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Abstract: A dynamic response analysis model of a Class E2 converter for wireless power transfer applications is presented.  
The converter operates at 200 kHz and consists of an induction link with its primary coil driven by a class E inverter and the 
secondary coil with a voltage-driven class E synchronous rectifier. A 7th order linear time invariant state-space model is used 
to obtain the eigenvalues of the system for the four modes resulting from the operation of the converter switches. A 
participation factor for the four modes is used to find the actual operating point dominant poles for the system response.  A 
dynamic analysis is carried out to investigate the effect of changing the separation distance between the two coils, based on 
converter performance and the changes required of some circuit parameters to achieve optimum efficiency and stability. 
The results show good performance in terms of efficiency (90-98%) and maintenance of constant output voltage with 
dynamic change of capacitance in the inverter. An experiment with coils of dimension of 53× 43× 6 mm3 operating at a 
resonance frequency of 200 kHz, was created to verify the proposed mathematical model and both were found to be in 
excellent agreement. 
 
 

1. Introduction  
Wireless power transfer as a means of conveniently 

recharging consumer products is a growing trend. This is 
because the number of cordless devices has been rising rapidly 
and the changing of batteries or the plugging in of directly 
connected chargers is a burden which is irksome to busy lives: 
in addition, there is a significant risk of damage to contacts 
during plugging and unplugging operations. Wireless charging 
is inherently less efficient, but this is counterbalanced by its 
convenience and hence means are being sought to minimise 
energy losses and any other deleterious effects of energy 
leakage. 

For the present work, the primary objective was the 
charging of batteries in electric drones, although other 
applications for the developed system can be envisaged. The 
order of magnitude of the desired transferred power was 20 W 
and the separation distance between charger and receiver was 
considered to be in the range from 1 to 15 mm. 

The central power transfer component of a wireless charger 
is fundamentally an air-cored AC transformer. Air cores allow 
the fields to leak very substantially and hence, in terms of the 
equivalent circuit of a transformer [1,2], the mutual inductance 
is relatively low and the self-inductance of the windings is high. 
To minimise this effect, it is necessary to operate at a much 
higher frequency than standard power frequencies and also it 

is desirable to tune out the effect of the self-inductance of the 
two windings by resonating them with capacitors. 

 There is an upper limit on the choice of frequency because 
power oscillators become inefficient above a few hundred 
kilohertz and rectifiers suffer similar problems. There is also a 
problem of leakage fields causing interference to radio 
communication systems, and this may force the use of 
unlicensed frequencies in the ISM (Industrial, Scientific and 
Medical) bands. However, the lowest ISM frequency is now 
6.765 MHz [3], which is still a challengingly high frequency 
for efficient power transfer. 

Wireless power transfer technology requires DC to DC 
converters with resonant inductive links for high efficiency [4-
12]. These devices use class E inverters and rectifiers to form 
efficient high frequency DC/DC resonant converters. In an 
application of a 100 W, 200 kHz Wireless Power Transfer 
(WPT) class E2 converter, the researchers in [4,13] used a 
current-driven class E rectifier. On the other hand, in order to 
improve the efficiency of WPT, other investigators [8-11,14] 
proposed a voltage-driven Class E rectifier which used 
MOSFETs instead of diode rectifiers to achieve high 
efficiency for 20 W devices. However, some applications need 
a constant output voltage for stable operation of WPT devices 
[14]. This has limited the application of the works presented in 
[4, 8-13]. Since the distance between the transmitting circuit 
and the receiving circuit is not guaranteed to be fixed at a 
certain value, the power transferred and the output voltage 
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change accordingly. A regulating circuit is then required to 
maintain a constant output voltage produced from the WPT 
devices. To combat this problem, the authors in [15] suggested 
increasing the input voltage; however, this may lead to device 
breakdown and lower operating efficiencies due to the 
excessive heat generated. In [16-21] the, authors proposed the 
use of lossy, complex and bulky additional components and 
also power-consuming active devices for feedback and 
communications to achieve constant output voltage. Further, 
the authors in [22,23] suggested a nonradiative magnetic 
coupling approach to deliver power more efficiently; but the 
effective transfer range was basically restricted to one coil 
diameter unless relay resonators were adopted [24]. In [25,26] 
an optimized circuit structure was adopted which is based on 
series-shunt mixed resonant circuits but these circuits have 
poor efficiency, especially for long separation distances, 
despite the complexity of the  circuits.  

To clarify the differences between the presented work and 
other published works, Table I compares some technical 
details, i.e. Output power, Converter type and efficiency, for 
inductive power transfer (IPT). 

