
Decrypting Live SSH Traffic in Virtual Environments

Peter McLaren, Gordon Russell, William J Buchanan and Zhiyuan Tan
School of Computing, Edinburgh Napier University, Edinburgh.

Abstract

Decrypting and inspecting encrypted malicious communications may assist crime detection and prevention. Access to client or
server memory enables the discovery of artefacts required for decrypting secure communications. This paper develops the MemDe-
crypt framework to investigate they discovery of encrypted artefacts in memory and applies the methodology to decrypting the
secure communications of virtual machines. For Secure Shell, used for secure remote server management, file transfer, and tun-
nelling inter alia, MemDecrypt experiments rapidly yield AES-encrypted details for a live secure file transfer including remote user
credentials, transmitted file name and file contents. Thus, MemDecrypt discovers cryptographic artefacts and quickly decrypts live
SSH malicious communications including detection and interception of data exfiltration of confidential data.

Keywords: network traffic; decryption; memory analysis; IoT; Android; VMI; Secure Shell; SSH; AES; Secure File Transfer; data
exfiltration; insider attacks;

1. Introduction1

Decrypting malicious communications offers opportunities2

to discover useful information. This could include botnet com-3

mand and control traffic identifying compromised machines,4

confidential information that has been extracted and sent or up-5

loaded to an external location, ransomware keys, or details of6

criminal activity [1]. This paper focuses on decrypting Secure7

Shell (SSH) traffic, a potential medium for data exfiltration [2].8

Realistically useful decryption methods require a knowledge of9

both the algorithm and the cryptographic artefacts used. En-10

cryption techniques based only on algorithmic secrecy may be11

unreliable, as mechanisms such as reverse-engineering enable12

the algorithm’s functionality to be discovered and furthermore,13

without extensive independent verification, the robustness of an14

encryption algorithm may be weak [3]. As a result, publicly15

known encryption algorithms are commonly used, and key se-16

crecy thus becomes paramount. Generating sufficiently long17

random blocks as keys makes decryption unlikely using brute18

force methods.19

To decrypt, a framework must discover keys and other cryp-20

tographic artefacts. When software applications perform en-21

cryption and decryption, the artefacts reside in program mem-22

ory at that moment, whether on the program stack, in the heap,23

or in shared memory. As memory access is important to foren-24

sic investigations [4] software tools and libraries already exist25

to support such capability for technologies such as desktops,26

servers, the Internet of Things (IoT), Android smartphones,27

and virtualized environments. Mechanisms to discover cryp-28

tographic artefacts in memory in a manner that allows the tar-29

get device to continue to operate normally during an investi-30

gation while remaining undetectable is of particular interest.31

This paper presents the MemDecrypt framework that stealthily32

decrypts secure communications traffic. Although earlier re-33

searchers have discovered encryption keys in device memory,34

other cryptographic artefacts, commonly required to decrypt35

secure traffic, are not considered. MemDecrypt implements a36

novel approach to decrypting SSH traffic by analyzing target37

memory extracts to identify these candidate cryptographic arte-38

facts (initialization vectors) that, in turn, enable rapid location39

of candidate keys and the deciphering of payloads in live ses-40

sions with high probability. This enables malicious SSH ac-41

tivity in live secure communications sessions to be addressed.42

The techniques proposed are applicable to a range of device43

platforms, though the MemDecrypt framework is particularly44

focused on decrypting communications from within virtual ma-45

chines.46

Although plaintext could be obtained by adding an audit47

function to the binary, this is arguably a different application48

and has some similarity with a key logger, which may only be49

acceptable in specific environments. Also, unless all plaintext is50

captured rather than client input, file contents are not captured.51

Plaintext could possibly be obtained by extracting on buffer52

memory writes. However, researchers have found that monitor-53

ing virtual machine read/write buffers is inefficient. As mem-54

ory extraction is invasive minimizing the number of extracts is55

preferable so with buffer memory write triggers, the larger the56

exfiltrated file, the more extracts. To discover the plaintext of57

a full session, buffer breaks would need to be in place before58

the session. In MemDecrypt, memory can be extracted at any59

stage after the handshake completes to decrypt a captured net-60

work session. Buffer memory write triggers may be effective61

with interactive sessions as with exfiltrated data, missing an ex-62

tract makes decryption problematic. Furthermore, exfiltrating63

non-ASCII data may be more challenging without certainty of64

buffer memory locations.65

The rest of the paper is structured as follows. To provide66

Preprint submitted to Digital Investigation March 21, 2019

framework context, the background to secure communications67

is provided in Section II. Earlier research in discovering crypto-68

graphic artefacts is reviewed in Section III. Section IV presents69

the MemDecrypt design and Section V the implementation de-70

tails. Test results are evaluated and discussed in Section VI and71

conclusions drawn in Section VII.72

2. Related Work73

This section provides a summary of symmetric encryption in-74

cluding block and stream algorithms commonly used in secure75

communications protocols. Approaches for accessing memory76

to support cryptographic artefact discovery are also discussed.77

Although there is no published research into finding crypto-78

graphic artefacts in Android smartphone and IOT device mem-79

ory, desktop and server memory has been studied. Entropy80

measures have frequently been used as a filtering mechanism to81

discover keys. This approach assisted in searches for AES key82

schedules after cold-boot attacks [5] as well in finding Skipjack83

and Twofish algorithm artefacts [6]. These studies focus on en-84

cryption key discovery in dormant devices and therefore do not85

decrypt the secure network sessions of live virtual machines.86

Although malware analysis and detection has been a research87

focus for monitoring from outside the virtual machine, it has88

also been applied to analyze secure communications. For ex-89

ample, SSH session details were obtained from an SSH hon-90

