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Abstract

A discrete formulation of elastic rod has been tailored for the particular design

task of geometric modelling, form finding and analysis of actively bent structural

systems. The rod element is fully described by using vector based quantities,

hence making it easy to implement and be suitable for explicit resolution methods

such as the Dynamic Relaxation (DR). From this point of view, the model under

consideration aims to provide a natural enhancement, of existing DR schemes of

elastic rods, primarily formulated for analysis/design of stressed spline structures

with isotropic cross-section, whilst, the proposed formulation allows for the general

case of initially straight rods with anisotropic cross-section and torsional stiffness

effects, to be taken into consideration. In order to avoid numerical conditioning

problems, the method adopts a reduced Degrees of Freedom approach, however,

the design limitations usually involved with such an approach, are ‘removed’ by

adopting the Bishop theory of framed curves, hence making it possible to reduce

to only three (translations) the Degrees of Freedom to be explicitly computed by

numerical integration of the corresponding acceleration terms.

Keywords: Active bending, Form finding, Discrete elastic rod, Dynamic

Relaxation, Finite-difference-method

1. Introduction

In the context of Architectural Geometry [1], the development of numerical

tools, to assist the design and form exploration of actively bent structures, is gaining
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increasing interest [2, 3, 4, 5, 6]. According to Lienhard et al [7] the term ‘Active-

Bending’ refers to those design cases in which the structural shape is obtained as a5

result of bending frameworks/assemblies of elastic members such as (but not limited

to) rods or beams. Examples of constructing shelters and huts ‘by bending’ of

branches, sticks or laths, probably date back to prehistoric times. Excepting those

episodes of vernacular architecture, as for instance, the iconic mongolian Yurt [8]:

aware-driven-designs examples of using bending as a self-forming process for the10

shape definition of roof structures (for both temporary [9, 10] or permanent use [11,

12, 13]) are fairly recent. Particularly, in the last few years, an increasing number

of experimental pavilions [14, 15, 16, 17, 18] have been built around the world, by

academics/professionals, in (both) Architecture/Structural Engineering, mostly as

a means of drawing attention on such a ‘new’ method of building ‘through’ bending.15

Figure 1: Trio grid-shell, Lecce, Italy, 2010, by: CMMKM Architettura e Design: (a) Physical

(scale) models were extensively used during the design phase; (b) Realised structure.
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Figure 2: Pliable timber torus pavilion, Barcelona, 2014 [17], by: CODA (Computational Design

Affairs): (a) Model prototype; (b) Construction phase; (c) Realised structure. Photos courtesy:

David S. Anderson (WIT Press).

For the design of such actively bent systems, shape and material aspects are

tightly connected through the particular construction (bending) process, meaning

that: physical and/or numerical models are required to be used during the design

process (see Figures 1, 2) in order to take the structural mechanical behaviour of

the system into account while defining the architectural shape [19].20

The discrete mathematical modelling of elastic rods is an expanding research

field, finding application in several areas, for instance, in medicine [20], biology [21],
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computer graphics [22, 23, 24], applied physics [25], computer aided design [26, 27]

and structural engineering [28, 29]. Due to the large amount of literature on the

topic: rather than providing a long list of previous works, it has been aimed (in the25

next subsections) to concentrate on the most relevant requirements upon which a

model of discrete elastic rod suitable to aid the design of actively bent systems can

be built. This will make possible to reduce the number of existing contributions

to only few, as those most relevant to our need. In particular: a set of ‘main’

references throughout the paper is represented by the works of Adriaenssens and30

Barnes on stressed spline structures [30, 31, 32].

1.1. Resolution method: Implicit or Explicit?

For the physical simulation of elastic rods, and (in general) for every procedure

aimed to numerically solve systems of ordinary and partial differential equations,

implicit methods are preferred over explicit ones in describing the system’s transient35

behaviour over the time domain (pseudo-time for static analyses). Implicit methods

are generally preferred as they allow for larger (numerically stable) time increments

to be considered and are insensitive to numerical stiffness. Emblematic in this

regard is, for instance, the introduction to the Computer Graphic community of

implicit integration methods for physically-based cloth simulation [33]. On the40

other hand, explicit methods have their own advantages, in particular: for those

cases in which the given initial condition is ‘very far’ from the equilibrium solution,

explicit formulations are more advantageous, since, the root-finding algorithm (e.g.