Examining all the aforementioned methods, it is found that 
they either have poor efficiency or require high input power 
and complex structure to maintain a stable output voltage. In 
order to address these deficiencies, a dynamic analysis model 
was proposed to explore possibilities to solve this problem, 
taking into account that a control method is required in the 
transmitting circuit side that imposes no cost in power 
consumption and ensures constant output voltage and high 
efficiency operation. This model was implemented using a 
MATLAB SIMULINK environment. The aim of this work is 
to achieve constant and stable output voltage and the main 
objectives are: 
• The examination of the Linear Time Invariant (LTI) state-

space model corresponding to the switching operation of 
the converter switches. 

• Maintaining constant and stable output voltage for 
variable separation distances. 

• Improving the efficiency of the converter by changing the 
inverter capacitors.  

The work included the effect of the variation of circuit 
parameters on the converter dominant Eigenvalues (poles) in 
the open loop condition. The complex s-plane was adopted in 
this analysis to identify the effective dominant pole that 
produce the circuit response under transient changes. For each 
switching period there is one dominant pole, which can be seen 
from its position on the complex plane, being the closest one 
to the imaginary axis. During one complete switching cycle 
with four transitions of ON-OFFing the MOSFET devices, the 
circuit will transit through four positions of dominant poles. 
The effective pole is calculated by using the participation 
factor and averaging through the four modes of switching 
positions in each cycle. Handling state-space models of such 
circuits in this manner makes the design of their controllers and 
regulators much easier. As a result the circuit will be expected 
to obtain stable and constant output.  

 
 

 
2. DESIGN AND METHODOLOGY 
 

2.1. Mathematical Model 

The basic circuit is shown in Fig. 1. This can be represented 
by the following differential equations derived for its 
equivalent circuit (shown in Fig. 2) based on Kirchhoff’s 
Voltage Law (KVL) and Kirchhoff’s Current Law (KCL): 

 
𝑣𝑣1̇ = −1

𝐶𝐶1𝑟𝑟𝑄𝑄1
𝑣𝑣1 + 1

𝐶𝐶1
𝑖𝑖𝑓𝑓 + −1

𝐶𝐶1
𝑖𝑖𝑝𝑝                                              (1) 

𝑣𝑣2̇ = 1
𝐶𝐶2
𝑖𝑖𝑝𝑝                                                                      (2) 

𝑣𝑣3̇ = −1
𝐶𝐶3𝑟𝑟𝑄𝑄2

𝑣𝑣3 + 1
𝐶𝐶3
𝑖𝑖𝑠𝑠                                                     (3)  

         𝑣𝑣4̇ = −1
𝐶𝐶4𝑅𝑅𝐿𝐿

𝑣𝑣4 + 1
𝐶𝐶4
𝑖𝑖𝑠𝑠                                                          (4) 

         𝚤𝚤𝑓𝑓 ̈ = 
−𝑟𝑟𝑓𝑓
𝐿𝐿𝑓𝑓
𝑖𝑖𝑓𝑓+ 1

𝐿𝐿𝑓𝑓
𝑉𝑉1 + 𝑣𝑣1

𝐿𝐿𝑓𝑓
                                                   (5) 

         𝚤𝚤�̈�𝑝 = 𝛼𝛼𝐿𝐿𝑠𝑠
𝑀𝑀2(1−𝛼𝛼)

𝑣𝑣1 +
−𝛼𝛼𝐿𝐿𝑝𝑝

𝑀𝑀2(1−𝛼𝛼)
𝑣𝑣2 + −𝛼𝛼

𝑀𝑀(1−𝛼𝛼)
𝑣𝑣3 + −𝛼𝛼

𝑀𝑀(1−𝛼𝛼)
𝑣𝑣4 +

𝛼𝛼𝑟𝑟𝑝𝑝𝐿𝐿𝑠𝑠
𝑀𝑀2(1−𝛼𝛼)

𝑖𝑖𝑝𝑝 + 𝛼𝛼𝑟𝑟𝑠𝑠
𝑀𝑀(1−𝛼𝛼)

𝑖𝑖𝑠𝑠                                                 (6) 

         𝚤𝚤�̈�𝑠 = 𝛼𝛼
𝑀𝑀(1−𝛼𝛼)

𝑣𝑣1 + −𝛼𝛼
𝑀𝑀(1−𝛼𝛼)

𝑣𝑣2+
−𝛼𝛼𝐿𝐿𝑝𝑝

𝑀𝑀2(1−𝛼𝛼)
𝑣𝑣3 +

−𝛼𝛼𝐿𝐿𝑝𝑝
𝑀𝑀2(1−𝛼𝛼)

