

an adversary to upload an infected or fabricated video in order to control the applica-

tion system that runs over the public clouds. The presence of a single Sk synchronizes

βk with each other. In case of multiple Sk, the encryption and decryption schemes

become complicated. Wireless channels are vulnerable to various threats and as such,

secured protocols need to be in place to validate the authenticity of exchanged data.
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Using RSA, the KG generates a pair of kpri and kpub. However, it is unable to

determine Sk which is associated with a given βk. Using kpub and Sk, a βk encrypts

HEVS videos and upload to the cloud data centers. Using the same kpub and its kpri,

each data center partially decrypts these videos. In our proposed scheme, partial de-

cryption is the responsibility of PDF. For proper functioning of the application system,

βk needs to register itself with KG by transmitting its identity k. Upon reception of

k, KG responds back with kpub, that is used by βk to encrypt its identity and pass-

word. The encrypted cipher is forwarded to the application system for secured login

session request. In response, the application system provides session information (Si)

for encrypting a video with kpub.

6.3. Full Decryption

Finally, if βk wants to download specific data/videos from the cloud, it first needs to

send a secured session request (Sreq). KG has a list of authentic βk that are authorized

to download/upload the data from/to the cloud. Recall that KG had provided kpub to

each βk interested in uploading/downloading a video to/from the cloud. KG compares

the list of authentic users’ identities (K) against the identity (k) of the requesting βk,

where k ∈ {1, 2, 3, ...,K}. If a match is found, KG creates a login session for βk

and forwards Sreq to SSS for checking the requested data on cloud data centers. If

the requested data is found, SSS forwards the decoded data to βk. Upon reception, it

decrypts the data using its Sk. If in case, βk has stolen k from a legitimate user, it

can only decrypt the data, but is unable to extract hidden information. This is because,

it does not possesses a valid Sk. The detailed operational mechanism of secured data

storage and sharing over the cloud is highlighted in Algorithm 3.

7. Performance Evaluation

For our experiments, we use Raspberry Pi Zero W boards6 with raspbian jessie OS

and 512 MB RAM. Our setup is based on five neighboring homes, each one having 5

Pi boards. Among them, 4 Pi works as MSN and are deployed inside the home. At the

6https://www.raspberrypi.org/products/raspberry-pi-zero-w/
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Algorithm 3 Secured Data Storage and Sharing
Initialization:

• βk ←− Sk, where k ∈ {1, 2, 3, ..., k}

• KG←− [kpub, kpri]

• Input [Sk = 2256, kpub = kpri= 22048]

KG→ βk : {kpub, for upload/download of data}
βk: f(1....N)→ (f(1)....f(N)) : {f(), encoded video}

. βk encodes N sequences of a video
βk: Sk → Dstream : {Cencrypted, encrypted data}

. Encrypting the data D to create C
βk stores C in f()

. Embedding the encrypted data in encoded video
βk: kpub → f() : {HEVS, a binary file}
βk →KG : {SReq , secured session request}

. Transmitting an encrypted login request to Cloud
KG→ βk : {Si, session information}
βk → KG : {HEVS}
KG : [kpub, kpri]→ f() : {HEV S, Partial deecryption}
SSS ←− KG :{HEVS}

. KG forwards the encoded video to cloud’s SSS
βk →KG : {SReq , secured session request for HEVS}
KG retrieves k from SReq . k is the identity of βk
if k matches then

KG→ βk : {Si, session information}
SSS checks for the requested data, i.e., HEVS.
if SReq == True then

KG→ βk : {HEVS, transmit to βk }
βk retrieves HEVS using Sk

. Video data successfully downloaded
else

KG→ βk : {HEVS Unavailable }
end if

else
βk unauthorized

end if
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main gate in each home, a single Pi operates as a cluster head. Inside the home, each Pi

is connected to a Spy camera that is capable to support 2592×1944 pixel static images,

720p60, 1080p30, and 640×480p60/90 videos. We use motionEyeOS, a Linux distri-

bution to monitor the video signals from these cameras. In the SmartEdge framework,

we used cipher block chaining (CBC) for message authentication (integrity) and SHA-

1 for HMAC operation [31]. An edge device, i.e., a core i5 laptop with 64-bit OS,

a 2.5GHz processor and 4GB RAM collects data from cluster heads and uploads to

Azure Virtual Machines (VMs) located in a public cloud. We analyze the performance

of our scheme by comparing it against Lithe [18] and MicroCoAP [15]. We evaluate

its efficiency in term of resilience against attacks, security overhead, computation and

communication costs, end-to-end encryption delay, and response time.