the well known Newton-Raphson) allowing to ‘implicitly’ proceed over each time

increment, works very well (quadratic convergence) when the integrating function45

is convex, whilst it is likely to fail otherwise.1 This is a common situation when

dealing with form finding analyses, in which, the problem’s unknowns (namely, the

structural shape) is sought by initializing the analysis with an arbitrary geometry,

likely to experience gross deformations in converging to the equilibrium shape. This

may explain the reason why, an explicit integration method such as the Dynamic50

1In some cases such a ‘limitation’ inherent to implicit methods can have useful applications,

as for instance, in the field of structural analysis, the critical buckling load of a structure can

be obtained as the load increment at which the analysis fails to converge, since at that point the

load-displacement curve becomes flat. Such a method was adopted, for instance, for the structural

analysis of the Mannheim Multihalle grid-shell [11].
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Relaxation (DR) is a standard procedure in the form finding/analysis of tension

structures [34].

Clarified that the choice of an explicit or implicit resolution method will mainly

depend upon the problem to be solved, for what we are concerned in here regarding

actively bent (and twisted) structural systems, the following considerations can be55

made:

• For a ‘pure’ simulation of the structure’s physical behaviour, e.g. in order

to simulate the construction (bending) process [35] or for instance, to assess

the structure’s behaviour under working loads, an implicit method will be

more advantageous. In such a case, stiffness parameters will be physically60

meaningful, as well as the mass parameter (in case of dynamic analyses).

• On the other hand, for ‘design-oriented’ problems, e.g. form finding analyses,

the geometrical shape (rather than stresses and deformations) is the main

unknown in the problem. Accordingly, an explicit method will certainly be

more tenacious in seeking a solution, and in such a case: masses, time-step65

size and stiffness parameters can have no physical meaning at all but will

be (likely) set according to prescribed design parameters and/or numerical

stability issues.

1.2. Discrete formulation: 3, 4 or 6 Degrees of Freedom?

According to continuum mechanics theory, a rod or beam is a three-dimensional70

object having one dimension (length) L much bigger than the other two. For

instance, in case of rectangular cross-section, with b and h the cross-sectional width

and height respectively:

L� b ; L� h (1)

From Kirchhoff [36] and Cosserat [37] theories of elastic rods (see Antman:

[38]) such a three-dimensional object can be mathematically modelled as a one-75

dimensional entity, by considering a parametric curve in the Euclidean space, cor-

responding to the rod’s centreline, with r̄ the position vector of the material point

along the curve. Assuming, for instance, the arclength s ∈ [0, L] as a parameter:

r̄(s) = {rx(s), ry(s), rz(s)} (2)
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Figure 3: Continuous model of elastic rod by means of: a parametric curve r̄(s), representing

the rod’s centreline, and a moving frame {x̄, ȳ, z̄} representing the material cross-section.

In addition, an orthonormal frame is introduced to represent the orientation of the

rod’s cross-section along the curve.80

The choice of the local frame is not unique, and more details in regard will be

given in section 3.3. For now we consider a material frame {x̄, ȳ, z̄} consisting of a

unit vector z̄(s) tangent to the rod’s centreline:

z̄(s) =
∂r̄

∂s
(3)

thus coinciding with the tangent unit vector of the Frenet-Serret frame [39], and

two directors, x̄(s) and ȳ(s), defining the Principal Axes associated with the second85

moments of area Ix and Iy of the cross-section (see Figure 3). Noting that, as in the

classic (EulerBernoulli/Saint-Venant) theory of beam, the plane of the cross-section

is assumed to remain orthogonal to the rod’s centreline.

Such a basic description of the rod’s continuum, is the starting point from which

an approximate (numerically solvable) discrete model can be built up. Assuming90

the rod’s centreline r̄(s) represented by a discrete set r of n+ 1 nodes:

r = {r̄0 . . . r̄i . . . r̄n} (4)

If stiffness values are provided, relations can be built between the rod’s geometry

(node’s position and cross-section orientation) and the corresponding nodal forces

(reactions) by applying concepts of stain energy minimization. For instance, as-

suming a piecewise cubic spline interpolation of the node set r, the ith piece of95
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rod’s centreline is given by:

r̄i(t) = (2t3 − 3t2 + 1)r̄i + (t3 − 2t2 + t)m̄i + (−2t3 + 3t2)r̄i+1 + (t3 − t2)m̄i+1 (5)

with:

i = 0, . . . , n− 1 ; t ∈ [0, 1] (6)

thus, the piece of curve is uniquely defined by: the end nodes r̄i = r̄i(0) and

r̄i+1 = r̄i(1) and by the end tangent vectors m̄i and m̄i+1.

