
1

Risk Assessment for Mobile Systems through a
Multi-layered Hierarchical Bayesian Network

Shancang Li, Theo Tryfonas, Gordon Russell, and Panagiotis Andriotis

Abstract—Mobile systems are facing a number of application

vulnerabilities that can be combined together and utilized to

penetrate systems with devastating impact. When assessing the

overall security of a mobile system, it is important to assess the se-

curity risks posed by each mobile applications (apps), thus gain a

stronger understanding of any vulnerabilities present. This work

aims at developing a three-layer framework that assesses the

potential risks which apps introduce within the android mobile

systems. A Bayesian risk graphical model is proposed to evaluate

risk propagation in a layered risk architecture. By integrating

static analysis, dynamic analysis, and behavior analysis in a

hierarchical framework, the risks and their propagation through

each layer are well modelled by the Bayesian risk graph, which

can quantitatively analyse risks faced to both apps and mobile

systems. The proposed hierarchical Bayesian risk graph model

offers a novel way to investigate the security risks in mobile

environment and enables users and administrators to evaluate

the potential risks. This strategy allows to strengthen both app

security as well as the security of the entire system.

Index Terms—Bayesian Risks Graphs, Mobile Security, Risk

Assessment, Android Malware;

I. INTRODUCTION

The Android-based platform has reached the top of the
smartphone market, and claimed nearly 79% of smartphone
share in 2013 [1], [2]. In the Google Apps marketplace, more
than 1, 192, 749 applications (apps) are available and this is
increasing by 40% monthly (i.e. 32, 000 in Mar, 2014) [1].
Although Google has released an exciting security tool called
the application verification service to protect against harmful
Android apps in the market [2], it is still challenging to
detect potentially harmful apps before the damage is done.
The overall malware detection rate from among 1, 260 samples
can be as low as 15.32% even with Google‘s new application
verification service [2], and the overall detection rate utilising
its anti-virus tools give an overall detection rates of 20.41%
[3], which is significantly lower than the third part anti-virus
apps that range from 51.02%� 100% [1]–[4].

Although awareness is constantly rising, the Android-based
mobile systems are exposed to strong and significant security

Manuscript received Oct. 08, 2015; revised Nov. 05, 2015; accepted Feb.
20, 2016.

This work was supported by the ECR2015/2016 funding at Edin-
burgh Napier University and the European Commission under Grant
HOME/2010/ISEC/AG/INT-002.

S. Li and G. Russell are with Computing, Netowrk, and Security Group,
School of Computing, Edinburgh Napier University, Edinburgh, UK. (E-mail:
s.li@napier.ac.uk, g. russell@napier.ac.uk. Tel: +44-131-455 2822.)

T. Tryfonas and is with the Faculty of Engineering, Bristol Cryp-
tography Group, University of Bristol, Bristol BS8 1UB, UK. (E-mail:
theo.tryfonas@bristol.ac.uk.)

P. Andriotis is with the Information Security Group, University College
London, WC1E 7JE, UK. (E-mail: mr.panagiotis.andriotis@ieee.org.)

threats and many issues are reported each day [2], [4]–[8].
The peculiarities of mobile systems have been well known
and many approaches have been developed to protect them.
In general, a security solution for mobile systems begins with
risk assessment to determine the threats and loss expectancy.
Many risk assessment models have been proposed to model
the risks, attacks, and threats in mobile systems, including
attack graphs [5], attack tree [6], Bayesian belief model [9] and
hybrid Bayesian network [10]. However many of these models
fail to consider the causal-relations of risks, and consequently
the contributory causes of threats are ignored [3], [11]–[13].

In [5] and [6], Bayesian networks are used to model vulner-
ability management and potential attack paths, which make it
possible to quantatively evaluate the likelihood that an attack
happens. In [10], a Bayesian network model is developed
that can calculate the posterior probabilities of states of risks.
Assessing the risks of apps or mobile systems is a crucial
aspect in determining security state, information protection,
and related security controlling. The capability of the Bayesian
probabilistic model is a significant motivation to investigate
risks analysis by analysing the likelihood of app (or system)
compromise by chaining Bayesian rules in the proposed three-
layered framework.