In Table 1, we analyze the resilience of SmartEdge against various malicious threats.

In SmartEdge, ηi and ηCH were generated by a random number (randi) and appended

to a timer (Ti). This combination of Ti and randi assures that an adversary finds it

extremely difficult to launch a replay attack. An adversary may eavesdrop on ciphers,

i.e., λi ⊕ µ | ηCH , ηCH ⊕ λi | ηi, and ηi | µ, but is unable to decrypt them in absence

of λi, ηCH , and ηi, respectively. The absence of these secret primitives prevents an ad-

versary from launching masquerade attacks. For an adversary to launch a Sybil attack,

it needs to steal λi from multiple MSNs. However, the MSNs are tamper-safe in view

of Internet Threat model [28]. Moreover, the base station maintains αi of MSNs and

IDCHn of cluster heads that restricts an adversary from fabricating multiple identities.

In SmartEdge, each cluster head allows up to four Jreq attempts. This limitation re-

stricts a node, be it a legitimate one or a malicious one, from launching DoS attacks.

The security mechanism deployed by edge devices and VMs is even more resilient to

various attacks in presence of RSA algorithm and AES-256. The presence of kpub and

kpri at VMs requires 22048 attempts from an adversary to decrypt these keys. The same

adversary would require 2256 attempts to decrypt Sk. In comparison, the absence of a

centralized base station exposes Lithe [18] and MicroCoAP [15] to Sybil attacks. Be-

sides, both these approaches have no defined policy for the prevention of masquerade

attacks.

In SmartEdge, we implemented the authentication and key establishment phase
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Table 1: Resilience against various Attacks

Threats MicroCoAP Lithe Proposed

Replay X X X
DoS X X X
Masquerade 7 7 X
Sybil 7 7 X

while considering the messages of the following sizes, IDs as 2 bytes, MAC as 4 bytes,

nonces as 16 bytes, key size as 16 bytes, and HMAC as 16 bytes, respectively. The

MSNs and cluster heads are battery-powered smart devices. For this reason, we deter-

mine the price of security overhead, i.e., memory consumption and execution time, for

these deployed nodes. In Fig. 3(a), the memory consumption, and the execution time

required by each operation, i.e., AES, CBC, and HMAC, on a smart device, are shown.

These operations occupy a significantly lower RAM and ROM, allowing these smart

devices to perform vital smart home services. Moreover, the symmetric encryption,

lightweight MAC and SHA-1 of our scheme have a significantly lower execution time

(TE) on a given smart device. In Fig. 3(b), we compare our scheme against Lithe and

MicroCoAP in term of memory consumption. Both these schemes use complex cipher

suites and DTLS handshake messages that consume a considerable amount of RAM

and ROM.

To determine the lightweightness of our scheme, we evaluate the energy consump-

tion of the cryptographic operations performed by MSNs and cluster heads. The com-

putation and communication costs incurred by these operations in term of energy are

shown in Table 2. The computational energy consumed by these cryptographic opera-

tions can be calculated using the formula V × I × TE [32]. The value of the voltage

(V) is 5V and current (I) is 160 mA, derived from Pi Zero W datasheet7 in active

mode. Using Fig. 3(a), the value of TE is 28.89 ms. Upon evaluation, V × I × TE
yields a computational cost of 23.11 mJ. The communication cost is the amounts of

energy spent by an MSN or cluster head to exchange, i.e., transmit or receive, a cipher

7https://www.electronicsdatasheets.com/manufacturers/raspberry-pi/parts/raspberry-pi-zero-w
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Figure 3: Security Overhead

message. During the authentication operation, four cryptographic messages, i.e., Jreq ,

CHchallenge, αchallenge and CHresponse, are exchanged between an MSN and a clus-

ter head. Among them, Jreq is 32 bits and CHchallenge, αchallenge, and CHresponse

are 256 bits each, respectively. According to [33], the transmission and reception of a

single bit require 0.72 µJ and 0.81 µJ, respectively. Hence, the overall communication

cost incurred by each MSN of our scheme for exchanging these cipher messages is

0.622 mJ, only. In comparison, Lithe and MicroCoAP use large-sized record headers

and client certificate requests. These primitives incur an excessive burden in term of

computation and communication on a given node. In case of Lithe and MicroCoAP,

a node requires 14.3% and 41.8%, more computational energy, respectively. These

schemes require 75.2% and 121% more energy in term of communication, in compar-

ison to our scheme.