If we express the orientation of the element’s end tangent vector m̄i = z̄i|m̄i|100

in terms of local rotational displacements θx, θy [40] as shown in Figure 4a, the

piece of spline from i to i + 1 resembles the shape function of a Finite beam

Element with 12 Degrees of Freedom (DoF) or more precisely, with 6 DoF per

node: 3 translations, corresponding to the Cartesian components of the node, and 3

rotations, corresponding to the two angles (θx and θy) defining the local orientation105

of z̄ around p̄i (see Figure 4a) plus a twisting angle, defining the orientation of the

local frame around its own z̄ axis.

The idea of having at least 6 DoF per node, to ‘completely’ describe the mechan-

ical behaviour of a beam element, is widely accepted in the Structural Engineering

community.110

In general, Computer Graphic models are focused on defining reduced DoF

formulations, with the main scope of reducing computational time by avoiding ro-

tational DoF at the expense of quantitative accuracy (see for instance [24]). In fact,

as noted by Adriaenssens and Barnes [31]: “...it is often the coupling of these (ro-

tational DoF) with axial stiffness and translational DoF, which cause conditioning115

problems in numerical explicit methods such as Dynamic Relaxation”. Practically,

the coupling between translational and rotational DoF requires a smaller size of

the time-steps in explicit resolution methods.

Common formulations of discrete elastic rods with a reduced number of DoF,

assume the material frame at a element level instead of at a node level [27] (see120

Figure 4b) so that the orientation of the tangent-to-centreline vector z̄ is function

of the node’s position only (absence of shape functions) therefore, the tangent’s

orientation does not need to be searched explicitly. Accordingly, the only remaining

rotational DoF is the angles of twist of the material frame. As in [22], we keep the

local frame at a node level, but enforce the tangent direction z̄ by means of local125

spline interpolation.
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Figure 4: Discrete elastic rod: (a) Total DoF formulation; (b) Reduced DoF formulation.

Furthermore, if torsional stiffness is neglected and the rod model is restricted

to the case of isotropic cross-section (Ix = Iy) the DoF can be reduced to only

three (translations) [31]. This corresponds to the degenerate case, in which, every

couple of orthogonal directors (x̄, ȳ) around the unit tangent z̄, is a valid couple130

of Principal Axes (e.g. in case of circular cross-section). Also, for naturally curved

rods with isotropic cross-section, torsional stiffness can be taken into account by

considering translational DoF only [32].

2. Problem statement

Established that: a ‘design-oriented’ formulation of discrete elastic rod (e.g. for135

form finding analyses) of actively bent structural systems, will:

• Adopt an explicit integration method

• Avoid rotational DoFs in explicit form.

• Be able to simulate torsional stiffness.

• Not be restricted to the particular case of naturally curved rods.140

• Be able to simulate cross-section anisotropy (Ix 6= Iy).

we note that, the first three points have been successfully addressed by the work of

Adriaenssens and Barnes [31] and Barnes et al [32]. Accordingly, our contribution

in here is, in practice, an extension of such previous works, to allow to take into

account the ‘general’ case of naturally straight rods with anisotropic cross-section.145
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3. Theory

3.1. Dynamic Relaxation method

According to ‘classic’ (Stiffness Matrix) Finite Element Analysis procedures

[41], the continuum model, of the mechanical system under consideration, is ‘con-

verted’ into an equivalent discrete system of non-linear equations as follow:150

Kx = f (7)

In which: x represents the vector of nodal displacements, whilst K is the global

stiffness matrix and f the vector of applied nodal forces (and constraints’ reactions).

In general, a static solution to Eq. (7) is pursued by operations of matrix inversion

of the kind: x = K−1f. On the other hand, in the Dynamic Relaxation method

(DR) the original system of non-linear Eq. (7) is transformed into a system of155

equations of motion:

Ma + Cv + Kx = f (8)

by introduction of a matrix M of lumped nodal masses and a matrix C of viscous

damping forces, required to ‘force’ the system converging to a rest configuration.2

Therefore, computing the displacements x by explicit numerical integration of the

acceleration and velocity terms: a and v respectively. Let note that a matrix of160

lumped masses must be appropriately chosen to consent fast numerical convergence

and at the same time avoiding numerical instability. In particular, small fictitious

masses would allow for a reduced number of iterations, however under a certain

critical value the analysis may fails to converge. For an arbitrary time interval

∆t (required to perform the numerical time-integration) the smallest, numerically165

stable, mass component to consider for the ith node it is provided by Barnes

(see [43]) as a value which is directly proportional to the greatest direct stiffness

expected to occur (for the ith node) during the whole analysis.

