
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Numerical Encoding to Tame SQL Injection Attacks

Solomon Ogbomon Uwagbole

School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

s.uwagbole@napier.ac.uk

William J. Buchanan, Lu Fan

School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

b.buchanan;l.fan@napier.ac.uk

Abstract— Recent years have seen an astronomical rise in SQL

Injection Attacks (SQLIAs) used to compromise the confidentiality,

authentication and integrity of organisations’ databases. Intruders

becoming smarter in obfuscating web requests to evade detection

combined with increasing volumes of web traffic from the Internet

of Things (IoT), cloud-hosted and on-premise business applications

have made it evident that the existing approaches of mostly static

signature lack the ability to cope with novel signatures. A SQLIA

detection and prevention solution can be achieved through

exploring an alternative bio-inspired supervised learning approach

that uses input of labelled dataset of numerical attributes in

classifying true positives and negatives. We present in this paper a

Numerical Encoding to Tame SQLIA (NETSQLIA) that implements

a proof of concept for scalable numerical encoding of features to a

dataset attributes with labelled class obtained from deep web traffic

analysis. In the numerical attributes encoding: the model leverages

proxy in the interception and decryption of web traffic. The

intercepted web requests are then assembled for front-end SQL

parsing and pattern matching by applying traditional Non-

Deterministic Finite Automaton (NFA). This paper is intended for a

technique of numerical attributes extraction of any size primed as

an input dataset to an Artificial Neural Network (ANN) and

statistical Machine Learning (ML) algorithms implemented using

Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic

Regression (TCLR) respectively. This methodology then forms the

subject of the empirical evaluation of the suitability of this model in

the accurate classification of both legitimate web requests and

SQLIA payloads.

Keywords—NETSQLIA; SQLIA; numerical attributes encoding;

SQL Injection; SQLIA neurons

I. INTRODUCTION

 A typical method used to pilfer confidential data is by SQLIA

[1] with successful attacks leading to serious ramifications in

ransom, extortion and loss of revenue to businesses. Security

firewalls lock down ports and applications but often do little

against malicious web requests stealthily concealed in legitimate

web requests. This leaves most existing solutions, provided in

Web Application Firewalls (WAF) [2] that rely on signature

approaches to detect an attack, playing catch-up.

The methodology demonstrated in the proposed Numerical

Encoding to Tame SQLIA (NETSQLIA) is an alternative bio-

inspired method that combines static and dynamic analysis

leveraging SQL parser and man-in-the-middle functionality of

proxy for numerical attributes extraction from features (legitimate

web requests, injection mechanisms and SQLIA types) in a web

request (URL POST, GET and body contents). It is a self-

contained model that combines collation of the numeric attributes

and web services from a trained model built on Microsoft Azure

Machine Learning (MAML) [3] studio for a continuous SQLIA

detection; dropping suspect requests but forwarding legitimate

web requests to the back-end database through custom Internet

Information Services (IIS) web server.

There is a strong argument for a bio-inspired against existing

signature based approach, not least because an intruder may

exploit a SQLIA type with many signature variations in order to

evade pattern matching e.g. a SQL injection tautological attack of

1=1 can also be written as 1 > 1, ‘a’=’a’, etc. [4] to achieve the

same attack.

These variations could create significant issues for signature

based detection and prevention methods in recognising novel

signatures that intruders continuously evolve. This paper explores

these variations as the blue print for the random decimal attribute

that augment these variations within a SQLIA type in the

generation of large dataset items of any size. These random

decimal attribute items can be given an identity by mapping to

them patterns of these variations that exist within a SQLIA type.

NETSQLIA excludes new attack patterns not currently trained

for as an outlier and thereby the model is able to carry-on with

effective SQLIA detection and prevention.

Although the work presented in this paper may have all the

hallmarks of a full SQLIA detection and prevention system, it is

intended for a technique of labelled dataset extraction of any size

primed as input to supervised learning models. Labelled dataset

has attribute items which are classed as normal and suspect. This

then forms an input dataset to a supervised model of ANN that is

cross-validated with a statistical ML algorithm for the overall

performance of Area Under Curve (AUC) which ANN comes on

top with negligible difference of 0.02 (2%) against ML. The

confusion matrix for the repeated ANN model training ranges

between: AUC = 0.78 (78%) with accuracy of 0.911 (91.1%); and

AUC = 0.912 (91.2%) with accuracy of 0.929 (92.9%).

