
An Agent Based Technique for Improving
Multi-Stakeholder Optimisation Problems.

Neil Urquhart1 and Simon T. Powers1

Edinburgh Napier University, School Of Computing, 10 Colinton Road, Edinburgh,
United Kingdom. n.urquhart@napier.ac.uk

Abstract. We present an agent based framework for improving multi-
stakeholder optimisation problems, which we define as optimisation prob-
lems where the solution is utilised by a number of stakeholders who have
their own local preferences. We explore our ideas within the domain of the
University Timetabling Problem, demonstrating how a solution created
by traditional timetabling methods may be further improved from the
perspective of individual stakeholders (students) by agent based meth-
ods. We also note that this approach lends itself to increasing the level
of trust in such systems by potentially allowing the stakeholders to view
the actions taken by agents on their behalf.

Keywords: Timetabling · Optimisation · Real-World · Explainability

1 Introduction

Many real-world optimisation problems exist within a problem domain that has
many stakeholders, who each make use of the solution produced and have their
own “local” opinions and preferences. Such problems are frequently solved using
a centralised solver that produces a feasible solution that addresses the global
problem constraints. Examples of such problems include University timetabling
[2], Vehicle Routing Problems [1],mobile workforce scheduling [4] or crew schedul-
ing problems [5], see table 1.

In the domains listed in Table 1 there may be many stakeholders each of
which will have a view as to how the solution should meet their requirements.
For instance in timetabling a member of staff or a student may wish to avoid
having classes at specific times, or within crew scheduling an individual may
have a preference to work shifts that cover certain times or have a preference for
specific types of work.

Problem Domain Stakeholders

Timetabling Staff and Students

Vehicle Routing Drivers and Customers

Mobile Healthcare
Scheduling

Employees and Patients

Crew Scheduling Employees

Table 1. Some optimisation problem domains and associated stakeholders.



2 Neil Urquhart and Simon T. Powers

In this paper we suggest that the interests of stakeholders can be represented
by a multi-agent system (MAS). We propose that existing optimisation tech-
niques are used to produce a solution that satisfies the global hard and soft
constraints of the problem. This initial solution is then passed to a multi-agent
system for personalisation according to the needs of the stakeholders.

Within the MAS there are two classes of agent: the Problem Agent, and a set
of Stakeholder Agents (see Figure 1 and Table 2). The Problem Agent maintains
the solution and ensures that it remains valid (i.e. that it continues to satisfy
the hard constraints of the problem). The Stakeholder agents each represent the
views of one particular stakeholder and request changes to the solution in order
to better meet the needs of the stakeholder.

Agent Goal Possible Actions

Stakeholder Agent Achieve as many of the local objectives as possible
Request moves and swaps
within the global timetable

Problem Agent
Maintain the integrity of the global solution.
Action as many of the requests from
stakeholders as possible

Allow request
Deny Request

Table 2. The goals and actions of the agents within the system.

In this study we will use the University Timetabling domain based on the
authors’ experiences at Edinburgh Napier University as a test-bed for our ideas.

2 Main purpose

The University Timetabling problem domain is well known, [2] and many tech-
niques exist to optimise timetables according specific criterion. In the case of
Edinburgh Napier University, timetables for staff and students are created by
a commercial software package used by University administrators. With an in-
creasing emphasis on improving the student experience, producing timetables
that are tailored towards the needs of students becomes more important.

The authors propose that the University’s conventional software is used to
produce a feasible timetable, which is then passed to our system for customisa-
tion. The role of the Problem Agent (as defined in Section 1) is undertaken by
the Timetable Agent and the stakeholders by Student Agents.

To facilitate communication between the Timetable Agent and the Student
Agents a timetable ontology has been designed. Within the ontology a timetable
is defined as a collection of 45 slots, each occupying 1 hour (from 09:00 to 17:00
giving 45 slots over a 5 day week). Each slot may be occupied by an event, each
event being associated with a module and having a type as lecture, practical or
tutorial. Each event also takes place within a room, the size of which limits the
numbers of attendees.