Eq. (8) can be expressed, at time t, in the following form:

Ma t + Cv t = Rt (9)

2The Kinetic Damping method [42] can be used as alternative to (or in conjunction with)

viscous damping.
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thus, with R = f−Kx representing the vector list of out-of-balance forces (resid-170

uals) as resultant of the applied loads/constraints forces f plus member’s internal

reactions Kx . By making the stiffness matrix disappearing (see Eq. (9), the system

can be solved at a node-by-node level (this is a peculiar characteristic of the DR

method) hence, the main task reduces to the computing, at each time increment,

of the residual vector force R̄i for the ith node:175

R =
{
R̄0 . . . R̄i . . . R̄n

}
(10)

This task is fully addressed in the following subsections and represents the core of

the present research.

3.2. Enforcing tangents

As highlighted in section 1.2, in order to implement a reduced DoF formulation

of discrete elastic rod, the tangent-to-centreline orientation needs to be expressed180

as a function of the nodes’ position only. This requirement is fulfilled by spline

interpolation of the whole node set r. Several interpolation methods are available,

and probably, the most ‘obvious’ choice would be to use a formulation based on

minimization of the bending and twisting energy, as for instance, a third-order

natural spline [44]. However, one of the requirement for developing the rod’s model185

under description is that of having the tangent vectors m̄i lying parallel to the

plane defined by the three consecutive nodes r̄i−1, r̄i and r̄i+1 (the reason for such

a requisite will become clear in a later part of the present section) and this is

generally not the case for a natural spline, interpolating more than three nodes

arbitrarily set in the Cartesian space. Consequently, the Catmull-Rom method190

[45] is adopted in here, according to which, for the pieces of cubic spline expressed

in isoparametric form (t ∈ [0, 1]) the tangent vector at the ith node is:

m̄i =
r̄i+1 − r̄i−1

2
; z̄i =

m̄i

|m̄i|
(11)

As can be clearly seen from the first of Eqs. (11): for boundary nodes r̄0 and r̄n,

the Catmull-Rom algorithm requires the definition of two additional control points

(nodes) in order to provide the tangent vectors m̄0 and m̄n. Nevertheless, it can195

be easily demonstrated that Eq. (11) corresponds to the tangent vector (in r̄i) of

a natural spline passing through three consecutive nodes r̄i−1, r̄i and r̄i+1. In fact,
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by solving the tridiagonal system associated with the corresponding three-nodes

natural spline (see [44]):
2 1

1 4 1

1 2

 ·

m̄i−1

m̄i

m̄i+1

 = 3


r̄i − r̄i−1

r̄i+1 − r̄i−1

r̄i+1 − r̄i

 (12)

we obtain:200

m̄i−1 = −5

4
r̄i−1 +

3

2
r̄i −

1

4
r̄i+1

m̄i = −1

2
r̄i−1 +

1

2
r̄i+1

m̄i+1 =
1

4
r̄i−1 −

3

2
r̄i +

5

4
r̄i+1

(13)

Accordingly: the first of Eqs. (13) is used for computing the tangent vector m̄0

at the rod’s start node r̄0, whilst the third of Eqs. (13) provides the tangent vector

m̄n at the rod’s end node r̄n. Needless to say that Eq. (11) and the second of Eqs.

(13) are the same expression.

It is important to note that: the rod’s start/end tangents, provided by local205

natural spline interpolation (first, and third of Eqs. (13)) are based upon assump-

tion of null second derivatives at the start/end nodes of the first/last pieces of

spline r̄0(t) and r̄n−1(t) respectively:

∂2r̄0

∂(t = 0)
=

∂2r̄n−1

∂(t = 1)
= 0̄ (14)

and: since the second derivative of the rod’s centreline (Eq. (2)) corresponds to the

magnitude of the rate of change of the unit tangent vector z̄, or in simpler words,210

to the curvature κ [38] : ∣∣∣∣∂2r̄

∂s2

∣∣∣∣ = κ =
M

EI
(15)

the described method for tangents’ enforcement implies to assume zero curvatures

at the start/end of the rod. Hence, for bending stiffness values EI 6=∞, it implies

to assume null bending moments (M) at the rod’s ends. From a mechanical point

of view, this is only true for particular boundary conditions, e.g. in case of pin-215

ning restraints. However, if rotational constraints are required to be considered at

the boundary of the rod’s centreline, this can be done by imposing translational

constraints at ‘pairs’ of consecutive nodes (as proposed in [31]). An example, in
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Figure 5: Discrete elastic rod: (a) An initially straight rod is bent into shape by assuming

clamping end conditions; (b) Torque is introduced to the previously bent rod by imposing a 45◦

twist to its end.

