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Abstract. Choosing the correct algorithm to solve a problem still re-
mains an issue 40 years after the Algorithm Selection Problem was first
posed. Here we propose a hyper-heuristic which can apply one of two
meta-heuristics at the current stage of the search. A scoring function is
used to select the most appropriate algorithm based on an estimate of the
improvement that might be made by applying each algorithm. We use a
differential evolution algorithm and a genetic algorithm as the two meta-
heuristics and assess performance on a suite of 18 functions provided by
the Generalization-based Contest in Global Optimization (genopt). The
experimental evaluation shows that the hybridisation is able to provide
an improvement with respect to the results obtained by both the differen-
tial evolution scheme and the genetic algorithm when they are executed
independently. In addition, the high performance of our hybrid approach
allowed two out of the three prizes available at genopt to be obtained.

Keywords: global search; differential evolution; genetic algorithm; global
continuous optimisation; hyper-heuristic

1 Introduction

A significant amount of real-world applications requires finding global optima
over continuous decision spaces. Examples from diverse domains such as eco-
nomics and finance [28], circuit design [21], control theory [1], chemistry [23],
and electricity [26], among others, highlight the importance of properly address-
ing them in order to provide satisfactory solutions. Due to this, the development
of efficient algorithms has been of increasing interest for researchers, also ac-
companied by the urgency from the side of practitioners requiring high-quality
feasible and fast solutions for their difficult problems at hand.
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In this context, various are the approaches that have been recently proposed
for non-differentiable global optimisation. For instance, in [13], a predictive ap-
proach to the reproduction phase of new individuals for a well-known meta-
heuristic was proposed. Another example is given by [14], where a derivative-
free global heuristic, which deals with constraints by static and dynamic penalty
function techniques, was presented. Finally, a modification over an existing exact
penalty algorithm for making it derivative-free, which in addition makes use of
a local search procedure, was introduced in [7].

Evolutionary Computation (ec) is a relevant field with many applications
within global optimisation [5,25]. Its main goal is to study, develop, and analyse
algorithms following the biological notion of evolution within the Darwinian prin-
ciples. The above has motivated the development of a wide variety of algorithms.
In this regard, some of the most frequently used methods, which belong to the
family of Evolutionary Algorithms (eas), are Genetic Algorithms (gas) [10], due
to their easy and flexible implementation, as well as their exhibited performance.
Furthermore, during the last two decades, another ea called Differential Evolu-

tion (de), proposed in [22], has been successfully applied not only to benchmark
problems but also to several real-world applications [4].

Another field of research that has gained a significant popularity during last
years is that of Hyper-heuristics (hh). A hh can be defined as a search method
or a learning mechanism for selecting or generating meta-heuristics or tailored
heuristics to solve computational search problems [2]. Therefore, they function
at a higher level of abstraction when compared to meta-heuristics and heuristics,
and usually have no knowledge about the domain of the problem at hand. In
this context, hh based on selection try to address the Algorithm Selection Prob-

lem [15] by iteratively identifying and selecting the most promising low-level
meta-heuristics or heuristics, from a set of candidates, for solving a particular
instance of an optimisation problem [3]. This can be done by means of a scoring
function that is used for assessing the performance of each low-level approach.

In this work, we propose a hybridised ea that uses a selection-based hh

to address the set of global continuous optimisation problems provided for the
Generalization-based Contest in Global Optimization (genopt)1 organised in the
field of the Learning and Intelligent Optimization Conference (lion 10). The hh
selects the most suitable meta-heuristic to be applied at the current stage of the
search procedure, choosing between a de scheme and a ga. If both algorithms
are applied in isolation, then for some problems, de is the best performing ap-
proach, with the ga failing to converge to high-quality solutions, while for other
instances, the opposite situation is observed. By combining the eas by means
of a hh, we are able to produce a more powerful approach that overcomes the
weaknesses of the individual algorithms on the majority of considered problems.

The remainder of this paper is organised as follows. Section 2 describes our
hybridisation of eas through the use of a hh. Section 3 describes the experimental
evaluation and provides a discussion of the results obtained. Finally, Section 4

1 The manifesto of the contest, including its instructions and rules, can be found in
the following url: http://genopt.org/genopt.pdf.

http://genopt.org/genopt.pdf
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draws the main conclusions extracted from the work and provides several lines
for further research.

