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Abstract 

Excessive vertical vibration of lightweight floors caused by walking or similar activities can be 

annoying to building occupants.  Previous studies have shown that the vibrational performance of 

floors having wood joists is enhanced by installing one or more lines of bridging elements that 

form transverse spines in the across-span direction.  This paper presents an experimental study 

that defined relationships between the effective flexural rigidity of such spines and response 

characteristics of wood joisted floors. Behaviors of spines having both normal and special types 

of bridging elements were investigated, with the special types of elements able to create a broad 
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range of spine flexural rigidities. It was found that all types of transverse bridging spines have a 

small influence on fundamental natural frequency but can increase higher order modal 

frequencies considerably.  Relatively stiff types of transverse bridging spines reduced static 

deflections caused by concentrated gravity forces considerably. An experimental method is 

presented for quantifying effective flexural rigidities of transverse bridging spines. Suggestions 

are made concerning application of the research findings in vibration serviceability design of 

lightweight wood joisted floors.   
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1. Introduction 

Vertical vibrations of floors caused by normal human activities like walking can be annoying or 

even disturbing to building occupants. It is a problem that applies most often to lightweight floors 

because, when excited, they tend to produce higher than normal levels of acceleration than heavy 

floors of a similar span.  Vibration serviceability problems can occur in floors constructed with 

wood-based products simply because of the low mass to stiffness ratios they possess [1–3].  

Although mass to stiffness ratios are important, it is equally important to pay close attention to 

construction detailing because that also controls how floors vibrate under different types of 

impacts and other sources of excitation [4].  Most modern lightweight wood floors are 

constructed using closely spaced joists made from sawn lumber or engineered wood products, 

such as Laminated-Veneer-Lumber (LVL) or wood I-joists, overlain with structural wood panels 

and flooring.  Investigation of reported vibration serviceability problems with such floors 

suggests that solutions lie in properly addressing size and spacing of the joists and use of 

construction details that engage multiple joists in resisting applied concentrated loads [5,6]. It 

follows from the above that paying attention to selection of construction details has the purpose 

of ensuring that floors will not flex in the across-span direction in a manner that can potentially 

cause adjacent vibration mode interaction, leading to high level of vibration amplitudes [7,8].  

As is well known from field experience, the performance of floors with wood joists and wood 

panel sheathing and flooring is improved by installing bridging elements to create one or more 

stiffening spines in the across-span (transverse) direction [1,3,9]. Transverse bridging spines are 

most often solid blocking or cross-bridging inserted between joists, Fig. 1.  However, despite 

their widespread application the mechanisms by which spines of such transverse bridging 
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elements function has not been fully elucidated. Hence, their performances have not been 

optimized.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Conventional bridging spines (a) solid blocking (b) cross-bridging 
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Providing transverse spines of bridging elements is not the only way to stiffen floors in the 

across-span direction. Chui [10] suggested installation of an additional layer of floor sheathing 

over the joists, while Hu and Tardif [11] suggested suppressing the floor response by coupling it 

to structurally competent partition walls.  Ohlsson [3] advocated reducing the spacing of floor 

joists. However, various investigators have reported that using transverse bridging spine is the 

most cost-effective strategy in enhancing vibration performance of wood floor systems [12–15]. 

Work by Onysko [16]  and Hu and Tardif [17] has suggested that a bridging spine at mid-span is 

the most effective and that for the bridging spines to be effective for long-span floor systems, the 

spacing between adjacent spines should be no more than 2m. 

Field investigations and surveys have been carried out in several countries to correlate occupant 

satisfaction with performances of floors in residential and mercantile buildings with parameters 

that engineers can estimate using simple formulas [18]. Amongst the parameters that can be 

calculated with reasonable reliability are fundamental natural frequency (f1) and static deflection 

caused by a concentrated gravity force of 1 kN placed at the centre of a floor (d1) [1,8,9,19,20].  