𝑣𝑣4 +
−𝛼𝛼𝑟𝑟𝑝𝑝
𝑀𝑀(1−𝛼𝛼)

𝑖𝑖𝑝𝑝 +
𝛼𝛼𝑟𝑟𝑠𝑠𝐿𝐿𝑝𝑝

𝑀𝑀2(1−𝛼𝛼)
𝑖𝑖𝑠𝑠                                                 (7) 

 
where 𝑣𝑣1, 𝑣𝑣2,𝑣𝑣3 and 𝑣𝑣4 are the voltages across the capacitors 
C1,C2, C3 and C4 respectively. It should be noted that 𝑣𝑣4 is also 
the voltage across the load resistor RL and V1 is the input 
voltage. 𝑖𝑖𝑓𝑓  is the inductor current, 𝑖𝑖𝑝𝑝 and 𝑖𝑖𝑠𝑠  are the primary 
and secondary currents of the transformer respectively. 𝑟𝑟𝑝𝑝, 𝐿𝐿𝑝𝑝, 
and 𝑟𝑟𝑠𝑠,𝐿𝐿𝑠𝑠  are the primary and secondary equivalent series 
resistances and inductances respectively, while M is the 
mutual inductance between them. 
A zero equivalent series resistance is assumed for all 
capacitors.   𝐿𝐿𝑓𝑓  and 𝑟𝑟𝑓𝑓 are the DC-feed inductance and 
resistance of the inverter, 𝑅𝑅𝐿𝐿   is the load resistor and  𝛼𝛼 =
𝐿𝐿𝑝𝑝𝐿𝐿𝑠𝑠 − 𝑀𝑀2 . 

 
Fig. 1 Basic circuit of the class E2 converter. 

 



      Fig. 2 Equivalent circuit model of the Class E2 converter. 
 

In state-space form, equations 1 to 7 can be transformed into 
the following matrix form:       
 
 �̇�𝑥 = 𝐴𝐴. 𝑥𝑥 + 𝐵𝐵 .𝑈𝑈                                                                (8) 
 𝑦𝑦 = 𝐶𝐶. 𝑥𝑥 + 𝐷𝐷.𝑈𝑈 

Where A is the state matrix, B is the input matrix, C is the 
output matrix (an identity matrix) and D is the feedforward 
matrix. 𝑥𝑥 represents the states (variables) vector.        
 
 𝑥𝑥 = [𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑖𝑖𝑓𝑓 𝑖𝑖𝑝𝑝 𝑖𝑖𝑠𝑠 ]𝑇𝑇, A= [𝑎𝑎𝑖𝑖𝑖𝑖], B= [𝑏𝑏𝑖𝑖𝑖𝑖], 𝑖𝑖=1,.. ,7    , and 
𝑗𝑗=1,..,7 
𝑈𝑈5 = 𝑉𝑉1 , D=0 ,   𝑎𝑎11 = −1

𝐶𝐶1𝑟𝑟𝑄𝑄1
 , 𝑎𝑎15 = 1

𝐶𝐶1
, 𝑎𝑎16 = −1

𝐶𝐶1
   

                           𝑎𝑎26 = 1
𝐶𝐶2

, … … … 𝑎𝑎77 =
𝛼𝛼𝑟𝑟𝑠𝑠𝐿𝐿𝑝𝑝

𝑀𝑀2(1−𝛼𝛼)
                     (9)   

   
For dynamic analysis, it is assumed that switching ON and 

OFF of the two MOSFET devices connected across C1 and C3 
can affect the values of coefficients 𝑎𝑎11 and  𝑎𝑎33 only of the A-
matrix. When the switch is in ON state, these coefficients have 
their normal values while when they are in their OFF states 
these two coefficients become zero. In this case, the system 
transits four states, representing the modes of switching in one 
cycle, as shown in Fig. 3. The corresponding circuit transfer 
function can be described by the following general form: 
 
𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

= 𝐶𝐶(𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1𝐵𝐵                                                                (10) 
 
where s is the complex operator of the Laplace transform of 
the system differential equations and I is an identity matrix. 
Y(s) and U(s) are the Laplace Transforms of the output and 
input respectively. 
       The performance of the converter circuit can be 
determined in terms of the input function U and the initial state 
of the system 𝑥𝑥(0) or the initial conditions. The time domain 
solution can be described by the transition matrix 𝜑𝜑(𝑡𝑡) =
𝐿𝐿−1{[𝑠𝑠𝑠𝑠 − 𝐴𝐴]−1};  the matrices B, C are constant matrices and 
D is a zero matrix. 𝜑𝜑(𝑡𝑡)  also involves the inverse Laplace 
transform of a matrix inversion and the Eigenvalues are the 
solution of the characteristic equation |𝑠𝑠𝑠𝑠 − 𝐴𝐴|=0.  