eypot server customized to extract data when the specific sys-91

tem calls executed [7]. In TLSkex [8], AES-CBC cryptographic92

keys were discovered in Linux client virtual machine memory93

when Change Cipher Spec messages were detected in TLS net-94

work sessions by searching for bit strings where the counts of95

0’s and 1’s suggested randomness. TLSkex investigates TLS96

traffic only so, for example, the uploading of confidential data97

using SSH is not considered. Furthermore, TLSkex analysis is98

restricted to Linux virtual machine so Windows virtual machine99

activity is excluded. The MemDecrypt framework decrypts en-100

tire sessions for both SSH and TLS protocols where different101

encryption algorithms have been applied for Windows clients102

and Linux servers using a standard entropy measure. Moreover,103

MemDecrypt memory extractions are independent of message104

type and discovery of candidate initialization vectors drives the105

decryption process.106

Encryption keys can be discovered by intercepting encryp-107

tion function calls to extract parameters. For example, the108

Linux ptrace command can attach to the encrypting process109

enabling identification of keys and other artefacts [9]. This110

approach may have been used to discover SSH plaintext, ci-111

phertext, and keys, although implementation details are unclear112

[10]. These approaches are Linux-specific and are easily de-113

tectable by virtual machine software. Consequently, they may114

not be effective against malicious insiders, especially when the115

target device runs Windows. MemDecrypt decrypts SSH net-116

work sessions in a stealthy manner by triggering memory ex-117

tracts only when an unusual event is detected.118

2.1. Encryption algorithms119

Encryption algorithms for secure communications are asym-120

metric or symmetric. For encryption and decryption, asym-121

metric algorithms use different keys whereas symmetric algo-122

rithms use the same keys. Asymmetric algorithms attain se-123

curity through computational complexity, which takes proces-124

sor time, making them considerably less CPU efficient than125

symmetric algorithms [11]. Consequently, asymmetric algo-126

rithms are frequently only used for agreement on symmetric127

keys, which are then used to encrypt the channel. Symmet-128

ric encryption algorithms are either stream algorithms, where129

plaintext is encrypted with either bit-by-bit or block algorithms130

(where blocks of a specific size are encrypted). Although the131

Advanced Encryption Standard (AES) block algorithm may be132

the gold standard, vulnerability and performance concerns have133

led to the adoption of ChaCha20 stream algorithm with Poly-134

1305 authentication [12] in secure protocols such as OpenSSH135

and OpenSSL, as well as being used for Google Chrome related136

communications on Android smartphones [13].137

Block and stream algorithms commonly require initialization138

vectors (IVs) for secure communications. For AES, IVs incor-139

porated in the encryption process provide defenses against re-140

play attacks [14]. For example, in AES counter mode (AES-141

CTR), an IV is encrypted and XORed with the plaintext to142

produce ciphertext. AES-CTR is the quickest AES mode, and143

is recommended by security experts [3] [15]. For ChaCha20,144

the key, IV, and a counter are parameters to keystream creation145

[12]. The keystream is XORed with the plaintext to produce ci-146

phertext. Both AES-CTR and ChaCha20 are approved for SSH147

[16] and TLS protocols. Consequently, encryption keys and148

IVs must be discovered to decrypt AES-CTR and ChaCha20149

encrypted SSH and TLS channels.150

This paper focuses on SSH communications. For SSH in151

AES-CTR mode, the IV increments by 1 for each outgoing152

plaintext block [17] so that the difference between the IV for the153

first plaintext block in packets n+1 and n is the number of plain-154

text blocks in packet n. Although AES-CTR is the only rec-155

ommended SSH AES mode [16], AES-CBC is also used. For156

AES-CBC, each IV after the initial value is the ciphertext of the157

previous block [17]. Consequently, the IV for each encrypted158

AES-CBC block is known. ChaCha20 uses the IV to generate159

key streams. It performs 20 rounds of mathematical operations160

starting from a base structure consisting of a constant string of161

16 bytes, a generated 32-byte key, a 4-byte counter, and a 12-162

byte IV, where the counter is typically 0 or 1 for each 64-byte163

plaintext block [12].164

SSH enables secure management of remote servers across165

potentially insecure networks, offering functionality such as166

client-server file transfer. The protocol is specified in 4 key167

IETF RFCs: SSH Protocol Architecture (SSH-ARCH) [18],168

SSH Transport Layer Protocol (SSH-TRANS)[19], SSH Au-169

thentication Protocol (SSH-AUTH) [20], and the SSH Connec-170

tion Protocol (SSH-CONNECT) [21]. SSH-TRANS defines171

the initial connection, packet protocol, server authentication,172

and the basic encryption and integrity service [22]. Following173

the TCP handshake, the parties transmit supported SSH pro-174

tocol versions, and optionally application, which enables the175

2

probable operating systems and library to be inferred. For in-176

stance, ’SSH-2.0-PuTTY_Release_0.70’ probably signifies that177

a Windows client is executing the PuTTY application [23].178

Exchanged ’Key Exchange Initialization; and ’Key Exchange’179

messages determine the session encryption and authentication180

algorithm and the material for the generation of the crypto-181

graphic artefacts. Client New Keys messages advises that all182

subsequent traffic in the session is encrypted. An example of183

the handshake process as well as the first encrypted packet is il-184

lustrated in Figure 1. SSH-AUTH defines authentication meth-185

ods such as public key, password, host based and none. After186

successful authentication, a file transfer requires the establish-187

ment of a secure channel to support the secure file transfer pro-188

tocol as defined by. Secure file transfer (SFTP) [24] is an SSH189

sub-system particularly worthy for investigation as significant190

potential exists for it to transfer confidential files out of a sys-191

tem.192

2.2. Memory Access193

Memory acquisition tools assist forensic analysis. So, for194

workstation and server technologies hardware and software ac-195

quisition methods exist [25]. Hardware acquisition typically196

involves connecting devices, such as PCMCIA cards or USB197

sticks, to a target [26] while software acquisition commonly in-198

volves executing extraction programs such as FTK Imager [27],199

Memoryze [28], or WinPmem [29] on the target [30]. These200