Each Student Agent is supplied with a copy of their timetable by the Timetable
Agent. The Student Agent may then evaluate its timetable against criteria sup-
plied by its stakeholder. This criteria takes the form of a list of slots that the
stakeholder wishes to keep free. The Student Agent can now evaluate their



Title Suppressed Due to Excessive Length 3

Fig. 1. The MAS architecture.

timetable against this local criterion, highlighting events which occupy slots that
the student wishes to keep free. A second ontology describes the requests which
my be made by the Student Agent. Such requests are possible as many events
(especially tutorials and practicals) are duplicated. A move request is suitable
where a student wishes to move to an event that has space for an incoming
student. Where an event is full, a swap must be arranged with another student
making a reciprocal move between events. Where a swap has to be arranged, the
student initiating the swap passes the swap request to all other students, who
respond if they are able to make the swap.

A fundamental principle is the the Timetable Agent treats all requests as
atomic - each request is fulfilled entirely or rejected. Any request that would
breach a hard constraint within the timetable is rejected. In this way the Timetable
Agent ensures the overall integrity of the timetable.

3 Demonstration

The authors have implemented the basic system in Java using the Java Agent
Development Environment [3] for the agents, ontologys and message passing.
The demonstrator can import data from the University timetabling system and
can also be used with simpler test data.

Figure 2 shows a sample sequence of messages passing between 2 stakeholders
and a timetable agent. In this simple example the agents can be seen requesting
changes (moves) and being notified of the outcomes.

In order to allow the Student Agents to hold realistic criterion, students
within the university were surveyed regarding their attitudes to timetabling.
One of the questions within the survey required the student to highlight those
slots which they wished to keep free. In this initial version that information was
used to allow the Student Agents to evaluate their timetable. Each student agent
is randomly allocated the survey results of a respondent. In a production system
a student would advise their agent directly through a suitable interface.

4 Conclusions

We present a technique for using agents to improve University timetables. We
believe that this framework could be applied to other multi-stakeholder optimi-
sation problems (see table 1).



4 Neil Urquhart and Simon T. Powers

Fig. 2. A screen shot from the JADE sniffer demonstrating 2 stakeholders (student1
and student2) optimising their timetables by communicating with the timetable agent
(oracle). Requests for changes are Proposals messages and the response (confirming
or denying the change) is an Accept Proposal. We can also see the agents requesting
updated timetables (query if) and being informed of the updated timetable (inform).

A major development to be implemented is to allow a coalition of Student
Agents to move an event (subject to timetable constraints). Also to be inves-
tigated is measuring the global and local utility of changes and whether that
utility value can be used to encourage changes which result in the most effective
improvements. We also believe that by allowing stakeholders to specify their own
local criteria, and then explaining why the local agent was or was not able to
have changes made to accommodate them, we can increase trust in such systems.

References

1. Adewumi, A.O., Adeleke, O.J.: A survey of recent advances in vehicle routing prob-
lems. International Journal of System Assurance Engineering and Management 9(1),
155172 (Feb 2018)

2. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university
course timetabling problem. Computers Industrial Engineering 86, 4359 (2015).
https://doi.org/10.1016/j.cie.2014.11.010

3. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade — A Java Agent
Development Framework, pp. 125–147. Springer US, Boston, MA (2005).
https://doi.org/10.1007/0-387-26350-05, https : //doi.org/10.1007/0−387−26350−
05

4. Urquhart, N., Hart, E.: Optimisation and illumination of a real-world workforce
scheduling and routing application (wsrp) via map-elites. Parallel Problem Solv-
ing from Nature PPSN XV Lecture Notes in Computer Science p. 488499 (2018).
https://doi.org/10.1007/978-3-319-99253-239

5. Yen, J.W., Birge, J.R.: A stochastic programming approach to the air-
line crew scheduling problem. Transportation Science 40(1), 314 (2006).
https://doi.org/10.1287/trsc.1050.0138