this regard, is shown in Figure 5a where, ‘clamps’ are simulated at the ends of an

initially straight rod by restraining the translational DoF of the first two (and last220

two) nodes, thus, in a manner ‘consistent’ with the assumption of zero curvatures

at the boundary nodes (see Eq. (14)).
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3.3. Quasi-static treatment of twisting DoF

By enforcing the tangent-to-centreline vectors z̄ as a function of the nodes’

position, the only remaining rotational DoF is the angle of twist of the material225

frame around its own z̄ axis. Following the work of Bergou et al [23], the unit

vectors x̄(s) and ȳ(s), representing the material cross-section orientation around

the centreline curve r̄(s), can be computed by aid of the Bishop theory of framed

curves [46].

Figure 6: Parallel transported (Bishop) frame along the rod’s centreline by means of: a rotation

axis (represented by the unit vector B̄) and a rotation angle β.

Accordingly, the whole curve domain [0, L] can be ‘framed’ by ‘prescribing’ the230

material frame directors {x̄(0), ȳ(0)} at the rod’s starting node r̄(0), and assuming

a scalar value ϕL representing the angle of twist of the material frame around the

centreline curve at the rod’s end node r̄(L). In practice, the ‘framing’ procedure

for our discrete rod, consists in applying the following two consecutive steps:

• Firstly, an orthonormal Bishop frame {ū0, v̄0, z̄0} is set at the rod’s start node235

r̄0 according to the material frame directions {x̄0, ȳ0, z̄0}. Then, as described

in [47], such a Bishop frame is parallely transported on the successive node

r̄1 (and so on, up to r̄n) by rotating it around a unit vector B̄ by an angle β.

With the help of Figure 6, and referring to the general case of a Bishop frame

transported from node r̄i to the successive node r̄i+1: the unit vector B̄ and240

rotation angle (β) are both functions of the tangent vectors z̄i and z̄i+1:

B̄ =
z̄i × z̄i+1

|z̄i × z̄i+1|
; β = arcos(z̄i · z̄i+1) (16)

With B̄ and β so found, the described rotation can be performed by as-

sembling of a rotation matrix, or by means of quaternions: (β,Bx, By, Bz).
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Moreover, in the degenerate case of a straight rod (z̄i+1 ≈ z̄i ⇒ β ≈ 0) the

vector product in the first of Eqs. (16) is obviously undefined. If that is the245

case, then the following exception applies:

{ūi+1, v̄i+1, z̄i+1} = {ūi, v̄i, z̄i} (17)

• Once the discrete rod is framed along the whole node set, the second step

consists of rotating each Bishop frame around its tangent axis z̄ in order to

obtain the corresponding material frame. The following rotation angle ϕi will

be considered to obtain the material frame at the ith node (see Figure 7):250

ϕi = ϕL

∑i
j=1 |r̄j − r̄j−1|∑n
i=1 |r̄i − r̄i−1|

(18)

For instance, the material frame {x̄n, ȳn, z̄n} at the rod’s end node (r̄n) will

be obtained by rotating the (previously found) Bishop frame of ϕL radiant.

On the opposite, the material frame at the rod’s start node r̄0 will be coinci-

dent with the Bishop frame. Essentially: ϕL is a scalar, by which, torsional

constraints can be imposed at the ends of rod. See for instance Figure 5b in255

which, a twist ϕL = 45◦ is imposed at the (previously bent) rod with clamped

ends.

Figure 7: Quasi-static treatment of twisting DoF: the material frame at the ith node is obtained

by rotating (of ϕi radiant) the Bishop frame around its tangent unit vector z̄i.
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The described procedures for enforcement of the unit tangents and material

frames (subsections 3.2 and 3.3) are performed at each time increment of the DR

analysis, according to the updated nodal positions, which are the only unknowns260

that need to be sought by explicit numerical integration of the acceleration terms.

In other words: the numerical scheme under proposal allows to reduce, in practice,

the number of DoF-per-node to only 3 (translations). A last remark to imple-

ment the described quasi-static treatment of the material frame, relates to the

time-update of the control frame {x̄0 ≡ ū0, ȳ0 ≡ v̄0, z̄0}. This task is performed265

by applying the parallel transport procedure to the control frame at each time

increment, e.g. from time “t” to time “t+ ∆t”:

B̄∗ =
z̄t0 × z̄

t+∆t
0

|z̄t0 × z̄
t+∆t
0 |

; β∗ = arcos(z̄t0 · z̄
t+∆t
0 ) (19)

and then, with the control frame so updated, the parallel transport is applied over

space (as already described) to the entire rod.