We present here a proof of concept demonstration and

validation of NETSQLIA implemented on MAML studio using

training algorithms of TCAP [5] and TCLR [6]. This

methodology then forms the subject of the empirical evaluation of

the suitability of this model in the numerical attributes extraction

and accurate classification of both legitimate web requests and

SQLIA payloads.

The paper is laid out in six sections ending with a conclusion

and future work summary. Section II covers background and

theory and Section III is focused on related work; with Sections

IV and V detailing NETSQLIA attributes encoding, evaluation

and results.

II. BACKGROUND THEORY

The approach presented in NETSQLIA intercepts web requests

of any intent at the proxy for numerical attributes encoding of

features based on legitimate web requests (valid requests),

injection mechanisms and SQLIA types.

The injection mechanisms can be through: web page forms e.g.

login screen; second-order injection by concealing a Trojan horse

for a later date attack; exploiting web enabled server variables to

gain access to back-end database; and through cookies that have

stored state information then used to gain unauthorised access to

the back-end database. NETSQLIA prevents second-order

injections by enforcing in predefined patterns no special

characters, spaces and encoding obfuscation in web form input

being monitored. The use of proxy enables intercepted monitored

web form input and cookies to be decrypted (if encrypted input is

so desired) to be laid bare for thorough analysis.

Notable SQLIA types are techniques that can be employed in

any combination to carry out an attack which includes:

Tautology; Invalid/Logical Incorrect; Union; Piggy-backed; Store

procedure; Time-based; and Alternate encoding obfuscation.

Further reading on SQL types can be found in paper [7].

The long existence of the SQL injection problem has not

provided a robust test dataset similar to the one used in the

intrusion detection system of KDD Cup [8]. The few sample

datasets that exist are usually project specific. These would

normally contain unprocessed strings of repeating features of the

variations that exist within SQLIA types as against pre-processed

features of numeric attributes suited for artificial intelligence like

ANN and ML presented here. The random decimal attribute

introduced in NETSQLIA is aimed to provide a way to derive

large dataset attributes encoded from features, which is often

lacking in existing works.

 With this attribute of random decimal values, it is possible to

have a large dataset to simulate in ANN and ML a hypothetical

scenario of tens of thousands to millions of SQLIAs that are

likely with automated injection attack tools.

NETSQLIA is fully replicable as described here with .NET C#

and R language background using open source software of fiddler

proxy, SQL Script Dom Parser API, RegEx and MAML studio.

III. RELATED WORK

Whilst it is acknowledged that there are existing works that

share similarities in the overall scheme of SQLIA detection and

prevention this does not extend to the input of numerical

attributes extraction from features in-transition to a supervised

learning model as proposed in this paper. This forms the context

of reviewing a few selected related works.

 A recent work [9] employing a hybrid of dynamic and static

approach predicted code vulnerabilities against a supervised

model which achieved 0.77 (77%) recall value. There was no

AUC value provided in the paper to gauge the decency of the

model in overall performance. In this proposed model, we have

demonstrated a supervised learning model trained with primed

datasets for a decent model of AUC of 0.78 (78%) with recall of

93.7%, and even at the high end of the scale with AUC of 0.912

(91.2%) with a recall value of 0.984 (98.4%).

SQLrand [10] is a related work that employs proxy and SQL

parser but a signature approach. SQLProb [11] is also a proxy

based approach but the proposed scheme addressed second-order

attack which is not addressed in both approaches.

JDBC Checker [12] is a static approach that explores finite

state automaton but unlike in this proposed model, it lacks proxy

to backhaul web requests for thorough analysis.

AMNESIA [13] uses NFA static and dynamic pattern

matching similar to the one used in the proposed scheme but the

system solely relied on pattern matching and lacked method to

address obfuscated requests aimed at evading pattern matching.

Some notable works are known for code validation but here

web traffic is backhauled for deep pattern analysis at the proxy.