solutions may not always be practical in live network session201

decryption scenarios.202

Android smartphone volatile memory is accessible. As203

Androids run Linux, memory acquisition tools such as the204

Linux Memory Extractor (’LiME’) application [31] may suf-205

fice. However, LiME depends on compiled kernel modules206

for the target’s Linux version, support by the smartphone and207

kernel level execution. The quantity of Linux variations for208

Android smartphones as well as the installation and execution209

requirements may be challenging. AMExtractor [32] requires210

kernel execution privilege but no compilation is required and so211

is potentially less restrictive. TrustDump [33] may be appropri-212

ate but minimal testing has been carried out. Commercial tools213

such as Cellebrite also claim to extract memory from Android214

devices without target modification although usage is restricted215

[34].216

Internet of Things (IoT) devices also commonly run Linux217

[35]. However, device type and Linux variations pose po-218

tentially greater challenges than smartphones. Nevertheless,219

solutions that support live acquisition from Android smart-220

watches, as well as smartphones, have been proposed [36].221

IoT device memory may also be acquired by flashing mem-222

ory, running Linux dump commands, or accessing device cir-223

cuitry [37]. Furthermore, memory access with commercial224

tools, such as Cellebrite UFED Physical Analyzer, has also225

been demonstrated [38]. As IoT devices frequently commu-226

nicate with cloud-based servers, memory acquisition of virtual-227

ized machines may present an easier alternative [35]. Virtual-228

ization enables memory access. Virtualization technologies en-229

able virtual machines to share host computer resources thereby230

providing an opportunity to discover cryptographic artefacts in231

virtual machine memory from the physical host. This ensures232

investigations have reduced the impact on virtual machine op-233

erations. Furthermore, software programs executing on the vir-234

tual machine, such as malware, may not detect the investiga-235

tions. Examples of tools and libraries that support outsidethe-236

machine monitoring include LibVMI [39] together with PyVMI237

[40] and Volatility [41], and Rekall [42].238

3. MemDecrypt Design239

MemDecrypt consists of network and data collection, mem-240

ory analysis, and decrypt analysis components. Figure 2 illus-241

trates the MemDecrypt activity flow diagram. Each component242

is described in the following paragraphs.243

Network and Memory Extract. In MemDecrypt unusual244

events trigger memory extracts. This approach is less intru-245

sive than continuous memory monitoring where the monitor-246

ing and analysis activities of the host may impact target device247

performance. Furthermore, malware writers script programs248

to be aware of monitoring activity, which would probably be249

more obvious with continuous monitoring. The triggers ap-250

proach is also more precise than obtaining memory snapshots251

on a polled basis. Polling snapshots may miss malicious activ-252

ity if the polling interval is too large, especially when malware253

uses counter analysis techniques. The quantity and timing of254

memory extraction events depend on the target device, the se-255

cure protocol, and the encryption algorithm. Where memory is256

classifiable, the read/write memory of the encryption program257

is extracted for size minimization, with consequent reduced im-258

pact on target performance and faster subsequent analysis.259

Memory analysis. Candidate encryption keys and IVs are260

identified in the memory extracts. Although largely protocol261

specific, there are common features. In particular, candidate IV262

locations are discovered first with approaches that encompass263

an analysis of memory extracts, network packets or both net-264

work packets and memory extracts. As keys and IVs are crypto-265

graphic artefacts, the distance between their respective memory266

locations may be small If program memory extracts are taken267

when the same activity is being performed, such as the trans-268

mission of outgoing messages, memory blocks containing IVs269

change, while other blocks remain static.270

Key randomness makes it different from many other types of
memory regions. Key randomness means that the sequence of
bits cannot be easily predicted. The randomness of keys can be
evaluated using entropy, a measure of the amount of informa-
tion in a key. This paper uses Shannon’s entropy measure for
discrete variables [43] in preference to cryptographically use-
ful alternatives such as guessing entropy and min-entropy [44]
because smaller candidate key sets are produced:

H = −

n∑
i=1

p(i) log2 p(i) (1)

where p(i) is the normalized frequency of the ith byte in the271

message i.e. p(i) = f (i)/n. So, segments of high entropy user272

memory are more likely to contain the key. In contrast with273

IVs, keys do not generally change during a session. So, static,274

3

Figure 1: SSH Handshake Example

Figure 2: MemDecrypt Activity Flow Diagram

high-entropy contents are candidate encryption keys. This ob-275

servation assists in improving memory analysis performance.276

Decrypt analysis. Candidate keys and IVs identified in277

memory analysis are used in decrypting network packets until278

a valid key and IV combination has been found. Decrypt vali-279

dation uses information derived from specific encrypted fields.280

SSH encrypted data blocks are of the following format:281

Packet Length (4 bytes) Padding Length (1 byte) Payload282

(variable bytes) Padding (variable bytes) MAC283

The packet length is the sum of the padding length size, the284

payload, and padding fields. So, equation (2) is a good decrypt285

test for many SSH messages as 2(8∗4−21) valid packet length de-286

crypts are possible. The minimum SSH block size is 21 bytes287

comprising a packet length of 4 bytes, a padding length of 1288

byte, and the payload and padding which is at least one block.289

So, the probability of an incorrect decrypt producing the correct290

header data is 1-in-4,294,967,275. Reassembly is undertaken291

when the SSH packet size exceeds the network packet size.292

Equation (2) is sound during the authentication, channel, and293

sub-service setup stages when SSH packet sizes are generally294

small and a modified version is used for reassembled SSH pack-295

ets. An additional test evaluates whether the decrypted padding296

length meets Equation (3) as required by SSH-TRANS. Correct297

decrypts are parsed to obtain SSH and SFTP fields.298

packet data length =

decrypted packet length +

size(packet length f ield) +

size(MAC f ield)

(2)

4 <= padding length <= 255 (3)