3.4. Computing residuals270

In order to trace the system behaviour, hence, eventually obtaining the geom-

etry of rest configuration, the out-of-balance forces R̄i need to be computed for

each node, at each time increment. Such residual at the ith node, is obtained by

vector summation of the axial reactions of the links surrounding the node, plus

a shear vector force due to the presence of bending and torsional stiffnesses EIx,275

EIy and GJ respectively. The axial reactions are computed as a function of the

shortening/elongation and (real or fictitious) axial stiffness EA of the links sur-

rounding the ith node, hence by taking into account pairs of consecutive nodes,

e.g. (r̄i, r̄i+1). By contrast, the out-of-balance shear forces are obtained by con-

sidering local sets of three consecutive nodes (r̄i−1, r̄i, r̄i+1) along the rod. With280

the help of Figure 8, and following [31], the shear reactions S̄a and S̄b are obtained

as (lever-arm) function of the moment M̄ which in turn, is obtained in here as a

function of combined bending plus torsion.

Indicating with p̄a and p̄b the vector-links surrounding the ith node, the free

body shears S̄a and S̄b shown in Figure 8b are:285

S̄a = ūa
|M̄ |2|p̄a × ūa|

|p̄a|
[
M̄ · (p̄a × ūa)

] ; ūa =
M̄ × p̄a
|M̄ × p̄a|

(20)
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Figure 8: Out-of-balance shears: (a) M̄ = M̄B + M̄ϕ; (b) Shears S̄a, S̄b as a function of M̄ .

Eqs. (20), whose derivation can be found in [40], equally applies to S̄b by

replacing p̄a with p̄b (and ūa with ūb). As shown in Figure 8a: the moment M̄ is

obtained by vector summation of the moment due to combined bending (M̄B):

M̄B = EIxκ̄x + EIyκ̄y (21)

plus the vector (M̄ϕ) due to torsion, which is obtained by considering the angle of

twist per unit length of the two elements surrounding the ith node:290

M̄ϕ = GJ

[
arcos(ȳi−1 · ȳi)

p̄a
|p̄a|2

− arcos(ȳi · ȳi+1)
p̄b
|p̄b|2

]
(22)

Noting that: M̄ϕ is always lying parallel to the plane defined by the three nodes

(r̄i−1, r̄i, r̄i+1) and in the case of p̄a parallel to p̄b ⇒ M̄ϕ = 0̄. Also, the vector of

combined bending moment (M̄B) is assumed aligned on the local plane (x̄, ȳ) of

the rod’s cross-section. Accordingly, the curvature vectors in Eq. (21) are:

κ̄x = (κ̄ · x̄)x̄ ; κ̄y = (κ̄ · ȳ)ȳ (23)

with the vector κ̄ oriented parallel to the (x̄, ȳ) plane of the material frame (as for295

M̄B). Such a curvature vector κ̄, can be obtained by scaling, of κ amount, the unit

vector normal to the local plane defined by the three nodes r̄i−1, r̄i and r̄i+1:

κ̄ = κ
p̄a × p̄b
|p̄a × p̄b|

(24)
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and the scalar κ obtained by assuming a circular arch passing through the same

three nodes (see Figure 9). According to [31]:

κ =
2sin(α)

|r̄i+1 − r̄i−1|
; α = arcos

(
|p̄a|2 + |p̄b|2 − |r̄i+1 − r̄i−1|2

2|p̄a||p̄b|

)
(25)

Figure 9: Cross-section: (a) Isotropic: Ix = Iy; (b) Anisotropic: Ix 6= Iy.

The assumption of κ̄ as a vector orthogonal to the three-node plane (see Figure300

9) is only valid if z̄ results parallel to the three-node plane. This is always true,

regardless of the material frame orientation, thanks to the Catmull-Rom algorithm

for tangents enforcement (see Eqs. (11)). Let also highlight that: the curvature

value provided by Eqs. (25) does not correspond to the second derivative of the

Catmull-Rom spline (Eq. (15)). Nonetheless, the spline interpolation was adopted305

in here for the only task of enforcing the tangents’ direction.