IV. NETSQLIA

A. Numerical attributes encoding

Fig.1 gives a high-level illustration of the three primary

processes that highly depend on predefined NFA patterns

implemented in RegEx. These patterns include: pre-defined

patterns for expected legitimate requests; and patterns for outliers

including known attack signatures (“?”, “’”, “OR”, “1=1” and “--

”), etc.

http://bsid/bsid/Data Page.aspx?LoginName=bob

(?(?([a-zA-Z|0-9]+or[a-zA-Z|0-9]+))(?i)(?:[\

s*http(s)://].+\?(?:.+\bor|having\b.+)))

SELECT loginName FROM tblUser WHERE

loginName='bob'

Intercept at proxy query strings

for known attack patterns

matching, and extract query input

for SQL parser.

Construct full query from

request in-transition and run

against SQL parser for

patterns in syntactic structure,

keywords count, etc.

Match the assembled query

against static valid patterns

expected and outliers, at the

same time encode to numerical

attributes patterns matching in

steps 1-3.

([\sA-Za-z]?)*\s[\s\w]*\s[\sA-Za-z]*\s[\sFROM]*\

s[\sWHERE]\s[\sA-Za-z]*\s[\s=]*'[^']+'

1

2

3

Fig. 1.Numerical attributes encoding

B. Numerical Attributes interpretation

Table I illustrates the procedure of attributes extraction. If the

static defined pattern (p) finds a match, then a number is assigned

from a range of 1 to 9. The value of 9 being a legitimate (normal)

web request value, and a value range of 1 to 8 being any of the

SQLIA types not excluding second-order injection mechanisms.

The threat threshold is the factor determining the value, which in

this case means that a number equal to or greater than 9 will be

deemed a legitimate request. It is imperative that all other

numeric attributes dataset items stay above two decimal

precisions (e.g. 0.01...0.0n) meaning that the sum of all other

attributes row items must be less than 1 as a value greater than 1

will shift the threat threshold value. If that is the choice, then the

sum of all attributes row items must be calculated before deciding

on the threat threshold value.

Matched patterns are further scored to determine (d) pattern

match by implementing NFA backtracking [14] to cross-check if

the criteria for features are being met. The scoring is modelled as

follows: are the patterns being matched present in dynamic

features (web requests); are patterns partly present in matched

features; e.g. implementing backtracking for tautological attack

will be a litmus test for escape character (‘), OR, patterns of 1=1

and its derivations. For simplicity, range values of 0.01 to 0.05

are assigned for a degree of precision of features in pattern

matching.

The assignment of numeric values range is flexible so long as

threat threshold is accounted for and the dataset attributes are

normalised when applied as input vectors to ANN or ML.

TABLE I. FEATURES ENCODING PROCEDURE

Getting the primary attributes of predictors or x variables

Get matched patterns (p) of features using NFA (RegEx)

 if features matched static defined patterns
 assign a numeric value of 1 to 9

Validate (v) matched pattern (p) using a method of NFA backtracking

 randomly assign a score 0.01 to 0.05
Randomisation (r)

 randomly assigned a decimal value less than 0.1

 computed against web requests total count

Calculating the likeliness of being normal (n) threshold -risk factor

SUM (p, v, r), take the minimal value >= 9 as threshold

 If n >=9
 Then

 Normal = 1

 Else
 Suspect = -1

Calculating y –variables or what to predict

 If normal (n)
 Then

 0 1

 Else
 1 0

The labelled dataset attributes (predictors) are scaled down in

this paper for simplicity but the approach can be replicated for as

many attributes so desired that are attributed to SQLIA behaviour

patterns.

The encoding procedure in Table 1 demonstrates how the

numerical attributes detailed in Table II are obtained. The

notation of the attributes of recognised pattern (sitype p)

{w0…wn}; determinant d {w0…wn} and subtype random risk r

{r0…rn} (the random decimal attribute scaled to e.g. 0.01...0.0n).

w0…wn and r0…rn are the dataset items (rows) values of the

attributes detailed in Table II. These x-attributes SUM (p, d, r) are

collated to obtain the likeliness of features being a risk factor that

can either be -1 likeliness or 1 for remote likeliness. The y-

variables or what to predict (commonly known as class) can be a

possible 1 (1 0) for SQLIA or 0 (0 1) for normal as illustrated in

Table I are inferred from risk factor (r).