4. MemDecrypt Implementation299

This paper focuses on SSH decryption using AES-CTR and300

AES-CBC in virtualized environments using MemDecrypt. The301

following paragraphs present implementation and evaluation302

details. The framework is implemented on the Xen hypervi-303

sor [45]. Xen’s small trusted computing base makes it poten-304

tially less prone to vulnerabilities than hypervisors with larger305

footprints. Furthermore, the LibVMI library (“LibVMI,” n.d.)306

for Xen enables efficient memory access to live memory of307

4

Windows or Linux virtual machines. As the Xen hypervisor308

has minimal functionality a privileged virtual machine (Dom0)309

manages the hypervisor and provides network and virtual disk310

device access to other virtual machines. Network access for311

the virtual machines is through a Dom0 virtual software bridge.312

The MemDecrypt components either all run on, or are initiated,313

from Dom0.314

The MemDecrypt implementation architecture for virtualized315

environments is illustrated in Figure 3. An isolated hypervisor316

supports two unprivileged virtual machines, shown in the cen-317

tre and right of the figure, and one privileged virtual machine318

shown on the left. Test client applications execute on the virtual319

machine on the right, targeting server applications executing on320

the virtual machine, shown in the centre.321

4.1. Data Collection322

For virtualized environments, virtual machine network traffic323

is inspected by redirecting each packet to a local queue using324

an iptables rule and NetFilterQueue 0.8.1 [46], and analyzing325

protocol fields using Scapy 2.3 [47]. When unusual activity is326

detected, the component stores the network packet and decon-327

structs the message. Memory is extracted for any 2 outgoing328

SSH messages after a New Keys message. Linux memory ex-329

traction uses PyVMI and LibVMI libraries, whereas Windows330

extraction applies Volatility framework user plugins.331

MemDecrypt obtains useful data from the SSH initialization332

stage. Client and server versions, and application if available333

are obtained from the protocol version exchange. The encryp-334

tion algorithm is determined from the “Key Exchange” mes-335

sages. Also, if initialization has completed, i.e. the “New Keys”336

has been transmitted, user-level read/write program memory337

extraction is triggered for two outgoing packets in the network338

session. Memory extracts are not required for consecutive pack-339

ets or to be immediately after the “New Keys” message.340

4.2. Memory Analysis341

Analysis approaches vary according to encryption mode and342

operating system. For AES-CTR, two steps are required to dis-343

cover candidate IVs and keys in memory, whereas AES-CBC344

requires only key discovery. For Windows, discovery is per-345

formed by iteratively analyzing multiple memory files extracted346

at different times, whereas, for Linux, a single heap file is ana-347

lyzed.348

For AES-CTR, candidate IVs are discovered first. As IVs349

increase but are likely to be located at the same memory address350

over different extracts, memory blocks that change is subject351

to further analysis. If the 16-byte value at a memory address352

increments by the number of encrypted blocks in the previous353

packet, then the address contents are a candidate IV. Supposing354

that value at location p in capture y at the time a is compared355

with the value at location p in capture y at time b. Then, if the356

values are IVs and represented by IVpya and IVpyb respectively,357

then IVpyb = IVpya +n, where n is the number of AES encrypted358

network blocks that have been sent between the time a and b in359

that session. For example, if the value of a 16-byte memory360

block is 123456 and two network packets with, say, 10 and 5361

encrypted blocks are sent and captured, then a value of 123471362

at the same position in the later extract identifies a candidate363

AES-CTR IV. Algorithm 1 shows the process.364

Data: extract folders f ldra, f ldrb and packets pkta, pktb
Result: Z = candidate IVs
delta := blocks[pkta:pktb];
for file f1 in f ldra do