 
Fig. 3 The operating modes of the two MOSFETs for one switching 
cycle. 

The four modes of the switching cycle were analyzed, based 
on the position of the dominant poles on the s-plane: these are 
the nearest poles to the imaginary axis of the s-plane. 

 

 
      Fig. 4 Step response of the converter linearized model. 
 

A participation factor could be obtained as the ratio of each 
state time to the cycle period. Then at the end the effective 
dominant pole was determined by taking the average of the 
weighted dominant poles of the four states within the 
switching cycle. For the complex s-plane, the dominant pole 
can be described by the following complex number: 

𝑠𝑠𝑑𝑑 = 𝜎𝜎 ± 𝑗𝑗𝑗𝑗                                                                (11) 
𝑠𝑠𝑑𝑑 is the dominant pole; 𝜎𝜎 is the real part of the pole vector and 
should be negative for a stable system and 𝑗𝑗 is the imaginary 
part of the pole vector, also called the damped natural 
frequency of system response. 

𝑗𝑗𝑛𝑛 = √𝜎𝜎2 + 𝑗𝑗2  is the undamped natural frequency and 
𝜁𝜁 = 𝜎𝜎

𝜔𝜔𝑛𝑛  
 is the damping ratio of the system. 

The system is stable when its dominant pole has a negative real 
part. The system will have a better transient response if the 
dominant pole can be shifted to the left and closer to the real 
axis, i.e. larger 𝜎𝜎 and smaller ω, meaning higher damping and 
faster response. This is normally the task of the added 
controller.   
       If 𝑓𝑓1,𝑓𝑓2, 𝑓𝑓3, and 𝑓𝑓4 are defined as the participation factors 
of the dominant poles, where 

   𝑓𝑓1 = 𝑎𝑎
2𝜋𝜋

 , 𝑓𝑓2 = (𝑏𝑏−𝑎𝑎)
2𝜋𝜋

, 𝑓𝑓3 = (𝑐𝑐−𝑏𝑏)
2𝜋𝜋

 and 𝑓𝑓4 = (2𝜋𝜋−𝑐𝑐)
2𝜋𝜋

 
 

Where a is the time period of the first mode, (b-a) is the time 
period for the second mode, (c-b) is the time period for the 
third mode, and the time period for the fourth and last mode is  
(2𝜋𝜋 − 𝑐𝑐 ), as shown in Fig.3. The effective dominant pole (the 
average, sdav) can then be found by multiplying each dominant 
pole of Table 1 by its relevant participating factor and then 
divided by four which is the number of the operating modes in 
each switching cycle. The average dominant pole is: 

 
  𝑠𝑠𝑑𝑑𝑎𝑎𝑣𝑣 = 𝑓𝑓1𝑠𝑠𝑑𝑑1+𝑓𝑓2𝑠𝑠𝑑𝑑2+𝑓𝑓3𝑠𝑠𝑑𝑑3+𝑓𝑓4𝑠𝑠𝑑𝑑4

4
                                      

 
(12)            

 



 
 

 
 
 
 
 
 
 
 
Table 1. The Eigenvalues and the dominant poles of the four modes 
of switching. 

 
Mode Eigenvalues Dominant 

pole 
I [−1.0057 

−2.1058 
−0.0219 

−0.0019 ± 𝑗𝑗0.0103 
−0.0000018 

-0.0002] 𝑋𝑋 108   

𝑠𝑠𝑑𝑑1 =-180 

II [−1.0057 
−0.0005 ± 𝑗𝑗 0.0159 
−0.0124 ± 𝑗𝑗0.009 
−0.0000018 

−0.0001] 𝑋𝑋 108 

𝑠𝑠𝑑𝑑2 =-180 

III [−1.2649 ± 𝑗𝑗1.289 
−0.0111 ± 𝑗𝑗1.8091 
−0.0015 ± 𝑗𝑗0.1 

−0.009974] 𝑋𝑋 106 

𝑠𝑠𝑑𝑑3 = −9974 

IV [−2.1058 
−0.0195 

−0.0031 ± 𝑗𝑗0.0147 
−0.00000077 ± 𝑗𝑗0.001 
−0.000164] 𝑋𝑋 108 

𝑠𝑠𝑑𝑑4 = −16400  

 
 
2.2. Eigenvalue Analysis and Equivalent Transfer Function 
 

The Eigenvalues of the four switching modes shown in Fig. 
3 with their dominant poles are presented in Table 1. These 
values were obtained from MATLAB based on calculation of 
the matrix A for each switching period. 