Employing f1 and d1 as design parameters is based on the premise that natural frequencies of 

floors should lie above a certain threshold level to avoid resonance of human bodies [2,3] and 

floors should be sufficiently stiff to prevent excessive flexural deformation in the across-span 

direction.  The latter is required to minimize adjacent mode interaction, which may lead to higher 

vibration amplitudes. Providing transverse bridging spines is an effective means to stiffen the 

floor in the across-span direction. Other approaches such as the use of a thicker sheathing and 

presence of a ceiling can also achieve similar stiffness enhancement effect. This study focuses on 

an approach to measure effective flexural rigidities of transverse bridging spines and how these 

rigidities influence floor stiffness in the across-span direction.  The significance of characterizing 
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the effective flexural rigidity of transverse bridging spines is that it can be incorporated into a 

system model to predict floor system response to static and dynamic loads [21].  The model [21] 

is based on ribbed-plate theory [22] and considers a timber floor as a system consisting of a thin 

plate reinforced by ribs running in either one or two orthogonal directions.  The static deflection 

under a point load at the centre of floor and the fundamental natural frequency can be calculated 

as in Equation (1) and Equation (2), respectively, considering floor construction details and 

incorporating the flexural rigidity of a row of bridging elements. 
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where a = span of floor, b = width of floor, P = point load at the centre of floor and  = density of 

subflooring material. Dx takes account of the composite flexural rigidity of the joists and the 

spacing. Dxy considers the shear rigidity of plate and torsional rigidity of the joists and Dy 

depends on the effective flexural rigidity of transverse bridging spines and the subfloor stiffness 

in that direction. Further details are given in [21]. In order to calculate Dy, the bridging spine 

rigidity must be known.  There is currently no reliable method of measuring that spine rigidity. 

With the characterization of the bridging spine rigidity, it is then possible to quantitatively 

evaluate the influence of bridging spine rigidity on static deflection and first natural frequency of 

timber floor systems. This is also discussed in this paper. 

2.  Test Program 

A test program was devised to focus on how characteristics of a single transverse bridging spine, 

created using bridging elements, influenced f1 and d1 of floors. To achieve this goal the test 
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program consisted of two components. The first component was the determination of the 

effective flexural rigidity of the transverse bridging spines that were used in the subsequent full 

size floor tests. The second component was the testing of full size floors to determine the static 

and dynamic floor characteristics. LVL joists were used rather than sawn softwood lumber 

because LVL has lower variability in dimensions and elastic stiffness between nominally 

identical pieces.  Low variability in joist characteristics was desired because that would avoid 

possible masking effects other variables had on floor response parameters [2,5].  The primary 

focus of the study was to understand the influence of stiffness of bridging spines on floor 

performance parameters.  

Rectangular plan geometry and simple support conditions along all edges were adopted to 

maximize effects of changing bridging element stiffness on floor response characteristics.  

Transverse bridging spines employed were solid blocking pieces, lumber cross-bridging with and 

without bottom strapping, and special bridging elements of variable stiffness.  The baseline 

condition of no bridging elements installed was also investigated.  A subsidiary study was 

conducted to characterize the effective flexural rigidity of each type of bridging element.   

2.1. Full-size floor tests 

Floor span and width were 4.20 m and 3.66 m, respectively, Fig. 2.  Joists were 240 mm deep by 

44 mm thick LVL and spaced 610 mm apart.  Mean LVL joist properties were: modulus of 

elasticity in bending = 11,700 MPa, and shear modulus as a joist = 1,270 MPa.  These properties 

were measured using modal testing technique developed by Chui [23].   The subfloor was 19 mm 

construction sheathing grade Oriented-Strand-Board (OSB) with tongue-and-grooved edges. 

Mean OSB properties were: modulus of elasticity in bending parallel to stiff axis = 9,640 MPa; 

modulus of elasticity in bending perpendicular to stiff axis = 4,860 MPa; and density = 658 kg/m3 

[9]. Panels of subfloor were oriented with their stiff in-plane axis in the across-span direction, 
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with a staggered jointing pattern, and fastened to joists using 63 mm long gauge 10 (4.83 mm 

diameter) wood screws spaced as indicated in Fig. 2.  Floors were supported on shallow light-

frame walls as shown in Fig. 3, making it easy to measure static deflection of joists from the 

underside using dial gauges having an accuracy of 0.01 mm. Dial gauge readings were read by a 

technician at regular load intervals to allow a continuous load-deflection response to be 

constructed after the deflection test. 