2 Hybridisation of evolutionary algorithms

This section is devoted to the description of the hybridisation, through the use
of a hh (Section 2.4), of two meta-heuristics. Section 2.1 introduces an adaptive
version of de, while Section 2.2 presents the implementation of the ga applied.
Additionally, with the aim of increasing the convergence speed of the whole
optimisation scheme, a Global Search (gs) procedure is described in Section 2.3,
which is incorporated into both meta-heuristics.

2.1 Adaptive differential evolution

de is a stochastic direct search method particularly suited for continuous global
optimisation [22]. In de, the decision variables of a given problem are defined by
a vector X = [x1, x2, . . . , xi, . . . , xD], being D the number of decision variables
or the dimensionality of the problem, and every xi a real number. The quality of
each vector X is given by the objective function f(X)(f : Ω ⊆ R

D → R). The
goal of global optimisation, considering a minimisation problem, is thus to find
a vector X∗ ∈ Ω where f(X∗) ≤ f(X) holds for all X ∈ Ω. In the particular
case of box-constrained optimisation problems, the feasible region Ω is defined
by particular values for the lower (ai) and upper (bi) bounds of each variable,

i.e. Ω =
∏D

i=1[ai, bi].
In this work, we apply an adaptive version of the approach de/current-to-

pbest/1/bin, which uses jade [27] as the control scheme. We selected this variant
since it showed to be one of the best exploitative schemes in [19]. jade is respon-
sible for adapting the values of the mutation scale factor F and the crossover

rate CR of de, which will be introduced in the following lines.
The operation of this de scheme is as follows. First of all, a population P

with NP individuals (P = [X1,X2, . . . ,Xj , . . . ,XNP ]), also called vectors in
the scope of de, is initialised by using a particular strategy. Each individual
comprises D decision variables. The value of the decision variable i belonging
to the individual Xj is denoted by xj,i. Then, successive iterations are evolved
by executing the following steps, until a stopping criterion is satisfied. For each
vector in the current population, referred to as target vector (Xj), a new mutant

vector (V j) is created using a mutant vector generation strategy. In our case,
we apply the current-to-pbest/1 scheme. Any vector in the population different
from the target vector is randomly selected as the base vector. The mutant vec-
tor V j for target vector Xj is thus created as shown in Eq. 1, where r1 and
r2 are mutually exclusive integers different from the index j chosen at random
from the range [1, NP ]. Moreover, the individual Xr3 is randomly selected from
the fittest p × 100% individuals. Another parameter K is also introduced, but
in order to facilitate the parameterisation of the whole scheme, K = F is usu-
ally considered, with F the mutation scale factor allowing the exploration and
exploitation abilities of de to be balanced.
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V j = Xj +K × (Xr3 −Xj) + F × (Xr1 −Xr2) (1)

After applying the mutant vector generation strategy, the mutant vector
is combined with the target vector to generate a trial vector (U j) through a
crossover operator. The combination of the mutant vector generation strategy
and the crossover operator is usually referred to as the trial vector generation

strategy. The most commonly applied operator for combining the target and mu-
tant vectors, and the one considered herein, is the binomial crossover (bin). The
crossover operation is controlled by means of the crossover rate CR. The bino-
mial crossover generates a trial vector as shown in Eq. 2. A uniformly distributed
random number in the range [0, 1] is given by randj,i, and irand ∈ [1, 2, ..., D]
is an index selected in a random way that ensures that at least one variable is
propagated from the mutant vector to the trial one. For the remaining cases,
the probability of the variable being inherited from the mutant vector is CR.
Otherwise, the variable of the target vector is considered.

uj,i =

{

vj,i if (randj,i ≤ CR or i = irand)
xj,i otherwise

(2)

The trial vector generation strategy, as described above, might generate vec-
tors outside the feasible region Ω. One of the most widely used schemes is based
on randomly reinitialising the infeasible values in their corresponding feasible
ranges, and it is the one applied herein. After generating NP trial vectors, each
one is compared against its corresponding target vector. For each pair, the one
that minimises the objective function is selected to survive. In case of a tie, in
our version the trial vector survives. Finally, the gs depicted in Section 2.3 is
applied to the surviving population.