 

 
Fig. 5 Equation models for Class E2 converter  

 
 
 TFI =

1.04 𝑥𝑥 1019

(𝑠𝑠+ 180)(𝑠𝑠+ 2.1 𝑥𝑥 104)(𝑠𝑠+ 2.2 𝑥𝑥 106)(𝑠𝑠+ 2 𝑥𝑥 104)(𝑠𝑠+ 1 𝑥𝑥 108)(𝑠𝑠2 + 3.86 𝑥𝑥 105𝑠𝑠+ 1.1 𝑥𝑥  1012) 

 

TFII =
1.04 𝑥𝑥 1019

(𝑠𝑠+ 180)(𝑠𝑠+ 1 𝑥𝑥 104)(𝑠𝑠+ 1 𝑥𝑥 106)(𝑠𝑠2 + 2.5 𝑥𝑥 106𝑠𝑠+ 2.3 𝑥𝑥  1012)(𝑠𝑠2 + 9.7 𝑥𝑥 104𝑠𝑠+ 2.5 𝑥𝑥  1012) 

 

TFIII =
1.04 𝑥𝑥 1019

(𝑠𝑠+ 9974)(𝑠𝑠2 + 3073𝑠𝑠+ 1 𝑥𝑥  109)(𝑠𝑠2 + 2.5 𝑥𝑥 106𝑠𝑠+ 3.6 𝑥𝑥  1012)(𝑠𝑠2 + 2.2 𝑥𝑥 104𝑠𝑠+ 3.27 𝑥𝑥  1012) 

 

TFIV =
1.04 𝑥𝑥 1019

(𝑠𝑠+ 2.1 𝑥𝑥 108)(𝑠𝑠+ 1.9𝑥𝑥 106)(𝑠𝑠+ 1.6 𝑥𝑥 104)(𝑠𝑠2 + 153.5𝑠𝑠+ 10 𝑥𝑥  1010)(𝑠𝑠2 + 6.1 𝑥𝑥 105𝑠𝑠+ 2.2 𝑥𝑥  1012) 

 
                                                                                        (13) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 
 
 



The output to input voltage ratio of the converter transfer 
functions TF for each mode of switching are given in eq. 13.                                                                                                                                                 
The values in the numerators of eq. (13) are the gains of the 
transfer functions. All these TFs do not have zeros but each has 
seven poles. In Table 1, the second column shows these poles 
and the dominant poles are shown in column three.   The 
effective eigenvalue or the dominant pole is calculated by 
using the formula (12) as follows: 

Where the calculated participation factors are 𝑓𝑓1 =
0.14951 ,  𝑓𝑓2 = 0.350488 , 𝑓𝑓3 = 0.13851 , 𝑓𝑓4 = 0.361489 , 
and the calculated effective dominant pole,  𝑠𝑠𝑑𝑑𝑎𝑎𝑣𝑣 = −1850. 
Now the effective transfer function can be expressed as eq. 
(14). 

 
This can be reduced to: 

TFav= 1850
(𝑠𝑠+1850)

                                                             (15) 
The dominant pole makes a journey, oscillating between the 
four modes (positions on the complex s-plane) during each 
switching cycle. This method of averaging the position of the 
dominant pole gives an accurate location for it, depending on 
the time period for each mode of operation.   
     The resultant position of the dominant pole s=-1850 is 
obtained from this averaging method. The other poles given in 
equation 15 are very far from the imaginary axis of the s-plane 
and have no effect on the converter response. The 
corresponding time response of this transfer function is plotted 
in Fig. 4. 
 

 
 
2.3. Linearized SIMULINK Model 

     In order to capture converter dynamics, a linearized 
mathematical model is necessary to identify system response. 
It also helps in designing a controller that achieves constant 

output. Linearization of this model was carried out using built-
in functions available from MATLAB SIMULINK software 
which are based on the output and input nodes that need to be 
identified. To effectively study this, an open loop class E2 
converter model was established, for which the corresponding 
equation models can be found in Fig. 5.  
 