As it can be seen from Figure 9a: for isotropic cross-sections, the curvature

vector κ̄ and the vector of bending moment M̄B are both aligned along the same

direction. Furthermore, if no torque is taken into account (|M̄ϕ| = 0⇒ M̄ = M̄B),

in addition to cross-section isotropy (Ix = Iy) then, the free body shears (S̄a, S̄b)310

will be both aligned with the three-node local plane highlighted in Figure 9. In

such a ‘particular’ case, the present elastic rod formulation corresponds to the one
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proposed by Adriaenssens and Barnes [31]. On the opposite, in case of cross-section

anisotropy (Ix 6= Iy): M̄B and κ̄ will, in general, not be aligned (see Figure 9b)

unless one of the cross-sectional Principal Axes (x̄ or ȳ) occurs to be oriented315

normally (or parallel) to the three-node local plane.

A concluding remark, concerns the shear vector residuals provided by Eq. (20)

to allow computer implementation of the described method. In fact, such equation

only provides partial values of shear and they need to be properly added/subtracted

to the shears computed from the surrounding nodes (plus, the links’ axial reactions320

indeed). For instance, assuming to compute the total nodal shears (S̄i) in a ‘pro-

cedural’ way, starting from node r̄0 up to node r̄n, the following routine can be

adopted (as proposed in [30]):

S̄i−1 = S̄i−1 + S̄a

S̄i = S̄i − S̄a − S̄b
S̄i+1 = S̄i+1 + S̄b

(26)

Figure 10: Cylindrical-hinge connection: (a) Real connection system; (b) Equivalent numerical

model.

3.5. Constraints

Thanks to the adopted vector-based formulation, typical of DR schemes, pre-325

scribing local or global constraints results a pretty straightforward operation to

perform. For instance, the coupling of translational DoF, between two or more

rods joined together at the ith node, is simulated by assuming the total residual

R̄i obtained as vector summation of the R̄j
i residual of the jth rod converging to

the node:330

R̄i =

n◦∑
j=1

R̄j
i (27)
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with n◦ indicating the total number of rods converging to the ith node. Further, if

torsional constraints need to be taken into account, as for instance, to simulate the

cylindrical-hinge mechanism occurring at the connections of post-formed grid-shells

(see Figure 1), the material frame orientation, around the z̄i tangent-to-centreline

direction, is uniquely defined as the normal direction to both z̄1
i and z̄2

i as shown335

in Figure 10:

ȳi = z̄1
i × z̄2

i (28)

Interesting to note that: in the particular case of post-formed grid-shells, (see

e.g. Figure 1) torsional constraints of the kind in Eq. (28) are applied to the

entire node set. Accordingly, there will be no local frames left, whose orientation,

need to be interpolated by parallel transport, hence making superfluous the whole340

procedure described in subsection 3.3.

Figure 11: Lateral buckling of a cantilever beam with anisotropic cross-section (Ix = 4Iy).
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4. Calculation

4.1. Cantilever beam

A simple test is provided in here to assess the accuracy of the 3 Dof formulation

in comparison to a co-rotational beam-element with 6 DoF (described in [48]): A345

10 m long cantilever beam is subjected to a vertical load P̄ = 1 kN at its free end.

Axial stiffness EA = 100 MN, bending stiffnesses EIx and EIy of 100 kNm2 and 25

kNm2 were set respectively, as well as a torsional stiffness GJ = 50 kNm2. The two

cantilever’s models (with three and six DoF) were both discretised into an increas-

ing number (from 12 to 48) of evenly spaced elements, whose length is ranging form350

833.333 mm (for the 12 elements model) down to 208.333 mm (for the 48 elements

model). Both analyses were explicitly solved by adopting the fourth-order Runge-

Kutta method and stopped when the maximum our-of-balance reaction reached a

magnitude value less or equal to 0.0001 Newton. At this point, the corresponding

vertical displacement (∆v) and horizontal longitudinal displacement (∆h) of the355

cantilever’s free end, were recorded for each analysis thus reproduced in Table 1.

Nothing that, a further element (in addition to those indicated in Table 1) was

added at the clamped end of the 3 DoF cantilever model in order to restrain the

rotational Degree of Freedom. As it can be seen, the discrepancy between the two

formulations (in terms of displacements) is diminishing as the element size reduces.360

In particular, the 6 DoF formulation is shown to be less sensitive with regard to

the element size, nonetheless, for an element size of 208.333 mm the discrepancy in

terms of deflection (∆h) between the two models is only 63.312 mm on an overall

deflection of circa 3 m (i.e. ≈ 2.1%).

A torsional displacement ϕL = 90◦ it is also applied in a second analysis step to365

the 3 DoF cantilever model with 12 elements. The torsion is imposed by increments

of 10◦ at the beam’s free end. As shown in Figure 11, the beam undergoes lateral

buckling according to the incrementation of the torsional displacement ϕL.