TABLE II. ENCODED NUMERIC DATA PRIMED FOR ANN AND ML

Sitype (p) Determinant

(d)

Subtype

random

Risk (r)

Risk

factor

class

p{w0 } d{w0 } r0 xo yo

1 0.03 0.0846 -1 10

9 0.05 0.0482 1 01

p{wn } d{wn} rn xn yn

C. Implementation

A high level overview of NETSQLIA is presented in this

section along with Fig.2 which illustrates the four primary

components of the complete schematic architecture of

NETSQLIA in numerical attributes extraction from features that

are fed as input to the supervised learning model. The stages are:

1) Dynamic web requests of features. A simulated live

scenario can be fed from a static file containing features.

Alternatively, the use of a unit testing tool e.g. selenium web

testing tool can be used to simulate request automation. This

method can also be used to automate the initial training phase.

2) Fiddler proxy [15] to backhaul web traffic for deep web

request analysis that includes numerical attributes extraction

from matched patterns before passing-on valid requests to an IIS.

3) Web requests payload decision engine collating the

encoded numerical attributes to a labelled dataset of normal and

threat payloads. SQLIA payloads are dropped based on this

collation stage assisted by existing trained model exposed as web

service in conjunction with form input validation.

4) Primed numerical attributes input to a better performing

ANN (TCAP) that when cross-validated against ML (TCLR)

produces a negligible difference, shown in Fig. 3 in Section V.

 Pattern matching and SQL script Dom parser rule engine

Pattern

matching of

features

Protected

SQL

Database

http://localhost/bsid/

DataPage.aspx?LoginName=

bob&Password=bob

Yes SQLIA

Safe

x xn

Dynamic web requests in-

transition are continuously

compared with valid static

patterns repository of RegEx

to simultaneously extract

numerical attributes from

features

An intruder

injecting query

strings

http://localhost/bsid/

DataPage.aspx?LoginName=

'%20OR%201=1--

&Password=

SQL parser for

syntactic queries

structure and and

count of SQL

keywords

Return custom

error that does

not divulge

back-end

details
IIS web server implementing

custom module to accept

only sanitised request from

proxy

Legitimate

web

requests
No

Trained Two-Class Averaged

Perceptron cross-validated

by Two-Class Logistic

Regression exposed as a

web service in MAML

Encoded features

of Numerical

attributes feed to

the ANN & ML

MAML Web service

client UI integrated

into web form to

validate input for on-

going SQLIA

detection and

prevention

Fiddler Proxy API:

man-in-the middle

rendering web

requests to

unencrypted plain

query strings for

pattern matching

1

2

3

4

Fig.2. Proof of concept: attributes extraction, trained model web service for SQLIA detection and prevention

V. EVALUATION AND RESULT

A total of 236 unique SQLIA features were collected across

different hacking forums, websites and SQLIA tools. The novel

approach described in numerical attributes extraction from

features provides a method to generate a dataset of any size from

the template patterns collected. There were two sets of datasets

used which both contained four x-attributes (predictors) and two

y-attributes (what to predict or labelled class) created for this

experiment that were ran on MAML studio.

Dataset 1 contained 30,000 unadulterated items (rows)

generated as described in Section IV, which the trained model

gave an overfitting in all confusion matrix of a value of 1. This is

expected for a primed labelled dataset. While dataset 2 had

50,000 dataset items that were randomly sorted to provide equal

distribution of featured items. Dataset 2 contained a mixture of

both 20,000 adulterated and 30,000 unadulterated dataset items.

The adulteration part of dataset 2 involves removing the class

labelling and using numeric range outside 1 to 9 used in clean

data (unadulterated) to set the threat threshold.

Fig.3 shows the preferred algorithm used in NETSQLIA with

the gradient variations (0.78-0.914) in AUC overall performance

between ANN (TCAP) = 0.912 and ML (TCLR) = 0.914 with

0.02 difference which tilts ANN towards 0.9 mark for a fair AUC

against statistical ML. Table III details the calculation of

evaluation results. The confusion matrix values x can be

interpreted in percentages by a simple multiplication (x*100).

Through repeated training of the supervised classifier using

different attribute’s items (rows) distribution, normalisation and

split ratios, an optimum classification was achieved at:

normalisation using transformation method of ZScore; split data

ratio of 80:20 between training to test data. An optimised decent

model of AUC = 0.78 has confusion matrix: accuracy = 0.911;

precision = 0.967; recall = 0.937; and F1 Score = 0.952.