 
 
3. Simulated Results and Discussion 

   3.1 Effect of Parameter Variation on System Dynamic 
Response 
 

       Looking at the effective dominant poles given in Equation 
13, the circuit remains always stable with some amount of 
oscillations and this can be seen very clearly when separation 
distance between the primary and the secondary varies 
suddenly as this represents the most severe disturbance to the 
circuit. To better understand this, Fig. 6 depicts the time 
response variation of V1 (voltage across capacitor 1), V3 
(voltage across capacitor 3), If (inductor current), V4 (output 
voltage) and Ip (transformer primary current) when the 
separation distance is changed from 1 mm to 8 mm, which is 
equivalent to changing M (mutual inductance) from 14 µH to 
8 µH at time = 1 ms. As can be clearly seen, when the 
separation changes, the converter circuit goes through three 
stages of change, i.e. it builds up its magnetic flux, its transient 
response and then reaches a new steady state condition. At the 
start, the separation distance is kept to its minimum, 1 mm, to 
see how the converter circuit builds its magnetic field for 
optimum mutual coupling between the two coils. It is clear 
from the responses that all variables (𝑥𝑥1 … 𝑥𝑥7)  reach their 
steady state values in 0.54 ms. Then the transformer is 
disturbed suddenly by changing the separation distance to 8 
mm. This represents the most severe potential disturbance to 
the converter.  

 
                                                                                         

TFav =
1.04 𝑥𝑥 1019

(𝑠𝑠+ 1850)(𝑠𝑠+ 2.1𝑥𝑥 108)(𝑠𝑠+ 2.2 𝑥𝑥 106)(𝑠𝑠+ 1.64 𝑥𝑥  104)(𝑠𝑠2 + 3.86 𝑥𝑥 105𝑠𝑠+ 1.1 𝑥𝑥  1012) 

(14) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 
 
 



      Fig. 7 describes the time response of V1, V3, V4, If, Ip, M 
and efficiency when the separation distance is changing 
repeatedly to different values. These responses show that the 
converter is sufficiently stable to cope with this type of cyclic 
disturbance. If the system is not sufficiently stable it will lose 
its stability with such types of cyclic disturbance. As can be 
observed, the converter cannot achieve both high output 
voltage and high efficiency: it needs adaptive parameters to be 
tuned to maintain its optimal working condition.  

 
3.2. Improving Converter Efficiency  

3.2.1. Changing Capacitors C1 and C2 

Keeping the converter efficiency relatively high is a major 
challenge for such a circuit with a pre-determined resonance 
frequency. One of the suggested methods to improve its 
efficiency is by changing the frequency and/or the duty ratio 
of the two switching devices. However this entails the change 

  
Fig. 6 Time response of the converter when separation distance 
changes from 1 mm to 8 mm at T=1 ms. 
 

Fig. 7 Time response of the converter when separation distance 
changes to different values. 

 

  
Fig. 8 Effect of changing C1 and C2 on efficiency, red curve-fixed 
capacitors C1 and C2, green curve-tuned capacitors C1 and C2. 

 

Fig. 9 Effect of frequency change on circuit efficiency.  
 

 
 

         
 
 
 



of capacitor C3 to meet the desired operating resonant 
frequency as well as changing the values of capacitor C1 and 
C2 to maximize the efficiency. 
 

 
Fig. 10 Results for the converter when f=217.243 kHz, RL=10 ohms, 
D1=0.444, D2=0.501, delay angle of switch two=230.1°, k=0.55, 
separation=3 mm. 
 

Assuming that there is no control access to the receiver side 
(RS) of the converter, the only way to optimize the efficiency 
of the converter is at the transmitter side (TS). In this study, 
the values of capacitors C1 and C2 were changed 
simultaneously with the change in separation between the TS 
and the RS. Interestingly, it was found that, when C1 and C2 
were increased to 70 nF and 64 nF respectively, higher 
efficiencies ranging from 90% to 98% were achieved with the 
change in the separation from 1 mm to 8 mm. This means that 
resonance is occurring and this leaves the circuit with its 
inductor and winding resistances, which cause some power 
loss. This finding is in good agreement with [9]. To further 
comprehend this, Fig.8 depicts the efficiency achievement of 

the converter when C1 and C2 were allowed to change 
simultaneously with changes of separation.   
 

3.2.2. Changing Frequency and Duty Ratio 
      In contrast to the achievement of good efficiency in the 
previous section, a change of frequency alone has a deleterious 
impact on circuit efficiency even if the capacitors’ values are 
changed accordingly. To verify this, the operating frequency 
of the proposed model was changed from 200 kHz to 160 kHz 
and the capacitors’ values were again optimized. As can be 
seen in Fig.9, poor efficiency is obtained, only generally 
around 24% on average. However, if the duty ratios of the two 
switches are changed simultaneously with the change of 
frequency, as well as altering the delay angle of switch 2 
without changing the values of capacitors 1 and 2, the 
efficiency starts to improve, as shown in Fig. 10, assuming a 
fixed separation distance of 3 mm. This leads to a conclusion 
that changing frequency and duty ratios is another alternative 
to optimize the efficiency of the converter. 
 