 

Fig. 2. Plan view of floor layout with a row of bridging elements 
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Fig. 3. Test floor layout (a) along-span elevation (b) across-span elevation 

 

Table 1 shows the various floor arrangements investigated. Where installed, solid blocking 

elements were single pieces of 38 mm by 240 mm sawn spruce lumber toe-nailed to LVL joists 

using two 63 mm long gauge 8 (4.19 mm diameter) common nails. Each blocking to joist 

connection had two nails with one driven from each side at top and bottom. Cross-bridging 

Laboratory floor

44x240mm LVL joists

(b)

at 600mm centre

102mm screws at 100 mm on centre

End LVL blocks

3.66 m

19mm thick OSB sheathing

1.3m

(a)

102mm screws at 100 mm on centre

19mm thick OSB sheathing

1.3m

44 x 240 mm LVL joists

Laboratory floor

4.20 m
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comprised two pieces of 38 mm by 51 mm sawn spruce lumber, each fastened to joists using two 

63 mm long gauge 8 (4.19 mm diameter) common nails, Fig. 4.  Where installed, strapping was 

19 mm by 89 mm spruce board that was attached to the underside of cross-bridging and attached 

to each joist by two 63 mm long gauge 10 (4.83 mm diameter) wood screws, Fig. 4.  

 

Table 1. Static deflection response of floors with and without a bridging element spine 

Type of bridging 

elements 

Equivalent beam 

flexural rigidity, 

EIb (kNm2) 

Static deflection 

under 1 kN load, 

d1 (mm) 

Reduction in 

deflection relative 

to baseline (%) 

Baseline a 0 1.3 0 

Cross-bridging 45 1.18 10 

Solid blocking 57 1.10 14 

Cross-bridging with 

strapping 

91 0.98 25 

Special - 1 screw b 40 1.17 9 

Special - 3 screws 61 1.11 15 

Special - 5 screws 78 1.04 20 

Special - 8 screws 92 0.96 26 

Special - 13 screws 98 0.93 29 

Special - 13 screws + 

adhesive 

110 0.90 31 

a Floor tested without addition of any bridging elements. 

b Number of screws located at each end of a special bridging element 
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Fig. 4. Cross-bridging plus strapping 

 

Special bridging elements were created in a manner that allowed the stiffness of the joints 

between LVL blocking elements and joists to be changed by altering the number of screws 

attaching blocking elements to aluminum brackets.  A total of eight aluminum brackets were 

employed for each blocking element, with four located on either face as shown in Fig. 5.  The 
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number of screws per bracket ranged from 1 to 13 (i.e. 1, 3, 5, 8 or 13).  Additional tests were 

performed using both 13 screws and epoxy resin to attach blocking pieces to brackets resulting in 

approximately rigid blocking to joist connections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Example of a special bridging element 

 

For the floor arrangements shown in Table 1, the joists and subfloor were the same. The only 

difference was in the bridging details stated. For each floor d1 was measured by applying a 1 kN 

19 mm thick OSB sheathing  
44 mm by 240 mm thick LVL blocking 

element  

Aluminum bracket with a variable number of screws 

attaching the blocking piece to the joist 

44 mm by 240 mm LVL joist 
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concentrated load to the floor surface above the central joist at its mid-span, following the 

procedure by Onysko [1].  Hammer impact modal testing was performed on each floor 

arrangement to determine its vibration natural frequencies without any additional mass. 

Following the test procedure by Smith and Chui [5], each floor was excited by an instrumented 

hammer at a location that would excite  the first five vibration modes. The vibration responses 

were measured by an accelerometer at mid-span and quarter points of each floor joist to allow the 

mode shapes to be constructed to confirm the mode number.   The impact force and acceleration 

signals were analysed by a spectrum analsyer to determine the natural frequencies and mode 

shape displacements. Damping ratios were also calculated but the results showed no sensitivity to 

bridging details, hence they are not discussed in the paper.  

 

2.2. Testing to measure flexural rigidity of transverse bridging spines  

Tests were conducted to quantify the flexural rigidity of transverse bridging spines that used in 

the floor. Under the test procedure, assemblies consisting of two bridging elements and three 

LVL joist segments were loaded in three-point bending, Figs. 6 and 7.  For special bridging 

spines, two 44mm by 240mm LVL block elements of 610 length were used. Solid blocking 

elements were 38 mm by 240 mm and cross-bridging were comprised of two pieces of 38 mm by 

51 mm sawn spruce lumber with and without 19 mm by 89 mm spruce board strapping. The 

bridging elements were connected to LVL joist segments by adopting the same connection 

configuration that was used in the floor tests. In the test method, the load was increased gradually 

using a cross-head displacement speed of 1.5 mm/min, with the maximum value of P being 

between 1 and 4 kN depending on the flexibility of the test specimen.  That test permitted 

measurement of the effective flexural rigidity, EIb, of an equivalent spine comprising a number of 
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bridging elements.  Equation (3) was used to calculate EIb as a function of rotational stiffness, kr, 

and joist spacing, Jsp, with the former estimated from test data using Equation (4).  