In this paper, the term ‘risk’ is used to denote an unsafe
state or behavior of an app or system that is related to
vulnerabilities or threats. In mobile systems there are two
fundamental risks sources: (1) The apps distribution platform,
the Google App Store, might be a source of potential security
risks. Users generally always accept all permission requests re-
quested during app installation. This can lead to overprivilege
authority in apps and can lead to privacy and security-relevant
vulnerabilities; (2) The fragmentation of apps, devices, and
OS versions. The existence of multiple versions of Android
and the huge number of developers may lead to customised
modifications of Android, and these could be riddled with
security vulnerabilities.

In mobile systems, security assessment generally involves
the risk identification, risk analysis, and risk evaluation for
both apps and the underlying system [13], [16]–[19]. This
paper aims to develop a risk analysis framework to systemati-
cally assess the potential risks present in a mobile system. The
hierarchical model decomposes risks in an app (or the system)
with inter-dependencies into three layers (static analysis layer,
dynamic analysis layer, and behavior analysis layer). Each
layer focuses on specific aspects and needs. The framework
then combines all specific risks in a coherent way and captures
all possible causes of identified risks by applying a Bayesian
Risk Graph.

2

The hierarchical Bayesian risk graph (HBRG) features: (1)
A different approach than most existing static analysis, this
model integrates the potential risks analysis over: static risk
layer, dynamic risk layer, and behavioral risk layer; (2) It can
help users to find the dominating risk causes; (3) It is able to
determine out-system cause and effects (e.g. for two different
mobile systems A and B, it can analyse the probability that B
will fail if A fails); and (4) Provide risks scores, so that when
evaluating the potential risks in a mobile system, the model
will grade each application with an app-related risk-score as
well as a score for the whole mobile system.

II. CHALLENGES IN MOBILE RISKS ANALYSIS

In building a secure mobile environment, several key strate-
gic issues should be considered [20]: (1) Develop a risk model
that can identify the potential risks of data loss based on a
trusted risk assessment; (2) Provide a dynamic risk analysis
module, which should be able to keep up with the rapid
pace found in the Android ecosystem; (3) Evaluate each app
installed using a risk assessment service that assigns them
each a risk score. For example, if you install an app with
a high-risk score, you should block or disable exploitable
resources until the app is removed; (4) Layer the security,
so that exploiting a system requires multiple vulnerabilities to
penetrate the multiple layers of the security model.

Recently, a number of risk assessment methods have been
proposed in the network security domain, such as the proba-
bilistic risk model [6], in-operability input-output models [9],
and hierarchical holographic models (HMM) [10]. In general,
a complex system can be decomposed with inter-dependencies
into several independent views, each of them focuses on
different aspects and needs. One such set of views could
include: static analysis aspects to model the problem, dynamic
analysis to the security planning process, and behavior analysis
to the susceptible behaviors analysis for apps. However in
the Android mobile systems, the huge number of apps and
platform variants makes the risk evaluation difficult, as the
probability of each potential risk needs to be considered in
security planning. The major challenges in performing an
Android risk analysis can be summarized as follows:

1) Security vulnerabilities are rampant. As reported in [21],
mobile app security concerns are growing in importance
and 96% of all tested applications have one or more seri-
ous security issue, such as privacy (90%), overprivileges
(80%), session authentication (53%), input validation
(62%), and infrastructure (66%). This makes it difficult
to find all potential risks when assessing apps and mobile
systems [21].

2) Complex mobile attacks. An app might be threatened by
a variety of security threats. The attackers could combine
these multiple threats to form a complex and powerful
mobile attack. The potential mobile threat could be clas-
sified into four categories: App-based threats, Network
threats, and Physical threats. It is a challenging task to
protect apps or mobile systems from a complex multi-
step and multi-host attack. To deal with complex attacks,
it is necessary to perform proactive and consistent app

risk evaluation by both performing efficiently detecting
and remediating vulnerabilities across the entire apps
ecosystem.