2.2 Genetic algorithm

The other approach we selected for our hybridisation is a generational ga with
elitism preservation. This was selected as it has previously been demonstrated to
be the best performing mono-objective approach when solving continuous opti-
misation problems with different dimensions [20]. The operation of this algorithm
follows the typical scheme of a ga. First of all, an initial population with NP in-
dividuals is randomly generated. Then, for each generation, NP −1 offspring are
created. Parents are selected by using the well-known Binary Tournament [8],
while offspring are obtained by applying the Uniform Mutation operator [8] and
the Simulated Binary Crossover operator [6], with mutation and crossover rates
pm and pc, respectively. Afterwards, during the replacement stage, all parents,
except the fittest one, are discarded, and they are replaced by the generated
offspring. Finally, the last step of the algorithm is the application of the gs de-
scribed in Section 2.3 to the surviving population. The above process is repeated
until a given stopping criterion is achieved. In order to complete the definition
of this ga, we should note that individuals are represented by a vector of D real
numbers, being D the number of decision variables of the problem considered.
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2.3 Global search procedure

In order to address potential slow convergence in both de and ga that arises
when addressing difficult problems, and to improve the quality of the solutions
provided, a gs procedure based on the one proposed in [11], is applied to both
algorithms. It is defined as follows. Given an individual Xk randomly selected
from the current population, a new individual V is generated by means of Eq. 3,

V = a1 ×Xk + a2 ×XBest + a3 × (Xr1 −Xr2), (3)

with a1, a2, and a3 being three numbers randomly selected from the range [0, 1],
and for which the condition a1 + a2 + a3 = 1 is satisfied. XBest is the best
individual in the current population, i.e. the one with the lowest objective value,
and Xr1 and Xr2 represent two different individuals randomly selected from
the current population. We should note that indexes k, r1, and r2 are mutually
exclusive. Once the new individual V is generated, it is evaluated and compared
to the individual Xk. In case f(V ) < f(Xk), V replaces Xk in the current
population, i.e. Xk = V , and the gs starts another iteration for trying to
improve Xk. Otherwise, individual V is discarded and the gs is stopped. The
main novelty in our work is that the gs is iteratively applied to individual Xk

until it cannot be improved anymore. This contrasts to earlier work in [11] in
which the gs is only applied once to individual Xk.

2.4 Hyper-heuristic

A variant of the selection hh firstly proposed in [24] is used to select between the
two aforementioned eas. The said variant was proposed and has been success-
fully applied by the authors in previous work [16,17,20]. It is based on using a
scoring and a selection strategy for choosing the most suitable low-level configu-
ration. Once a low-level configuration is selected, only that strategy is executed
until a local stopping criterion is achieved. When this happens, another low-level
configuration is selected and executed. The final population of the last low-level
configuration becomes the initial population of the new low-level configuration.
This process continues until a global stopping criterion is satisfied. In the par-
ticular case of the current work, a fixed number of evaluations, established by
the genopt rules, is considered as the global stopping criterion.

The low-level configuration that must be executed is selected as follows. First,
the scoring strategy assigns a score to each of the two eas. This score estimates
the improvement that each configuration might achieve starting from the current
population. Larger values are assigned to more promising approaches, based on
their historical performance. To calculate this estimate, the previous improve-
ments in the objective value achieved by each configuration are used. The im-
provement γ is defined as the difference, in terms of the objective value, between
the best individual found so far, and the best initial individual. Given a config-
uration conf that has been executed j times, the score s(conf) is calculated as
a weighted average of its last k improvements. This is shown in Eq. 4, where
γ[conf ][j− i] represents the improvement achieved by the configuration conf in
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execution number j− i. The adaptation level of hh, i.e. the amount of historical
knowledge considered to perform its decisions, can be varied depending on the
value of k. Finally, the weighted average assigns a greater importance to the
most recent executions, with the aim of better adapting decisions to the current
stage of the search procedure, thus discarding too old information.