𝐸𝐼𝑏 = 𝑘𝑟  𝐽𝑠𝑝                                                                                                                                   (3) 

𝑘𝑟 = 𝛥𝑃 (
𝛥𝛿

𝛥𝜃
)                                                                                                                               (4) 

where Δδ/Δθ is the slope of the plot of the vertical displacement at mid-span (δ) versus average 

rotation at the supports (θ), and ΔP is the increment in applied load corresponding to the slope 

calculation.  The complete derivation of Equations (3) and (4) is given in Khokhar and Chui [24]. 

Taking account of both δ and θ in Equation (3) permits the inclusion of effects of all deformation 

components, including bending, shear and axial displacements in bridging elements and slip in 

bridging element connections in the effective flexural rigidity, EIb.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Scheme of an isolated bridging element test arrangement 
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Fig. 7. Test set up (a) special bridging element (b) cross-bridging with strapping 
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3. Results and Discussion 

Table 1 summarizes the measured d1 for EIb values ranging from 0 to 110 kNm2, with the 

limiting EIb values corresponding to the null situation of no bridging spines and the extreme of 

bridging elements rigidly connected to joists. The common situations of cross-bridging or 

blocking elements attached to joists using screws or nails, respectively, corresponded to effective 

flexural rigidities in the order of half the upper limit value (i.e. 45 and 57 kNm2 respectively). 

Cross-bridging with strapping resulted in an EIb of 91 kNm2, demonstrating the practicality of 

constructing stiff bridging element spines. It is reasonable to speculate other construction details 

that result in provision of a tension resistance on undersides of joists in the across-span direction 

(e.g. addition of plasterboard ceiling) similarly improves effectiveness of bridging elements.  

As expected, Table 1 shows that d1 values decrease when EIb is increased.  For the particular 

floor layout the relationship between d1 and EIb is very close to linear as shown in Fig. 8.  

 

 

 

 

 

 

 

 

 

Fig. 8. Static deflection under 1 kN load at center of floor versus effective flexural rigidity of 

bridging 
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This means that when a concentrated load is placed at the centre of a floor, stiffness contributions 

of joists acting compositely with semi-rigidly attached OSB sheathing and a bridging element 

spine located at mid-span were sensibly linearly additive.  From a structural mechanics 

perspective, this means that the stiffness of the subfloor was relatively negligible. However, 

departures from that will most likely be associated with situations where a thick subfloor is used.  

 

Table 2 summarizes the first five vertical vibration natural frequencies (fi, i = 1,.., 5) of each floor 

arrangement.  The mode shape was also extracted from modal testing data to confirm the mode 

numbers [9]. As the raw results show, there was no consistent positive influence of bridging 

elements on f1, except for the floor system having cross-bridging and strapping. This was because 

in all, except the cross-bridging/strapping case, the decrease in frequency caused by mass of 

bridging elements roughly cancel out the increase due to increased floor stiffness.  Similar results 

have been reported previously [2].  Fig. 9 shows the relationship between EIb and the ratios of f1 

values for other floor arrangements to f1 for the baseline condition of no bridging elements.  

Cases where the ratio is less than 1.0 are ones where modal mass effect is stronger than the modal 

stiffness effect, and the opposite is true when the ratio is greater than 1.   

Past studies have suggested that simplified design analysis methods, like using effective stiffness 

and mass for an isolated joist, result in estimates of f1 that are within 10 percent of test values 

[5,18].  It can therefore be considered reasonable to use such simplified estimates during 

application of contemporary vibration serviceability design criteria. Results here suggest that in 

many instances simply using the baseline condition of no bridging elements installed would often 

lead to an acceptable estimate of f1 irrespective of what type of bridging element spines floors 

have.   Although suggesting appropriate design practices for vibration serviceability of 
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lightweight wood joisted floors is not the primary purpose of this paper, it is clear from the test 

results that for floors similar to those investigated design criteria employing only d1 and f1 can be 

applied with reasonable precision without need for complex supporting structural analysis.      