3) The complexity of risk detection. Early detection might
be the most efficient way to reduce vulnerabilities but
it does not come without without weaknesses. Early
detection may use static security analysis tools to
identify vulnerabilities created during apps development,
such as issues related to embedded information. In
fact, most mobile app vulnerabilities relate to run-time
activities. Dynamic risks analysis tools are expected to
more accurately discover vulnerabilities that only appear
when an app is launched. A dynamic analysis process

can help in detecting run-time issues. In addition, a
behavior analysis aspect to testing could be helpful
in identifying potentially harmful long-term activities of
apps.

4) Risk communication strategy. Communicating risks is an
important challenge to protect apps and mobile systems
from threats, allowing incident intelligence to identify
risks before they become a focal point for mobile sys-
tem attacks. In app-based systems, when an app attack
happened, it is crucial to be able to predict the possibility
that it will occur in other mobile systems, thus help
to reduce the spread of similar attacks and the costs
incurred. By communicating with developers, vendors,
or app stores, the ‘out-system risks analysis scheme’ can
create a roadmap of risk across multiple systems. To
address the anticipated risks, users could for instance
review the use of a particular app with the knowledge
that it has been reported on another platform.

A mature risk assessment model should provide both real-
time analysis and risk trend analysis over time for both
apps and mobile systems. This paper meets these challenges
by capturing vulnerability interdependencies and measuring
security in a similar way that real attackers penetrate the
mobile system, providing an assessment framework of overall
systems risks as well as that related to individual apps.

III. MOBILE SYSTEMS RISK MODELING

In risk assessment modelling it is essential to be able
to identify what each app is actually doing. A hierarchi-
cal risk analysis architecture is able to accurately identify
vulnerabilities, while a Bayesian risk graph can capture the
interdependencies among the vulnerabilities posed by apps and
the mobile systems. In this paper, hierarchical risk analysis is
combined with a Bayesian risk graph to accurately model the
risk states, propagations, and transitions.

Fig.1 shows a typical Hierarchical Bayesian Risk Graph
(HBRG) model, which integrates a hierarchical risk analysis
architecture into a Bayesian risk graph. It consists of a three-
layer architecture and each layer extracts featured risks to form
a directed acyclic graph (DAG). Each edge between nodes in
the graph denotes the probabilistic causal dependencies. Based
on the DAG, an Bayesian Network model could be created,
in which each node maintains a conditional probabilities
table (CPT). The parental nodes in the HBRG are assumed

3

B1

B2

B3

B4

App

S2

S3

S5

S6

D1

D2

D3

D4

S1

Potential
Risks

Risks
Score

Risks Lib

Behaviours
analysis

Dynamic analysis

Static analysis

Risks Lib

Risks Lib

Risks Lib

S4

App (system) risk
evaluation

Intra-relation Inter-relation Cross-relation Feedback

Da

P(
B3

|D
a)

=1
Fig. 1. Hierarchical Bayesian Risk Graph Model

to be marginally independent. The relations in the HBRGs
denote the transition probabilities between nodes, which are
classified into three aspects: (1) intra-layer relations, which
connect the nodes within a layer; (2) inter-layer relations,
cover the connections between two adjacent layers, and (3)
cross-layer relations, denoting the links which bridge between
the behavior layer and static layer. In order to reduce the
computation complexity, cross-layer relation can be converted
into two inter-layer relations by adding a virtual node concept.
In Fig.1, the cross-layer relation from S3 to B3 can be
translated into two inter-layer relations, where Da is the newly
created virtual node and P (B3|Da) = 1. The virtual node Da
can be seen as a copy of node B3 in dynamic layer without
needing inter-relations in the dynamic layer. By doing this, the
complexity of the relation space could be significantly reduced.