f2 = match (f1, f ldrb);
if f1 <> f2 then

for i = 0 to size(f1) inc 4 do
if val(f2[i:i+16]) - val(f1[i:i+16]) = delta then

Z += f1[i:i+16];
end

end
end

end
Algorithm 1: AES-CTR IV Memory Analysis

To discover AES candidate keys for AES-CTR and AES-365

CBC, the memory extract files are analysed. Key segment en-366

tropies are calculated for key length segment sizes. If an en-367

tropy exceeds a threshold, the segment is compared with the368

equivalent segment in a later extract, and if the segments are369

identical, the segment is a candidate encryption key. For exam-370

ple, a 256-bit key length, a 32-byte memory segment entropy371

of 4.9, and a 32-byte AES threshold of 4.65 determines the seg-372

ment to be of interest. An identical match to the segment at373

the same location in a later memory extract identifies a candi-374

date key. The identified candidate IVs and keys provide input375

to the decrypt analysis stage. Heuristic testing determined that376

AES entropy thresholds of 4.65 for 256-bit keys, 4.0 for 192-bit377

keys, and 3.4 for 128-bit keys ensured the inclusion of all keys378

in candidate sets while minimizing set size.379

4.3. Decrypt Analysis380

The component iterates through each candidate key for each381

candidate IV until decrypts are validated. The first ciphertext382

block is decrypted for each combination with pycrypto 2.6.1383

[48]. For a correct decrypt the first four plaintext bytes are384

the packet length and Equation (2) holds. For additional val-385

idation, the decrypted padding length is checked with Equation386

(3). With a valid key and IVs, MemDecrypt decrypts each block387

and deconstructs the SSH plaintext stream. For SSH authoriza-388

tion requests, the ’password’ type plaintext yields the remote389

user credentials and for SSH connection requests, the channel390

type, and channel request decrypts. For SFTP, all plaintext is391

produced including initialization, file attribute, file open, write392

and close message types fields. All plaintext is written to file393

for evaluation.394

4.4. Testbed395

The physical environment is a Core 2 Duo Dell personal396

computer with 40 GB of disk storage and 3 GB of RAM. It hosts397

the hypervisor, a Dom0 privileged virtual machine, an untrusted398

5

Figure 3: MemDecrypt Virtualization Architecture

Windows virtual machine, and an untrusted Ubuntu virtual ma-399

chine. The hypervisor is Xen Project 4.4.1 and the Dom0 hy-400

pervisor console is Debian release 3.16.0-4-amd64 version 1.401

Tests run on Windows client and Linux server virtual ma-402

chines. One client runs a standard Windows 7 SP1 operating403

system with 512 MB of allocated memory and 30 GB of disk404

space. Another client runs a Windows 10 (10.0.16299) oper-405

ating system with 2 GB of memory and 40 GB of disk. Win-406

dows operating systems support a number of SSH clients [49].407

The selected PuTTY suite [23] is widely used [49] so may be408

used by suspect actors. However, other SSH client applica-409

tions should produce similar results. The untrusted Linux server410

virtual machine runs an Ubuntu 14.04 build (“Trusty”) with411

512 MB of allocated memory and 4 GB of disk storage. SSH412

server functionality is provided by openssh-server. To remove413

unnecessary communications with external agents, the dnsmasq414

package is installed and configured to respond to DNS requests415

with the server virtual machine IP address.416

5. Evaluation417

MemDecrypt is evaluated by running a sequence of experi-418

ments. The experimental set-up is described followed by the419

presentation and review of results. Possible countermeasures to420

MemDecrypt results are discussed.421

5.1. Experimental Set-up422

Experiments are performed with variable file sizes, key423

lengths, modes of operation, operating systems, and operating424

system versions. In each instance, the ’pscp’ program is425

executed from the Windows command line using requests of426

the form:427

428

pscp -P nnnn filename name@ipaddress:/home/name429

430

where nnnn is the target port, filename is the file being431

transmitted, name is a user account on the target Ubuntu server,432

ipaddress is the target server IP address and /home/name is the433

Ubuntu server target folder for the transmitted file. An Ubuntu434

service is started from the bash command line to listen to client435

SSH messages with requests of the form:436

437

/usr/sbin/sshd -f /root/sshd_config -d -p nnnn438

439

where nnnn is the service receiving port number and440

sshd_config contains configuration details such as encryption441

algorithms supported by the server.442

Sets of experiments investigate decrypting SSH traffic en-443

crypted with AES under different conditions. One set evaluates444

decrypt effectiveness for Windows 7 and Windows 10 clients.445

A second set evaluates the effectiveness of 128-bit, 192-bit and446

256-bit keys on Windows 10 clients in AES-CTR mode. A third447

set evaluates MemDecrypt effectiveness with 256-bit keys in448

AES-CBC and AES-CTR modes on Windows 10 clients. To449

evaluate file invariability, a fourth set uploads 30 files in text,450

pdf, Excel, and executable formats between 1 KB and 500 KB451

for Windows clients in AES-CTR mode using 256-bit keys. Ex-452

periments also assess decrypt effectiveness with Ubuntu server453

for AES-CBC and AES-CTR with 256-bit keys.454

5.2. Test Results455

In each experiment, encryption keys, and for AES-CTR456

initialization vectors, were discovered and valid plaintext457

produced for all SSH and SFTP fields. For example,458

with a client command of ’pscp -P 2222 plaintext.txt pe-459

ter@192.168.137.85:/home/peter’ and plaintext.txt of ’An out-460

cropping of limestone beside the path that had a silhouette. . . ’461

, the interesting decrypted fields are depicted in Figure 4.462

MemDecrypt also produces other SSH fields such as request463

identifiers, and file offsets. As observed earlier, the probability464

of an incorrect combination generating a packet length meeting465

Equation (2) is 0.00000002% (1 in 4,294,967,275). MemDe-466

crypt decrypts SSH traffic with a high degree of certainty.467

Analysis durations for producing correct plaintext deter-468

mines MemDecrypt’s usefulness. For example, if plaintext is469

produced during the network session MemDecrypt can assist in470

the prevention of further malicious activity, perhaps by drop-471

ping packets or hijacking the session.472

The first experiment compares the relative performance of473

Windows 7 and Windows 10 client virtual machines. For474

6

Figure 4: SSH Decrypt Output

AES-CTR, two memory extracts are required for the analysis475

whereas, for CBC, one extract suffices. Memory analysis typ-476

ically executes for approximately nine seconds for Windows 7477

clients and 16 seconds for Windows 10 clients with a maximum478

of 25.1 seconds. Decrypt analysis durations varied between479

0.2 and 34.1 seconds averaging at 4.5 seconds. The variance480

is linked to the candidate IV set size and the ordinality of the481

correct IV within the file set.482

The second experiment compares analysis time durations for483

different CTR key sizes on Windows 10 clients. Shorter key484

lengths require lower entropy thresholds, so more candidate en-485

cryption keys are discovered in-memory analysis. Figure 5 il-486

lustrates a typical distribution of 32-byte entropy segments in487

read/write memory. This maps the count of memory segments488

exceeding an entropy with an entropy levels so that for exam-489

ple whereas out of 264,813 segments exceeding 0.0 entropy,490

188,602 (i.e. 72.1%) exceed 2.0, 2,628 (i.e. 0.99%) exceed 4.5.491

So, for example, in one test sequence memory analysis yielded492

candidate key set sizes of 272 for 256-bit key lengths, 1123 for493