4.2. Application example

The following example aims to illustrate one of the many possible applications,370

of the described discrete elastic rod model, within the context of actively bent

structures. The design problem under consideration consists of finding a ‘suitable’

geometry for a post-formed grid-shell of the kind illustrated in Figure 1, in order
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Element size Num. of ∆v/L
a ∆h/L

[mm] Elements 3DoF 6DoF 3DoF 6DoF

833.333 12 0.3339 0.3016 0.6697 0.5633

416.666 24 0.3168 0.3017 0.6126 0.5641

277.777 36 0.3112 0.3017 0.5944 0.5642

208.333 48 0.3080 0.3017 0.5928 0.5643

aL =10m

Table 1: Vertical and horizontal deflection of cantilever beam for different element sizes and

formulations.

to cover a (26 m long by 14 m wide) rectangular area. As shown in Figure 12a,

the covering area is firstly subdivided by a mesh made of 32 × 17 quadrilateral375

elements, thus with each quadrilateral made up by four edges with a uniform

length of circa 0.8 m. Following Harding and Shepherd [49] the described mesh is

then ‘relaxed’ by applying a (fictitious) anti-gravitational load at each node and

assuming a zero-length spring behaviour for each edge of the mesh, with masses

proportional to edge-length. The resulting funicular discrete geometry, reported in380

Figure 12b, is then interpolated by a continuous surface and a second analysis step

is run, by assuming this time, real axial stiffness values with uniform unstressed

length (for the single edge) of 1 m, as well as introducing free body shears reactions,

in order to take bending/torsional stiffnesses into account. As in [50] during this

second analysis step, a normal-to-surface component of the residual forces R̄i is385

computed at each time increment and subtracted from the residual, in order to

constrain the mesh relaxing along the funicular surface previously found. The

geometry resulting at analysis completion is shown in Figure 12c. The geometry

exceeding the rectangular (covering) area is then removed, thus a final geometry is

eventually found (Figure 12d).390

The explicit fourth-order Runge-Kutta method was adopted for this example,

for numerical integration of the acceleration terms.

5. Conclusions

Active-Bending represents an interesting concept, by which, significantly com-

plex geometries can be realised with relatively ‘simple’ (standardised) connection395
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Figure 12: Post-formed grid-shell: (a) Initial flat geometry; (b) Funicular geometry; (c) Funicular

geometry with constant edge-length = 1 m; (d) Removing excess geometry.

systems. Nonetheless, the reduction of complexity at a manufacturing level is some-

how ‘recovered’ at a design stage level, meaning that: numerical models become

an essential design tool, not only for structural verification/validation purposes,

but especially, to assist geometric modelling and shape exploration at initial de-

sign stage. According to Pottmann et al [1] the development of numerical models400

and tools to assist the design process of free-form architectures, can be seen as a

discipline on its own, namely: Architectural Geometry.

Within the general framework of such a ‘novel’ discipline, the main aim of this

paper has been to provide an efficient numerical tool for computer simulation of

elastic rods, in order to assist and facilitate the form finding and analysis of ac-405

tively bent structures. The development of discrete elastic rods is a very active

and long-standing research topic, constantly leading practical applications in sev-

eral and disparate sectors. By establishing ‘practical’ requirements, in terms of:

numerical convergence and accuracy, ease of implementation and range of applica-

bility; a ‘design-oriented’ discrete elastic rod formulation was introduced in here.410

Such a formulation is entirely described by vector-based quantities, allowing for a

(easy) node-by-node implementation, and a reduced number of DoF in order to

avoid numerical stiffness associated with rotational DoF. The adoption of a Bishop
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(parallel transported) frame to describe the material cross-section orientation and

a quasi-static treatment of the twisting DoF, made possible to reduce, in practice,415

to only three (translations) the number of DoF the be explicitly computed, whilst

removing theoretical limitations of ‘applicability’, typical of translational-only for-

mulations, thus allowing the general case of initially straight rods with torsional

stiffness and cross-section anisotropy to be taken into account. From this point

of view, the described formulation ambitiously aimed to represents a ‘follow-up’420

contribution to previous, pioneering works [31] on the form finding and analysis

of lightweight spline structures. Although not ‘as accurate’ as DR Finite-Element

formulations with 6 DoF (as for instance the one proposed in [40]) the described

Finite-Difference formulation represents a valid trade-off in terms of accuracy level

and computational time, hence very suitable to be implemented as an interactive425

numerical tool for design exploration of actively bent structural systems, such as

grid-shells.
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