 

Table 2. Free vertical vibration frequencies of floors with and without a bridging element spine 

Type of bridging 

elements 

Equivalent beam 

flexural rigidity, 

EIb (kNm2) 

Natural frequency (Hz) 

f1 f2 f3 f4 f5 

Baseline floor a 0 20.8 25.8 32.4 37.8 45.8 

Solid blocking 47 20.5 30.9 44.5 55.6 66.5 

Cross-bridging 55 20.5 29.0 40.8 53.3 64.5 

Cross-bridging with 

strapping 

91 21.8 32.7 43.5 58.0 70.0 

Modified Baseline floor b 0 18.8 23.1 28.4 33.4 39.6 

Special - 1 screw c 40 19.3 27.4 40.0 53.2 66.0 

Special - 3 screws 61 19.4 28.6 41.4 54.2 67.7 

Special - 5 screws 78 19.5 29.2 42.0 54.8 67.3 

Special - 8 screws 92 19.6 29.3 42.4 55.2 68.0 

Special - 13 screws 98 19.9 30.2 42.7 56.0 69.2 

Special - 13 screws + 

Adhesive 

110 20.5 30.2 43.0 56.0 70.0 

a Floor tested without addition of any bridging elements. 
b Floor tested without addition of any bridging spines, but with addition of aluminum brackets to 

which special bridging elements were fixed. 
c Number of screws located either side at each end of special bridging elements.   
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Fig. 9. 

Effect of effective flexural rigidity of bridging spine on fundamental natural frequencies of floors 

(normalized to that of floor system without bridging spine) 

 

Addition of bridging element spines positively impacted natural frequencies other than f1 in the 

sense that it increased values f2 to f5 including increasing separations between adjacent modal 

frequencies, as seen in Table 2.  As already discussed, it is well known that this is desirable in 

terms of how it effects building occupant ratings of performances of wood joisted floors [1,3,7].  

However, as has also been extensively reported, accurate prediction of natural frequencies other 

than f1 can be difficult and impractical to obtain for normal engineering design [2,19]. 

Consequently, it is generally more reliable, in terms of calculation efficiency, to use f1 and d1 as 

vibrational serviceability design for lightweight wood joisted floors [25]. It should be noted that 

f1 is largely controlled by along-joist floor system stiffness and mass, whereas d1 is influenced by 
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floor system stiffnesses in the major and minor directions. Therefore d1 would be reduced and 

modal separation increased by any increase in stiffness properties of bridging elements. The 

results in Tables 1 and 2 clearly show that d1 can be used to effectively control modal separation 

as a design parameter. 

4. Conclusions 

The overarching finding of the reported study is that it is advantageous to incorporate between- 

joist bridging elements as a method of improving dynamic performance of lightweight wood 

joisted floors, with the main reason being that it increases mode spacing which has the benefits of 

reducing modal interaction and number of dominant vibration modes that can be excited.  

In summary, new findings are:   

 Irrespective of the type of bridging elements used, incorporating a spine(s) of bridging 

elements in wood joisted floors improves their vibration performance.  

 The fundamental vertical natural frequencies of floors similar to those tested are weakly 

related the flexural rigidity of bridging element spines.  

 Effective flexural rigidity of transverse bridging spines can be a practical basis for estimating 

the static displacement of floor systems containing such spines.  It follows that vibration 

serviceability design criteria based on estimation of static displacements can be implemented 

in relatively simple ways for lightweight wood joisted floors.  

 It is feasible for design guidelines to classify relative effectiveness of alternative types of 

bridging elements in simple ways. For example, using cross-bridging or solid blocking could 

be classified as satisfactory methods for most situations, and using cross-bridging and 

strapping attached to undersides of joists could be classified as effective in all situations.  

 



 20 

Acknowledgements 

The authors would like to thank the Natural Sciences Engineering Research Council (NSERC) of 

Canada, the National Research Council Canada and FPInnovations for financial support of this 

study through the NSERC Research Partnership Program. Special thanks to Dr. Lin Hu, senior 

scientist at FPInnovations for her advice and assistance throughout the research project.  



 21 

References 

[1] Onysko DM. Serviceability criteria for residential floors based on a field study of 

consumer response. Project 03-50-10-008. Forintek Canada Corp, Ottawa, ON, Canada: 

1985. 

[2] Chui YH. Vibration performance of wooden floors in domestic dwellings. Ph.D thesis. 

University of Brighton, UK, 1987. 