In HBRG, the model parameters (CPTs, transition probabil-
ities) are always estimated using statistical learning algorithms
[4], [5], [9]. Statistically, CPTs evaluation requires many
samples to test whether a risk can or cannot cause other effect
or make a contribution to other risks. Fortunately, the Genome
dataset released by the Malware Genome Project [32] have
collected more than 1, 200 malware app samples that cover the
majority of existing Android malware families. This dataset
has been successfully used to detect most existing malware
apps. In this paper, the Genome dataset is used to statistically
learn risk features at the static, dynamic, and behavioral layers
to build accurate CPTs.

A. Bayesian Risks Graph Model
The process that one or more vulnerabilities propagate to

one or more different threats could be defined with a depen-
dence graph. The risk states or its propagation are usually
constructed as a DAG and the transitions between nodes could
be modelled with local conditional probabilities.

A DAG can be modelled with a Bayesian graph model
G = {V,E}, in which the nodes V denotes the variables
of risks, and the edges E denote relations between nodes that
can be described with conditional probability distributions. For
each variable S

i

2 V, a conditional probability distribution

P (S
i

|Pa(S
i

)) is used to describe the transition. Pa(S
i

) de-
notes the parent set of S

i

in G. The Bayesian model reflects a
conditional independence statement, which could significantly
reduce the number of parameters needed.

The Bayesian network model needs to be extended to
encode the apps risk conditions as a Bayesian Risk Graph
(BRG). The BRG is a powerful but intuitive tool for modelling,
analysing, and predicting risks in mobile systems. It supports
both app and mobile system security risk analysis. A unique
joint probability distribution over V, could be verified to be

P (S1, S2, . . . , Sn

) =
nY

i=1

P (S
i

|⇡
i

) (1)

where S = {S1, S2, . . . , Sn

} is a set of Bernoulli random
variables and P (S

i

|⇡
i

) denotes the conditional probability of
S
i

given the condition of ⇡
i

. For example, for a set S =
{S1, S2, S3, S4, S5}, the joint probability of all the variables
can be derived with Eq. (1)

P (S1, S2, S3, S4, S5) = P (S1|S2) · P (S2|S3, S4)·
P (S3|S4) · P (S4) · P (S5)

(2)

Definition 1: Conditional probability table (CPT). In a
BRG, the quantitative parameters must be specified. Each
node maintains a CPT to describe the conditional probability
distribution for a particular combination of values of its
parental nodes.

Definition 2: Hierarchical Risk Template. A hierarchical-
risk-template is a generic property of the structured risk-
template that at least includes one of three basic properties:

1) Behavior Risk, which includes the potential threats that
are based on the behavior analysis;

2) Dynamic Risk, which involves potential risks based on
the dynamic analysis, such as app activities, network
activities, etc.

3) Static Risk, which includes the potential risks and threats
based on the static analysis, such as malware, size
analysis, permission analysis, virus matching, etc.

The hierarchical risk template provides BRG a template
that describes the basic potential risks of an app or a mobile

4

system. It can help us categorize the properties of risks in
mobile systems. For example, ‘accessing the contact list’ is
an instance of dynamic risk.

Definition 3: Risk Attribute. This is a binary attribute
representing the state of an instance of a risk. A risk S is
associated with a state (S = 1, true) or (S = 0, false). The
probability that risk S happens is Pr(S = 1). When an app
(or system) is compromised it means the risk state of the app
(or system) is true(S = 1). Therefore

Pr(¬S) = 1� Pr(S) (3)

is the probability of the state being S = 0.
Definition 4: Atomic Risk. Atomic risk is a risk that cannot

be further broken down into smaller parts and retain their
meaning in the context of an risk. Typical example is vulnera-
bility identifiers. Let S denote a set of risks. A : S⇥S ! [0, 1]
denotes a set of relationships in S. Then given S

pre

, S
post

2 S,
and thus a : S

pre

7! S
post

can be identified as an atomic risk
if

1) S
pre

6= S
post

2) given S
pre

= 1, S
post

= 1 with probability
A(S

pre

, S
post

) > 0
3) 6 9S1, · · · , Sj

2 S � {S
pre

, S
post

}.
Hence, A� S allows an action to compromise the risk S

post

from S
pre

with a nonzero probability. Thus S
pre

is the stage
before the risk occurred, and S

post

is the state after the risk
occurred.