192-bit key lengths, and 5658 for 128-bit key lengths. With494

these set sizes, decrypt analysis durations are longer for shorter495

key lengths as illustrated in Figure 6.496

The third experiment compares analysis time durations on497

Windows 10 clients for 256-bit key sizes in AES-CTR and498

AES-CBC. The CBC memory analysis takes approximately 16499

seconds which is similar to CTR. However, the CBC decrypt500

analysis duration is faster with a minimum of 0.07 seconds as501

iterating through potential IVs is not required.502

For experiments accessing Ubuntu server memory with the503

default encryption algorithm, i.e. AES with 256-bit key length504

and CTR mode, all client and server packets are correctly de-505

crypted. The data collection component obtains process lists506

and extracts process heap from the Ubuntu virtual machine in507

0.3 seconds. Memory analysis finds approximately 320 keys508

and 3 initialization vectors in 6 seconds, and decrypt analysis509

decrypts the session successfully in 37 seconds.510

MemDecrypt performance may suffice when extracts are ob-511

tained for Windows clients or Ubuntu servers. Nevertheless,512

strategies to enhance performance include improving memory513

extraction for Windows clients, pre-testing with known SSH514

client and server applications, pipelining, multi-threading, and515

implementing in a low-level language instead of Python. A516

custom extract engine using PyVMI and LibVMI libraries to517

replace Volatility plugins improves Windows memory extrac-518

tion performance. Pre-testing SSH client and server applica-519

tions may determine the distance between key and IV memory520

locations. Cryptographic libraries generally request memory521

to hold crypto data structures (’malloc’) when algorithms are522

agreed which occurs after the handshake so data is usually on523

the heap. The data structures can include fields such as en-524

cryption/decryption flag, key size, keys etc so for an algorithm,525

AES-CTR with 256 bit keys, the data structures may be invari-526

ant. For example, with PuTTY ’pscp’, distances are 968 bytes527

for 256-bit and 192-bit keys and 728 bytes for 128-bit-keys and528

are invariant with operating system version or transmitted file529

size. Where the distance is known, and the program identified530

from the SSH version message, memory analysis and decrypt531

analysis components take one second. Multi-threading sup-532

ports simultaneous analysis of multiple files and decrypts while533

pipelining between components enables analysis to terminate534

when the correct plaintext is obtained.535

So, MemDecrypt decrypts SSH sessions with high probabil-536

ity independent of file size, operating system type or version,537

key length, or mode. Furthermore, with SSH application pre-538

testing, analysis and decrypt decryption completes in 1 second.539

With unknown SSH applications, the plaintext is produced in540

under 60 seconds for 192-bit and 256-bit keys. Although in ex-541

periments, MemDecrypt decrypts sessions with exfiltrated files542

of 100 bytes, the risk exists that extracts are not acquired in543

terse SSH sessions. The risk might be mitigated by pausing the544

virtual machine. Decrypting sessions with SSH key rotation545

[50] is not currently implemented but the planned MemDecrypt546

approach is considering each rotation as a separate session with547

its own candidate keys and IVs.548

5.3. Countermeasures549

Countermeasures may prevent or delay MemDecrypt discov-550

ery of cryptographic artefacts. Invalid assumptions can invali-551

date the methodology. Candidate encryption keys are assumed552

to be high entropy, static for a network session, and in the same553

memory location. For entropy, less randomness, i.e. lower en-554

tropy, makes key regions less evident but key unpredictability555

is an essential requirement. For key staticity, MemDecrypt re-556

quires two extractions for AES-CTR, key changes would be re-557

quired between each outgoing packet which could cause ex-558

cessive transmission delays. Key location changes could delay559

decryption. However, tests on a Linux heap extract produced560

delays of less than 0.5 seconds. MemDecrypt assumes candi-561

date AES-CTR IVs are located at the same memory locations562

in each extract and values to increment by the sum of payload563

blocks in the previous packets. As with keys, tests where IV564

memory addresses changed induced delay of 0.5 seconds. As565

7

Figure 5: Typical Memory Segment Entropy Distribution

Figure 6: Key Length Analysis Durations

a result, the measure may not suffice. AES-CTR IVs incre-566

ments make them detectable when stored in the clear in mem-567

ory. Another delaying measure is encrypting artefacts with an568

additional key. However, this key may be discoverable, and569

furthermore, the additional encryption and decryption for each570

packet, or block, may have an unacceptable performance im-571

pact. Obfuscation the artefacts may be more effective. For572

example, splitting key and IV strings and interpolating vari-573

able data between splits will limit MemDecrypt performance,574

and possibly effectiveness. This technique is faster and less de-575

tectable than an additional encryption layer. .A more effective576

counter-measure is preventing memory access to artefacts. For577

example, Intel [51] and AMD [52] may develop virtual ma-578

chine encryption where encryption keys are absent from virtual579

machine memory. Although this can offer privacy, malicious580

behaviour is then hidden so administrators may seek to disable581

the feature.582

6. Conclusions and Future Work583

The MemDecrypt framework rapidly discovers crypto-584

graphic artefacts and decrypts SSH communications in virtual-585

ized environments. This can assist in detecting, and preventing586

insider attackers from extracting and encrypting confidential in-587

formation to external locations. MemDecrypt can be extended588

to technologies where memory acquisition of live secure ses-589

sions is enabled. Decrypting SSH sessions may be illegal with-590

out approval so cryptographic artefact sets could be retained591

with the associated network traffic for decryption once approval592

is obtained. High performance makes the framework applicable593

so future work should apply multithreading and pipelining tech-594

niques before being extended to other non-virtualized use cases,595

secure protocols, encryption algorithms, and malware that use596

encrypted communications channels.597

References598

[1] S. Khandelwal, ““How Dutch Police Decrypted BlackBerry PGP599

Messages For Criminal Investigation,” The Hacker News,” https://600

thehackernews.com/2017/03/decrypt-pgp-encryption.html, 2017, [On-601

line; accessed 29-Jan-2019].602

[2] A. Duncan, S. Creese, and M. Goldsmith, “An overview of insider at-603

tacks in cloud computing,” Concurrency and Computation: Practice and604

Experience, vol. 27, no. 12, pp. 2964–2981, 2015.605

[3] N. Ferguson, B. Schneier, and T. Kohno, Cryptography engineering: de-606

sign principles and practical applications. John Wiley & Sons, 2011.607

[4] N. Zhang, R. Zhang, K. Sun, W. Lou, Y. T. Hou, and S. Jajodia, “Memory608

forensic challenges under misused architectural features,” IEEE Transac-609

tions on Information Forensics and Security, vol. 13, no. 9, pp. 2345–610

2358, 2018.611

[5] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.612

Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we613

remember: cold-boot attacks on encryption keys,” Communications of614

the ACM, vol. 52, no. 5, pp. 91–98, 2009.615

8

https://thehackernews.com/2017/03/decrypt-pgp-encryption.html
https://thehackernews.com/2017/03/decrypt-pgp-encryption.html
https://thehackernews.com/2017/03/decrypt-pgp-encryption.html