[3] Ohlsson S V. Springiness and human induced floor vibration: A design guide. Document 

No. D 12-1988. Sweden Council for Building Research, Stockholm, Sweden: 1988. 

[4] Smith I. Vibration of timber floors: serviceability aspects. Timber Eng., Chapter 14. John 

Wiley & Sons, Chichester, UK; 2003, p. 241–66. 

[5] Smith I. Design of lightweight wooden floors to avoid human discomfort. Can J Civ Eng 

1988;15:254–62. doi:10.1139/l88-033. 

[6] Smith I, Chui YH. Construction methods for minimizing vibration levels in floors with 

lumber joists. Can J Civ Eng 1992;19:833–41. doi:10.1139/l92-094. 

[7] Dolan JD, Murray TM, Johnson JR, Runte D, Shue BC. Preventing annoying wood floor 

vibrations. J Struct Eng 1999;125:19–24. doi:10.1061/(ASCE)0733-9445(1999)125:1(19). 

[8] Hu LJ, Chui YH, Onysko DM. Vibration serviceability of timber floors in residential 

constructions. Prog Struct Eng Mater 2000;3:228–37. 

[9] Khokhar A. Influence of lateral element stiffness on performance of wooden floors. M.Sc. 

thesis. University of New Brunswick, Canada, 2004. 

[10] Chui YH. Evaluation of vibrational performance of light-weight wooden floors: 



 22 

Determination of effects of changes in construction variables on vibrational characteristics. 

Research Report No. 2/86. Timber Research and Development Association (TRADA), 

Hughenden Valley, Bucks, UK.: 1986. 

[11] Hu LJ, Tradif Y. Effects of partition walls on vibration performance of engineered wood 

floors. Proc. First Int. RILEM Symp. Timber Eng., Stockholm, Sweden: 1999. 

[12] Colville J, Angleton HD, Snodgrass D, King JM. Bridging in residential floor 

construction. Report No. LR-6. National Association of Home Builders Research Institute 

Laboratory, Rockville, Maryland, USA: 1961. 

[13] Onysko DM, Jessome AP. Effectiveness of various bridging methods. Information Report 

OP-X-51. Eastern Forest Products Laboratory, Ottawa, ON, Canada: 1973. 

[14] Stark JW. The effect of lateral bridging on dynamic response of wood floor system. MSc 

Thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1993. 

[15] Chui YH. Use of conventional cross-bridging in wood I-joist floors. Final Report to 

Canada Mortgage and Housing Corporation. University of New Brunswick, Fredericton, 

N.B., Canada: 1999. 

[16] Onysko DM. Performance and acceptability of wood fllors-Forintek studies. Symp. Serv. 

Build. (movements, Deform. Vib., Ottawa, Canada: 1988. 

[17] Hu LJ, Tardif Y. Effectiveness of strongback/wood I-blocking for improving vibration 

performance of engineered wood-frame floors. Wood Des Focus 2000;11. 

[18] Weckendorf J, Toratti T, Smith I, Tannert T. Vibration serviceability performance of 

timber floors. Eur J Wood Wood Prod 2016;74:353–67. doi:10.1007/s00107-015-0976-z. 

[19] Smith I, Hu LJ. Prediction of vibration serviceability of ribbed plates by modal synthesis. 



 23 

Report 69: 243-250. International Colloquium on Structural Serviceability of Buildings, 

Göteborg, Sweden: 1993. 

[20] Toratti T, Talja A. Classification of Human Induced Floor Vibrations. Build Acoust 

2006;13:211–21. doi:10.1260/135101006778605370. 

[21] Chui YH. Application of ribbed-plate theory to predict vibrational serviceability of timber 

floor systems. Proc. World Conf. Timber Eng., Shah Alam, Malaysia: 2002, p. 87–93. 

[22] Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells. McGraw Hill, 

Newyork, USA; 1959. 

[23] Chui YH. Simultaneous evaluation of bending and shear moduli of wood and the influence 

of knots on these parameters. Wood Sci Technol 1991;25:125–34. 

[24] Khokhar A, Chui YH. Ribbed-plate approach to predict static and dynamic responses of 

timber floor with between-joist bracing. Proc. world Conf. timber Eng., Vienna, Austria: 

2016. 

[25] Hu LJ. Serviceability design criteria for commercial and multi-family floors. Canadian 

Forest Service Report No. 4. Forintek Canada Corp, Sainte-Foy. Q.C., Canada.: 2000.  