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1− i) · γ[conf ][j − i]

min(k,j)
∑

i=1

i

(4)

The hh is elitist, namely, it selects the low-level configuration that maximises
the score s(conf). However, some selections are randomly performed by following
a uniform distribution: this is tuned by means of a parameter β, which represents
the minimum selection probability that should be assigned to each low-level
configuration. If nh is the number of low-level configurations involved, then a
random selection is performed in β · nh percentage of the cases.

3 Experimental evaluation

This section is focused on describing the experiments conducted with the opti-
misation scheme introduced in Section 2.

Experimental method The eas, as well as the hh framework, were imple-
mented using the Meta-heuristic-based Extensible Tool for Cooperative Optimi-

sation (metco) [12]. Tests were run on a debian gnu/linux computer with
four amd R© opteronTM processors (model number 6164 he) at 1.7 ghz and
64 gb ram. Since all experiments used stochastic algorithms, each execution
was repeated 100 times with different initial seeds. With respect to the former,
comparisons between algorithms were carried out by applying the following sta-
tistical analysis [18]. First, a Shapiro-Wilk test was performed to check whether
the values of the results followed a normal (Gaussian) distribution. If so, the Lev-
ene test checked for the homogeneity of the variances. If the samples had equal
variance, an anova test was done. Otherwise, a Welch test was performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis test was used.
For all tests, a significance level α = 0.05 was considered.

Problem set Experiments were carried out using the set of continuous op-
timisation problems proposed for the genopt. The set is composed of three
families of functions with different features, and a particular function is de-
fined by its identifier. For the contest, 6 functions created by the gkls gen-
erator [9] (f1–f6), 6 conditioned transforms of classical benchmarks (f7–f12),
and 6 composite functions (f13–f18), were proposed. Functions f1–f12 were de-
fined by identifiers 0–11, while functions f13–f18 were defined by identifiers
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Table 1: Parameterisation of the genetic algorithm
Parameter Value Parameter Value

Stopping criterion 1 · 106 evals. Mutation rate (pm) 1/D

Population size (NP ) 5 Crossover rate (pc) 1

Table 2: Parameterisation of the differential evolution scheme
Parameter Value Parameter Value

Stopping criterion 1 · 106 evals. Mutation scale factor (F ) jade

Population size (NP ) 32 Crossover rate (CR) jade

% of best individuals (p) 0.1

Table 3: Parameterisation of the hyper-heuristic
Parameter Value Parameter Value

Local stopping criterion 1.2 · 104 evals. Minimum selection rate (β) 0.1

Low-level configs. (nh) 2 Historical knowledge (k) 5

1586038869–1586038874. Initial seeds were fixed by the genopt organisation
to values 1586038869–1586038968. Finally, following the instructions given for
the contest, in the current work, for those functions with an even identifier, the
number of decision variables D was fixed to 10. For the remaining functions, 30
decision variables were considered.

Parameters Tables 1 and 2 show the parameterisation for the ga and de,
respectively. Parameter values for both eas were selected based on previous
knowledge of the authors [19,20]. However, in order to fix parameter values for
hh, different parameterisations were considered, which did not present statis-
tically significant differences among them. The above means that hh is robust
from the point of view of its parameters, since altering them is not going to
significantly affect the performance of the whole optimisation scheme. Table 3
shows the particular configuration of hh that we applied for the set of functions
considered. Regarding the number of low-level configurations nh, we should note
that different values were also tested, by taking into account different parameter-
isations for de and ga as the candidate set of hh. Nevertheless, the usage of more
than two low-level configurations, i.e. nh > 2, started to degrade somewhat the
performance of the whole optimisation scheme. The reader should recall that hh
makes some random decisions. If some candidate configurations do not perform
properly, some function evaluations might be lost due to the random selection
of one of those configurations, with the consequent decrease in performance of
the whole search procedure. This is the main reason why we selected only two
low-level configurations, one based on de and the other one based on ga.