[6] C. Maartmann-Moe, S. E. Thorkildsen, and A. Årnes, “The persistence616

of memory: Forensic identification and extraction of cryptographic keys,”617

digital investigation, vol. 6, pp. S132–S140, 2009.618

[7] S. Sentanoe, B. Taubmann, and H. P. Reiser, “Virtual machine introspec-619

tion based ssh honeypot,” in Proceedings of the 4th Workshop on Security620

in Highly Connected IT Systems. ACM, 2017, pp. 13–18.621

[8] B. Taubmann, C. Frädrich, D. Dusold, and H. P. Reiser, “Tlskex: Har-622

nessing virtual machine introspection for decrypting tls communication,”623

Digital Investigation, vol. 16, pp. S114–S123, 2016.624

[9] Y. Nakano, A. Basu, S. Kiyomoto, and Y. Miyake, “Key extraction attack625

using statistical analysis of memory dump data,” in International Confer-626

ence on Risks and Security of Internet and Systems. Springer, 2014, pp.627

239–246.628

[10] B. Hay and K. Nance, “Circumventing cryptography in virtualized envi-629

ronments,” in Malicious and Unwanted Software (MALWARE), 2012 7th630

International Conference on. IEEE, 2012, pp. 32–38.631

[11] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, “A dynamic prime number632

based efficient security mechanism for big sensing data streams,” Journal633

of Computer and System Sciences, vol. 83, no. 1, pp. 22–42, 2017.634

[12] Y. Nir and A. Langley, “Chacha20 and poly1305 for ietf protocols,” Tech.635

Rep., 2018.636

[13] Ianix, ““ChaCha Usage & Deployment,” Ianix,” https://ianix.com, 2019,637

[Online; accessed 29-Jan-2019].638

[14] T. Aura, “Strategies against replay attacks,” in Computer Security Foun-639

dations Workshop, 1997. Proceedings., 10th. IEEE, 1997, pp. 59–68.640

[15] P. Rogaway, “Evaluation of some blockcipher modes of operation,” Cryp-641

tography Research and Evaluation Committees (CRYPTREC) for the642

Government of Japan, 2011.643

[16] M. Bellare, T. Kohno, and C. Namprempre, “The secure shell (ssh) trans-644

port layer encryption modes,” Tech. Rep., 2005.645

[17] M. Dworkin, “Recommendation for block cipher modes of opera-646

tion. methods and techniques,” NATIONAL INST OF STANDARDS647

AND TECHNOLOGY GAITHERSBURG MD COMPUTER SECU-648

RITY DIV, Tech. Rep., 2001.649

[18] T. Ylonen and C. Lonvick, “The secure shell (ssh) protocol architecture,”650

Tech. Rep., 2005.651

[19] ——, “The secure shell (ssh) transport layer protocol,” Tech. Rep., 2005.652

[20] ——, “The secure shell (ssh) authentication protocol,” Tech. Rep., 2005.653

[21] ——, “The secure shell (ssh) connection protocol,” Tech. Rep., 2005.654

[22] D. J. Barrett, D. J. Barrett, R. E. Silverman, and R. Silverman, SSH, the655

Secure Shell: the definitive guide. " O’Reilly Media, Inc.", 2001.656

[23] S. Tatham, ““PuTTY”,” https://www.chiark.greenend.org.uk/~sgtatham/657

putty/latest.html, 2019, [Online; accessed 29-Jan-2019].658

[24] J. Galbraith and O. Saarenmaa, “Ssh file transfer protocol,” Work in659

Progress, 2006.660

[25] S. Vömel and J. Stüttgen, “An evaluation platform for forensic memory661

acquisition software,” Digital Investigation, vol. 10, pp. S30–S40, 2013.662

[26] S. Vömel and F. C. Freiling, “A survey of main memory acquisition and663

analysis techniques for the windows operating system,” Digital Investiga-664

tion, vol. 8, no. 1, pp. 3–22, 2011.665

[27] AccessData, “"FTK Imager",” http://marketing.accessdata.com/666

ftkimager4.2.0, 2018, [Online; accessed 29-Jan-2019].667

[28] "FireEye", ““Memoryze”,” https://www.fireeye.com/services/freeware.668

html, 2018, [Online; accessed 29-Jan-2019].669

[29] M. Cohen", ““WinPMEM”,” https://github.com/google/rekall/tree/670

master/tools/windows/winpmem, 2018, [Online; accessed 29-Jan-2019].671

[30] F. Freiling, T. Groß, T. Latzo, T. Müller, and R. Palutke, “Advances in672

forensic data acquisition,” IEEE Design & Test, vol. 35, no. 5, pp. 63–74,673

2018.674

[31] J. Sylve", ““LiME Linux Memory Extractor”,” https://github.com/675

504ensicslabs/lime, 2019, [Online; accessed 29-Jan-2019].676

[32] H. Yang, J. Zhuge, H. Liu, and W. Liu, “A tool for volatile memory acqui-677