TABLE III. CONFUSION MATRIX

Terminology Formula Values Performance metrics

True Positive (TP) - 9205 Accuracy (A)=

(TP+TN)/TE

Precision

(P)=TP/(PO)

Recall (R)=

TP/PE

F1Score=2*

 (R*P)/(R+P)

0.929

True Negative (TN) - 84

False Positive (FP) - 561

False Negative (FN) - 151 0.943

Positive events (PE) TP+FN 9356

Negative events

(NE)

FP+TN 645

0.984

+ observations (PO) TP+FP 9766

- observations (NO) FN+TN 235 0.963

Total events (TE) PO+ NO 10001

Fig.3 AUC comparison of TCAP(0.912) and TCLR(0.914) overall performance

VI. CONCLUSION AND FUTURE WORK

We have demonstrated in NETSQLIA a model for numerical

attributes extraction of any size from features primed as dataset

items to ANN and cross validated in ML. The benchmark of

detection rates against existing research works are not included

here as this paper is aimed at determining the suitability of this

novel attributes extraction technique to accurately train

supervised learning model exposed as web services. The

confusion matrix shown in Table III empirically evaluates the

model.

The heavy-lifting done in NFA pattern matching reduces the

classification to linear as against multi-class algorithm if NFA

was not explored. NETSQLIA has built-in safeguards to group

unrecognised patterns as unknown but future work is required to

exhaustively map the random decimal values attributed to

variations in attack features with exploring deep ANN and ML.

REFERENCES

[1] OWASP, “OWASP Top 10 - 2013,” OWASP Top 10, p. 22, 2013.

[2] OWASP, “Web Application Firewall,” 2015. [Online]. Available:
https://www.owasp.org/index.php/Web_Application

_Firewall. [Accessed: 15-Nov-2015].

[3] Microsoft Azure, “Microsoft Azure Machine Learning Studio,”
Microsoft Azure Machine Learning. [Online]. Available:
https://studio.azureml.net/. [Accessed: 25-Jan-2015].

[4] Oracle, “SQL Injection Cookbook - Oracle - OWASP,” OWASP,
2007. [Online]. Available: ttps://www.owasp.org/index.php/SQL

_Injection_Cookbook_-_Oracle. [Accessed: 01-Jan-2015].

[5] Microsoft Azure, “Two-Class Averaged Perceptron,” MSDN.
[Online]. Available: https://msdn.microsoft.com/en-us/library/az

ure/dn906036.aspx. [Accessed: 19-Feb-2016].

[6] Microsoft Azure, “Two-Class Logistic Regression,” MSDN
Library,2015.[Online].Available:https://msdn.microsoft.com/en-
us/library/azure/dn905994.aspx. [Accessed: 01-Feb-2016].

[7] W. G. J. Halfond, A. Orso, D. A. Kindy, and A. S. K. Pathan,
“AMNESIA: Analysis and Monitoring for NEutralizing SQL-
injection Attacks,” Int. J. Commun. Networks Inf. Secur., vol. 5,
pp. 80–92, 2013.

[8] S. J. Stolfo, “KDD cup 1999 dataset,” UCI KDD Repos.
http//kdd.ics.uci.edu, p. 0, 1999.

[9] L. K. Shar, L. C. Briand, H. K. Tan, and S. Member, “Hybrid
Program Analysis and Machine Learning,” vol. 12, no. 6, pp. 688–
707, 2015.

[10] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL
injection attacks,” in Applied Cryptography and Network Security,
2004, pp. 292–302.

[11] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb : A
Proxy-based Architecture towards Preventing SQL Injection
Attacks,” System, pp. 2054–2061, 2009.

[12] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: a static analysis
tool for SQL/JDBC applications,” in Software Engineering, 2004.
ICSE 2004. Proceedings. 26th International Conference on, 2004,
pp. 697–698.

[13] W. G. J. Halfond and A. Orso, “Preventing SQL Injection Attacks
Using AMNESIA.” Proc. 20th IEEE/ACM Int. Conf. Autom.
Softw. Eng., pp. 174–183, 2005.

[14] MSDN, “Matching Behavior.” [Online]. Available:
https://msdn.microsoft.com/en-us/library/0yzc2yb0(v=vs.100).

Aspx. [Accessed: 07-Jun-2015].

[15] E. Lawrence, “Fiddler free web debugging proxy,” Telerik.
[Online]. Available: http://www.telerik.com/fiddler. [Accessed:
11-Feb-2015].