Table 4 shows, for each considered problem, a statistical comparison among
hh and each of both eas executed independently. Particularly, it shows if hh sta-
tistically outperformed de or ga (↑), if hh was statistically outperformed by de
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Table 4: Statistical comparison between hh and eas considering problems f1–f18
f Alg. p-value Dif. f Alg. p-value Dif. f Alg. p-value Dif.

f1
de 1.53e-26 ↑

f2
de 2.51e-28 ↑

f3
de 1.81e-29 ↑

ga 6.69e-12 ↑ ga 1.38e-10 ↑ ga 1.28e-12 ↑

f4
de 2.69e-21 ↑

f5
de 2.19e-28 ↑

f6
de 2.23e-18 ↑

ga 4.75e-05 ↑ ga 3.07e-13 ↑ ga 1.25e-03 ↑

f7
de 2.40e-16 ↑

f8
de 1.48e-01 ↔

f9
de 8.09e-02 ↔

ga 2.52e-34 ↑ ga 2.52e-34 ↑ ga 3.07e-34 ↑

f10
de 5.53e-39 ↑

f11
de 6.94e-14 ↑

f12
de 7.70e-12 ↑

ga 5.54e-39 ↑ ga 2.52e-34 ↑ ga 2.52e-34 ↑

f13
de 9.98e-09 ↑

f14
de 3.27e-02 ↑

f15
de 1.98e-05 ↓

ga 2.52e-34 ↑ ga 2.66e-33 ↑ ga 2.52e-34 ↑

f16
de 5.18e-34 ↑

f17
de 2.87e-30 ↑

f18
de 5.17e-05 ↑

ga 2.52e-34 ↑ ga 2.52e-34 ↑ ga 2.52e-34 ↑

or ga (↓), and cases for which statistically significant differences did not appear
between hh and de or ga (↔). We should note that hh statistically outperforms
a particular ea if there exist statistically significant differences between them,
i.e. if the p-value is lower than α = 0.05, and if at the same time, the Vargha

Delaney effect size between hh and the given ea is lower than 0.5, since we are
dealing with minimisation problems.

It can be observed that hh was statistically better in 33 out of 36 statistical
comparisons. In 15 out of 18 problems, hh was able to provide statistically better
solutions than de and ga. For problems f8 and f9, de did not present statistically
significant differences with hh, but the latter was able to statistically outperform
ga. Finally, considering the problem f15, hh was statistically outperformed by
de. Bearing the above in mind, the superiority of hh when compared to de and
ga executed independently is clear. Using hh removes the issue of algorithm
selection from the user, with the hh autonomously selecting the most appropriate
algorithm at the current stage of the search for a given instance, and enabling a
hybridisation of both algorithms.

Additionally, hh is able to provide even better solutions than those obtained
by de or ga executed independently for most of the considered problems, thus
showing that it is able to properly combine the benefits of both eas for solving
global continuous optimisation problems.

4 Conclusions and future work

In this work, a hyper-heuristic solution approach, hh, enabling hybridisations
of eas for solving global continuous optimisation problems was proposed. The
approach hybridised a differential evolution de, and genetic algorithm ga. Fur-
thermore, it included the use of a stochastic global search following the selection
of the surviving population. The hh selects the most appropriate method to use
at each point based on a scoring function that estimates potential improvement.
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The method is evaluated using a set of continuous optimisation problems pro-
posed for the Generalization-based Contest in Global Optimization (genopt).

The computational results show that the use of our proposed hyper-heuristic
framework leads to an overall enhancement when compared to the evolution-
ary algorithms executed in isolation. This highlights the capability of hh for
switching the best evolutionary algorithm along the search. Moreover, in the
majority of the cases, the improvement exhibited by hh goes further the best
performing ea for each given problem, suggesting its use instead of using the
embedded methods independently. Finally, it is worth mentioning that the high
performance of our hybridisation through hh was recognised with two out of the
three prizes available at the genopt.

On the basis of the findings presented in this paper, the next stage of our
research will be focused on extending the numerical experimentation including
the assessment of the different parameters of hh and its integrated eas, as well
as studying the performance of hh with additional algorithms and/or problems.
Another promising line of research would be to analyse the impact that different
scoring functions have over the performance of the whole optimisation scheme.
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