Definition 5: Bayesian Risks Graph (BRG). A BRG is a
tuple (S, ⇠, T), in which S = R

B

[R
D

[R
S

denotes the set
of attributes from three risk layers. R

B

, R
D

, and R
S

denote
the risks from the behavior layer, the dynamic layer, and the
static layer, respectively.
⇠ ✓ S ⇥ S denotes the space of risks. A risk states pair

(S
pre

, S
post

) 2 ⌧ if S
pre

7! S
post

2 A. Furthermore, for
S
i

2 S, the set Pa[S
i

] = {S
j

2 S|(S
j

, S
i

) 2 ⇠} is called the
parent set of S

i

. Here T denotes conditional probability table
(CPT).

Fig. 2 shows a simple BRG example, in which the risk r
a

could be caused by sub-risks r
b

and(or) r
c

, and iteratively r
b

could be redivided into r
e

and r
d

, where r
d

, r
e

, and r
c

are
atomic risks and thus could not be further divided. The basic
idea of the BRG is to calculate the probability of r

a

according
to its parental conditional probabilities.

Definition 6: Risks Combination. For a risk S
j

in a BRG,
S
j

2 S
R

[S
D

[S
B

, then assuming that S
i

2 Pa[S
j

]
and S

i

7! S
j

, then there are two kinds of possibilities to
consider for risks combination: AND-combination and OR-
combination. As shown in Fig. 3, the AND-combination
denotes each sub-risk is a distinct event and the chance of r

a

to
be true depends on the success of each individual subrisk (r

b

and r
c

). For the OR-combination, the chance of r
a

to be true
depends on the success of at least one of individual subrisks
(r

b

or r
c

). The probability could be defined as

Pr(S
i

|Pa[S
i

]) =

(
Pr(\

Si=1(ai)), AND

Pr([
Si=1(ai)), OR

(4)

Fig. 2. A simple example of BRG

Fig. 3. Risks Combination in BRG

B. Hierarchical BRG

The HBRG is a hierarchical model formed by a three layer
Bayesian risk graph. Fig. 1 shows a typical HBRG model that
consists of a BN (Bayesian Network) model at each layer. A
risk-evaluation process performs at each layer and a compound
risk evaluation will be given for each app (or system).

A HBRG can be represented with a double combination of
GHBRG and a relationships set R as < GHBRG

,R >.
1) GHBRG = {G

S

,G
D

,G
B

} denotes the BRGs model,
in which G

S

denotes the BRG at the static layer,
G

D

denotes the BRG at the dynamic layer, and G
B

denotes the BRG at the behavioral layer, respectively.
The relationships among random variables at each node
are constrained by the model structure and a directed
acyclic graph (DAG) obeying the usual conditional inde-
pendence assumptions. Specifically, the arcs between the
BRG nodes represent probabilistic causal dependencies.
For each BRG, the joint probability distribution function
is defined as in Eq.(1).

2) Relation R, a key concept of the HBRN model, provides
the bridge among the layered BRG. R is a set of
associations {R

ij

|(i = 1, 2, . . . ,m); j 2 (1, 2, . . . , n)}
with R

ij

= 1 implying that node S
i

is assigned to state
true of relationship with node S

j

.

5

IV. HIERARCHICAL RISK ASSESSMENT WITH BRGS

The Android security model is primarily based on a sandbox
and permissions mechanisms, in which an app is running in
a specific Dalvik virtual machine with a unique user ID. In
general, each app runs in isolation from all others apps, and
so each app cannot access to other app‘s resources. An app
is signed using a certificate by the developer, to confirm the
integrity of the app. To conserve resources, apps with the same
ID can also arrange to run in the same process, sharing the
same VM. Apps can be granted permissions, and these are
displayed to the user for approval before the app is installed.
However, users tend to ignore the permissions that an app
requests, and there are many reasons for this to happen [22]–
[25].

Forensically, the risk detection, finding, and evaluation are
important for providing users a safe mobile platform. The
hierarchical risk assessment framework is able to conduct
three layers of in-depth risk analysis for both apps and mobile
systems.