   4. Experimental Setup and Verification 

To verify the simulated results, an experiment was set up 
as shown in Fig.11 and the corresponding test bed parameters 
are tabulated in Table 2. The actual voltage across MOSFETs 
Q1 and Q2 as well as the primary and secondary current 
responses obtained from the same converter used by [9] are 
verified by the simulation responses obtained from this work, 
as shown in figure 13. These responses also show that the 
optimum switching frequency is 200 kHz. The class E2 
converter implemented in this work consisted of a Class E 
zero-voltage switching (ZVS) and zero-derivative voltage 
switching (ZDS) inverter with an infinite DC-feed inductance, 
an inductive link consisting of primary and secondary coils 
separated by a certain air gap and a voltage driven class E ZVS 
rectifier.  
It is mentioned in [29] that efficient class E converter is 
attributed to its soft-switching capability. 
      The switch can undergo ZVS and ZDS only at optimum 
operating conditions. In this work the ZVS and ZDS conditions 
are satisfied because the chosen load resistance is changing 
between 5 and 10 Ohms: this is considered to be optimum for 
this type of converter. Thus the conditions stated in [29] are 
not violated.  

 
 
 
 
 
 
 

Table 2. Measurement setup parameters for a variable load and variable coupling coefficient 
Setup R(𝜴𝜴) k f(kHz) D1 D2 ∅ VQ1max(v) VQ2max(v) IQ1max(A) IQ2max(A) If(A) Ip(A) V4(v) 

1 5 0.5 187.8 0.59 0.582 221.4 38.16 53.46 10.54 5.85 4.22 12.84 11.76 
2 6 0.5 190.0 0.571 0.565 223.4 36.59 51.67 8.95 5.06 3.48 11.08 11.91 
3 8 0.5 194.7 0.535 0.535 226.9 33.91 47.75 6.72 3.95 2.49 8.6 11.93 
4 10 0.5 200.0 0.5 0.511 229.8 31.68 43.73 5.22 3.2 1.82 6.9 11.57 
5 12 0.5 205.8 0.465 0.49 232.0 29.75 39.69 4.12 2.64 1.34 5.64 11.02 



6 14 0.5 212.6 0.426 0.471 233.4 27.89 35.27 3.24 2.17 0.95 4.61 10.12 
7 10 0.45 187.7 0.543 0.519 228.8 34.49 52.79 6.9 3.7 2.6 8.77 13.72 
8 10 0.47 192.1 0.526 0.516 229.2 33.37 49.11 6.18 3.5 2.27 7.98 12.87 
9 10 0.52 206.1 0.48 0.507 230.1 30.53 40.17 4.63 2.99 1.55 6.24 10.72 
10 10 0.55 217.2 0.444 0.501 229.8 28.68 34.59 3.77 2.63 1.16 2.48 8.72 

 
 

The design procedure begins with coils of the inductive 
link: these coils should have a large quality (Q) factor at the 
switching frequency of the converter for maximum power 
transfer efficiency. Developing coils for inductive links is 
outside the scope of this paper as there is extensive research 
that has been devoted to this topic in literature. For this reason, 
the popular “Qi” Wireless Power Consortium standard [27] is 
adopted to determine the primary and secondary coils. Both 
coils have a maximum dc resistance of 0.1 Ω, an inductance of 
24 μH, and a maximum Q factor of 230 at 200 kHz [28]. The 
coils’ equivalent series resistance can be calculated and is 
equal to 0.137 Ω . With the addition of the connectors’ 
resistance and the dc resistance of the printed circuit board 
tracks, the total resistance of the coils is approximately 0.18 Ω 
at 200 kHz. 

 

 
 Fig. 11 Photograph of the Experimental Setup. Where the 
dimensions of the Tx and Rx coils are 53×43×6 mm3, and the 
dimensions of their associated circuits are similar: 53×43×20 mm3 
(approx.). 

 
The mutual inductance between the primary and secondary 

coils can be measured at different separation distances. For a 
separation distance of 3 mm, the measured mutual inductance 
is approximately 12 μH, which corresponds to a coupling 
coefficient (k) value of 0.50. 
The secondary coil of the inductive link and capacitor C3 form 
the resonant part of the Class E rectifier. The value of C3 that 
will cause the rectifier to resonate at 200 kHz is equal to    𝐶𝐶3 =