sition from android devices,” in IFIP International Conference on Digital678

Forensics. Springer, 2016, pp. 365–378.679

[33] H. Sun, K. Sun, Y. Wang, and J. Jing, “Reliable and trustworthy memory680

acquisition on smartphones,” IEEE Transactions on Information Foren-681

sics and Security, vol. 10, no. 12, pp. 2547–2561, 2015.682

[34] "Cellebrite", ““Advanced Extraction Service”,” https://www.cellebrite.683

com/en/services/advanced-extraction-services, 2018, [Online; accessed684

29-Jan-2019].685

[35] A. Case and G. G. Richard III, “Memory forensics: The path forward,”686

Digital Investigation, vol. 20, pp. 23–33, 2017.687

[36] S. J. Yang, J. H. Choi, K. B. Kim, R. Bhatia, B. Saltaformaggio, and688

D. Xu, “Live acquisition of main memory data from android smartphones689

and smartwatches,” Digital Investigation, vol. 23, pp. 50–62, 2017.690

[37] B. P. Kondapally", ““What is IoT Forensics and691

How is it Different from Digital Forensics?”,” https:692

//securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/693

what-iot-forensics-and-how-it-different-digital-forensic, 2018, [Online;694

accessed 29-Jan-2019].695

[38] S. Alabdulsalam, K. Schaefer, T. Kechadi, and N.-A. Le-Khac, “In-696

ternet of things forensics: Challenges and case study,” arXiv preprint697

arXiv:1801.10391, 2018.698

[39] "LibVMI Project", ““LibVMI”,” http://libvmi.com/, 2013, [Online; ac-699

cessed 29-Jan-2019].700

[40] B. D. Payne", ““pyvmi – A Python adapter for LibVMI”,” https://github.701

com/libvmi/libvmi/tree/master/tools/pyvmi, 2013, [Online; accessed 29-702

Jan-2019].703

[41] "The Volatility Foundation", ““The Volatility Foundation - Open Source704

Memory Forensics”,” http://www.volatilityfoundation.org/, 2017, [On-705

line; accessed 29-Jan-2019].706

[42] M. Cohen", “Rekall Memory Forensic Framework”,” http://www.707

rekall-forensic.com/, 2017, [Online; accessed 29-Jan-2019].708

[43] C. E. Shannon, “A mathematical theory of communication,” Bell system709

technical journal, vol. 27, no. 3, pp. 379–423, 1948.710

[44] C. Cachin, “Entropy measures and unconditional security in cryptogra-711

phy,” Ph.D. dissertation, ETH Zurich, 1997.712

[45] "Xen Project", “Xen Project Software Overview”,” https://wiki.713

xenproject.org, 2018, [Online; accessed 27-Nov-2018].714

[46] Kerkhoff Technologies, “NetFilterQueue,” https://pypi.org/project/715

NetfilterQueue, 2017, [Online; accessed 29-Jan-2019].716

[47] P. Biondi", “Scapy”,” https://scapy.readthedocs.io/en/latest/, 2017, [On-717

line; accessed 29-Aug-2018].718

[48] D. C. Litzenberger", “Python Cryptography Toolkit (pycrypto)”,” http:719

//www.rekall-forensic.com/, 2013, [Online; accessed 29-Jan-2018].720

[49] "SSH Communications", “SSH Client for Windows - Comparison”,”721

https://www.ssh.com/ssh/client, 2018, [Online; accessed 29-Jan-2018].722

[50] T. Ylonen, P. Turner, K. Scarfone, and M. Souppaya, “Security of inter-723

active and automated access management using secure shell (ssh),” Tech.724

Rep., 2015.725

[51] B. Patel", “Intel Releases New Technology Specification for Mem-726

ory Encryption”,” https://software.intel.com/en-us/blogs/2017/12/22/727

intel-releases-new-technology-specification-for-memory-encryptio,728

2017, [Online; accessed 15-Oct-2018].729

[52] S. Nichols", “Epyc fail? We can defeat AMD’s virtual machine en-730

cryption, say boffins,”,” https://www.theregister.co.uk, 2017, [Online; ac-731

cessed 15-Oct-2018].732

9

https://ianix.com
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
http://marketing.accessdata.com/ftkimager4.2.0
http://marketing.accessdata.com/ftkimager4.2.0
http://marketing.accessdata.com/ftkimager4.2.0
https://www.fireeye.com/services/freeware.html
https://www.fireeye.com/services/freeware.html
https://www.fireeye.com/services/freeware.html
https://github.com/google/rekall/tree/master/tools/windows/winpmem
https://github.com/google/rekall/tree/master/tools/windows/winpmem
https://github.com/google/rekall/tree/master/tools/windows/winpmem
https://github.com/504ensicslabs/lime
https://github.com/504ensicslabs/lime
https://github.com/504ensicslabs/lime
https://www.cellebrite.com/en/services/advanced-extraction-services
https://www.cellebrite.com/en/services/advanced-extraction-services
https://www.cellebrite.com/en/services/advanced-extraction-services
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
https://securitycommunity.tcs.com/infosecsoapbox/articles/2018/02/27/what-iot-forensics-and-how-it-different-digital-forensic
http://libvmi.com/
https://github.com/libvmi/libvmi/tree/master/tools/pyvmi
https://github.com/libvmi/libvmi/tree/master/tools/pyvmi
https://github.com/libvmi/libvmi/tree/master/tools/pyvmi
http://www.volatilityfoundation.org/
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
https://wiki.xenproject.org
https://wiki.xenproject.org
https://wiki.xenproject.org
https://pypi.org/project/NetfilterQueue
https://pypi.org/project/NetfilterQueue
https://pypi.org/project/NetfilterQueue
https://scapy.readthedocs.io/en/latest/
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
 https://www.ssh.com/ssh/client
https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryptio
https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryptio
https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryptio
https://www.theregister.co.uk

	Introduction
	Related Work
	Encryption algorithms
	Memory Access

	MemDecrypt Design
	MemDecrypt Implementation
	Data Collection
	Memory Analysis
	Decrypt Analysis
	Testbed

	Evaluation
	Experimental Set-up
	Test Results
	Countermeasures

	Conclusions and Future Work