A. Static Risk Analysis
A number of static risk analysis methods have been de-

veloped to examine the potential risks that an app can exhibit
[1], [2], [26]. However, most of them are constrained to certain
performance capabilities due to their inherent limitation of not
actually executing the code. In Android systems, the static
analysis is mainly focused on disassembling the binary file
(APK) to check source code (e.g. classes.dex, smali,

AndroidManifest.xml). This permits the static risk anal-
ysis to scan an app‘s permission requests, API calls, and check
discrepancies between the two, including the following stages:
(1) app-decompile into smali format; (2) information extractor;
(3) API calls parse; (4) permission analysis; (5) grouping of
critical API calls; (6) embedded sources; (7) log monitor and
parser. Commonly used analysis tools have been developed,
such as apktool, baksmali, fiwalk, and icat [25].

The static analysis can also provide insights into the third
part software development kits (SDKs), libraries, API calls,
and app functions that are employed within an app. Most
of the existing mobile security schemes are using static risk
analysis to identify malicious apps [1], [2], [26]. For example,
in [27] Zhou and Jiang found that the BOOT COMPLETED
event registration was used in over 83% of the malware apps
sample dataset, and given the assumption that this event regis-
tration would occur less frequently in legitimate applications
it thus could be used as an indicator for identifying malicious
applications. The limitation of static analysis code mapping
is that unable to effectively evaluate any permissions abuse
which may occur in the Android system. It also cannot cover
dynamic and forgery bytecode calls that can generate false
negative in terms of permissions requested [28].

The main goal of static analysis is to statistically find ways
to trigger potentially malicious or risky behaviors before the
app runs. Using static risk analysis, one can identify main
static risks in an app. The output of static analysis could be
used to guide the dynamic analysis, or even help parametrise
the dynamic analysis directly. This can significantly reduce

the parameters needed when performing dynamic analysis and
thus improve its performance.

B. Dynamic Risk Analysis
After completing the static analysis stage, the framework

performs a real-time analysis, which evaluates apps under
run-time conditions on instrumented emulators or modified
hardware devices. The dynamic analysis module could run
over a server and perform concrete execution of apps while
extracting certain details related with security. The analysis
includes the execution of Dalvik bytecode and contains data
structures related to a single execution flow through an app,
while other methods also contain a stack to temporarily retain
data about each method that is called at run time. As the
execution encounters method calls and returns, this stack
grows and shrinks. In this layer, the framework mainly focuses
on detecting the following risks and exploits:

(1) Intent-based risks. Each app is composed of sev-
eral components (Activity, Service, Broadcast

Receiver, Content Provider) that can communicate
between each other using Intent message (for both inter and
intra app communication). However, wrong information ex-
change between activities could leak information. The Intent-
based risks include: Unauthorized Intent Receipt, Broadcast
Theft, Activity Hijacking, Service Hijacking, and Special In-
tent.

(2) Intent Spoofing. Malicious apps are able to launch an
Intent spoofing attack by sending an Intent to an exported
component that is not expecting Intents from that app. This
kind of risks include malicious broadcast injection and mali-
cious activity/service launch.

(3) Component Analysis. The main goal of this component
is to check susceptible risks for each components in an app
by examing the app’s manifest file, Dalvik instructions, etc.

(4) Android network sniffing. It includes detection of risky
network activities, such as networking vulnerability scan-
ning/search, illegal login, http POST/GET, https hijacking, etc.

In dynamic risks analysis, a number of tools have been de-
veloped such as ComDroid [29], DroidMOSS [30], and Para-
noid [31]. The output of this layer includes: (1) components
analysis, (2) inter-app communication, (3) network connection
analysis, (4) method call graph, (5) control flow graph, and
(6) a list of relevant in-app behaviors, includes execution of
binaries, execution of commands, network events detection,
loading of libraries, I/O accessed, and dynamic class-loading.
These outputs can be used to determine vulnerabilities or guide
further behavior risk analysis.