1
𝜔𝜔2𝐿𝐿𝑝𝑝

= 26.38 𝑛𝑛𝑛𝑛 . The output capacitor C4 should be large 

enough to maintain a constant dc voltage. A value of 6.6 μF 
was found to be suitable. The capacitors used are 
polypropylene capacitors from EPCOS [30]: according to their 
datasheet they have a dissipation factor of 0.002. Their ESR’s 
are assumed to be zero. The dimensions of the boards are equal 
to the coils, which are 53mm x 43mm, this is so that the 
inverter and rectifier boards could be placed behind the coils.  
     The inverter and rectifier switches are named Q1 and Q2 
respectively. To drive MOSFET Q2 of the rectifier additional 
circuitry is needed to ensure that the switching signal is applied 
at the correct instants. Referring to the time instant c in Fig. 3, 
MOSFET Q2 switches ON once the voltage across it crosses 
zero volts. Therefore, a comparator is used to trigger the 
switching signal using the voltage across this MOSFET. On 
the other hand, the voltage across MOSFET Q2 cannot be 
relied on as a trigger to turn it OFF. This is because the voltage 
has a near-zero time derivative. Therefore, a one-shot timer is 
used to drive MOSFET Q2 with a time duration equal to or less 
than duty cycle D2. The timer is triggered once the comparator 
detects a zero crossing in the voltage across MOSFET Q2.  

The ZDS of the Class E inverter means that the first 
derivative of the voltage across switch Q1 is zero at the moment 
it is switched ON, which in turn results in zero- current 
switching. The switches are driven at the same switching 
frequency, but with different duty cycles.   

The converter used was connected to a nominal load of 10 
Ω with a coupling coefficient of 0.50 and a 200 kHz switching 
frequency. The duty cycle D1 was set to 0.50 and the one-shot 
timer was set to produce a 2.56 𝜇𝜇𝑠𝑠 pulse, corresponding to a 
duty cycle D2 of 0.51. The practical and simulation results 
which show lower efficiencies occur when separation distance 
between the two coils, selected capacitor values or switching 
frequencies are not the optimal values.  

 



 
Fig.12 Simulated and Measured Efficiencies and Output Voltage 
(Vout) of the Experiment Setups, with parameters as listed in Table 2 
 
Table 3 CHARACTERISTICS OF PUBLISHED CLASS-E RECTIFIERS 

Ref. Output Power Converter 
Type 

𝜂𝜂[%] 

This work 20 W Class E2 
converter, 
200  kHz  

90-98 

[9] 20 W Class E2 
converter, 
200  kHz 

92.32 

[11] 10 W Class E 
rectifier, Si 
Schottky 

94 

[12] 50 W Class E 
power 
amplifier, 
3.45 MHz 

80 

[13] 100 W Class E 
power 
amplifier, 6  
MHz 

77 

[14] 3 W Mixed-
resonant 
coupling, 4 
MHz 

85 

[15] 0.02 W Non-radiative 
power 
transfer, 
5.256 MHz 

36.5-41.8 

[16] 50-200 W Half-wave 
class E 
rectifier, 4 
MHz 

90 

[17] 100 W Class E2 
converter, 
200 kHz 

85.5 

 
        In Fig. 12 a comparison between the converter efficiency 
and output voltage for simulated results and those obtained 
from the experiment is shown, based on the configurations 
listed in Table 2. Fig.12 confirms that the simulated and 

measured results are in good agreement, particularly for the 
efficiency. There are small percentage errors that are 
attributable to the tolerance of the capacitors and other 
components used. It can be concluded that the circuit can 
achieve high levels of efficiency if the frequency, duty ratios 
and delay angles of the two switching devices can be altered 
dynamically.  
      Table 3 shows comparisons of the results of this work with 
other published work in terms of efficiency, taking into 
account the converter type used. This clearly shows the 
substantial advance that has been achieved in obtaining 
efficiencies that are close to the maximum possible for class E2 
converters.  
 
5. Conclusion 
      A dynamic analysis model of the E2 wireless power 
transfer converter has been presented. The results suggest the 
switching process of the MOSFET devices does not have a 
deleterious effect on the stability of the circuit but changing 
frequency or duty ratio causes the converter to operate at low 
efficiencies and this can cause instability. Remarkably, it is 
found that at a resonance frequency of 200 KHz, the dynamic 
change of transmitter side capacitors has achieved near-
maximal efficiencies (90-98%) and maintained high output 
voltage. The high efficiency obtained is due to the resonance 
occurring in the converter by the action of the capacitors that 
compensate for some power loss in the inductor and windings 
resistances. The proposed work also suggests further 
development of optimally self-tuned regulators of such types 
for use in WPT devices. This can be done by changing the 
capacitors in the transmitter dynamically with the change in 
separation distances using a closed loop control system. The 
results confirmed that capacitor tuning produces almost stable 
output voltage and high efficiency. Experimental results 
verified the mathematical model, suggesting it is a reliable 
model for optimizing the performance of existing open loop 
WPT systems. 
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