Table 2: Computation and Communication Cost

Energy (in mJ) MicroCoAP Lithe Proposed

Computation 32.76 26.41 23.11
Communication 1.38 1.09 0.622
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In Table 2, we derive the communication cost incurred by an MSN, only. In case of

a cluster head, the communication cost is even lower. Based on the mode of operation

(transmit/receive) and node type, we derive the communication cost in Table 3. Similar

to Table 2, Table 3 is derived based on the operational mode and size of each cipher

message.

Table 3: Communication Cost: MSN (α)←→ CH

Node
Type

Jreq CHchallenge αchallenge CHresponseCost
(mJ)

MSN Trans Recv Trans Recv 0.622
CH Recv Trans Recv Trans 0.601

To establish secured sessions among various entities of a smart home, we calculated

the end-to-end encryption delay in Fig. 4. In SmartEdge, encryption is achieved at

three levels, i.e., MSN to cluster head, cluster head to the edge, and edge to VMs.

The average session establishment time between the smart devices, i.e., MSN and its

respective cluster head, range from 24 to 33 ms. The average session time for cluster

head to edge ranges from 40 to 65 ms, and for edge to VMs ranges from 81 to 145

ms, respectively. Based on these calculations, the end-to-end encryption delay for a

complete session ranges from 243 to 699 ms. In Fig. 4, cluster heads to clouds/VMs

mean that there is no edge device involved, which is not the case with SmartEdge.

In absence of an edge device, it requires 554 to 775 ms for establishing a session

between a cluster head (a smart device) and VMs. In absence of network edge, a smart

device communicates directly with VMs and experiences a significantly higher delay

for establishing a secured session.

To analyze the round trip time (RTT), we configure the general-purpose input/output

(GPIO) pins of MSNs and cluster heads to operate with enabled radio duty cycling

(RDC) and disabled RDC. The radio remains off most of the time and is turned on at

certain intervals to check the medium for any incoming or outgoing packet. In Fig.

5(a), we evaluate SmartEdge with enabled RDC. In this figure, the data packets have

varying payload sizes (in bytes). SmartEdge has a smaller RTT in comparison to the

existing schemes. RTT is measured as the length of time it takes for a request to be
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sent and its response be received [15]. In Fig. 5(b), the RTT is calculated for a dis-

abled RDC. In comparison to Fig. 5(a), Fig. 5(b) has a relatively lower RTT for all the

three schemes. In RDC, energy consumption of a node is reduced by keeping the radio

in sleep mode for most of the time. However, RDC achieves energy conservation at

the expense of higher latency because a transmitter node needs to wait until a receiver

node wakes up. It may happen that the waiting interval of a transmitter overlaps with

the sleeping interval of a receiver. Therefore, the overall RTT is much higher for data

packets with enabled RDC. Irrespective of RDC-enabled or RDC-disabled, our scheme

has significantly lower RTT values in comparison to Lithe and MicroCoAP. In Fig. 5(a)

and Fig. 5(b), the response time is calculated as 1
2× RTT.
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8. Conclusion

In this paper, we propose a SmartEdge framework to secure the transmission of

multimedia data in smart homes. SmartEdge offloads computationally complex and

resource-intensive operations to the network edge and cloud data centers. Using a

lightweight symmetric encryption, each multimedia sensor node (MSN) establishes a

secured connection with its respective cluster head for the transmission of its raw data

streams. At the network edge, one or more verified edge devices collect these streams

from cluster heads, manipulate them, and transmit to the cloud. Prior to the data trans-

mission, each edge device encrypts the streams, encodes them and establishes a se-

cured connection with the cloud data centers. Each edge device executes a relatively

complex symmetric encryption while the cloud data centers execute resource-intensive

asymmetric encryption. Upon establishing a secured session, the multimedia data is

uploaded to the cloud that can be downloaded and decrypted by the end users for pro-

visioning of various services in a smart home environment. In comparison with the

existing schemes, security overhead is reduced by up to 10% in case of RAM con-

sumption and 51% in case of ROM consumption. In term of energy consumption, the

computational cost is reduced by up to 42% and communication cost is reduced by up

to 21%. In term of end-to-end encryption, our scheme has a significantly lower session

establishment delay. It is highly resilient against various adversarial attacks and has a

lower response time for a payload of various sizes. In future, we aim to configure our

scheme by incorporating mobility of smart devices and scalability of the network edge.
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