These results could easily be modified to search for and
record any functionality or behavior deemed of interest. Dy-
namic analysis could check the proactive risks, such as auto-
updating, auto-downloading, and repacking.

C. Behavior Risk Analysis
The behavior layer identifies risk behaviors and measures an

app’s actual activity over time. By leveraging the risks found
in the static, dynamic, and behavior layers, the framework
can discover hidden, risky behaviors within a mobile app or

6

system. It can then combine all risks to provide an overall risk
score, and thus create custom mobile policy. The main goal in
this layer is to identify risk behaviors that might bring risks
to an app or the mobile system. This process collects both
security and privacy information on how an app performs its
potentially risky run-time activities. Typical tests in this layer
include:

• Auto exercises apps at run-time. Each app is auto-loaded
into a propriety emulator designed to test each app as it
would run in its native environment.

• Perform credential auto-login. This test replicates login
activity by auto-loading necessary credentials for full
execution of the app‘s functionality. This ensures that
HBRG can test all aspects of the app’s functionalities
beyond the login screen.

• Collect network activity for both SSL and non-SSL ac-
tivities. Tests designed to monitor any network activity,
essentially to see if the app is accessing any third party
networks. By doing this, one can at a minumum identify
whether such traffic was properly encrypted or not.

• Determine if app launches other apps during run-time.
This security test checks to see if an app sends requests
to access/launch other apps during run-time which may
allow malicious or risky activity to occur. This type
of exposure may allow malicious apps to be ‘silently’
installed on the user’s devices as well as giving them the
ability to auto-execute apps with malicious intent.

• Monitor read/write access to device directory and hard-
ware. This test monitors access to device hardware (i.e.
the camera) and also monitors which system files the
app can access and how encryption is used for saving
information.

• Abnormal behaviors detection. This could be undertaken
by checking for abnormal behaviors, such as privacy
collections, regularly information uploading, using HTTP
POST methods, receiving commands, etc.

The typically behavioral analysis methods used in this layer
include (1) Machine learning classifier: based on previous
training experience and after testing and weighing the security
issue, the classifier decided the potential risks that a behavior
may bring; and (2) Feature selection: the risky features selec-
tion methods are applied for behavior datasets. The behavioral
analysis is an effective solution to use characteristic and
behavioral-based methods to detect malware by observing the
static and/or dynamic behavior and features of mobile systems.

D. Risk Score
The causal risks could be a compound of a set of sub-

risks produced by the joint effect of other risks. By using
the Bayesian theorem, a numerical analysis can be performed
to find the probability for each causal-risk. By refining the
CPTs, the HBRG can determine (i) the probability that an
attack occurred on an app (or system), (ii) the probability that
an app (or system) will fail.

Given the risk values for each app (or system), a weighted
risk score for each app (or system) can be easily calculated

Rw

S

= wP (S), (Rw

S

) 2 [0, 3] (5)

in which P (S) 2 [0, 1]. An app may be threatened by multiple
risks, and each risk may lead an individual threat. In this case,
the risk level can be calculated with weighted probabilities
of each risk [5]. The Risk Scores are classified into three
categories: Low : [0.0 � 1.0), Medium : [1.0 � 2.0), and
Severe : [2.0� 3.0].

E. Contributory Causes Tracking
1) Independent Contributory Causes Tracking: Forensi-

cally, when a risk occur, it is important to find all contributory
causes or the probability of causes that make it happened.
Assume s = {s1, s2, . . . , sk} denotes a group of contributory
causes of an attack. Thus

p(s|a) =
NsX

i=1

↵
k

(i) (6)

in which N
s

denotes the number of nodes that cause the attack
a; the ↵

k

s are the forward variables. Using the likelihood ratio:

P (a|s) =
P (s|a)P (a)

P (s)

=
P (s|a)P (a)

P (s|a)P (a) + P (s|ā)P (ā)
(7)

where P (a) represents the prior probability of a. The posterior
probability is the node’s belief on the existences of s based
on the observation of a. It is the probability of causes that
allowed the attack to happen. For each cause in s, it is possible
to calculate the probability that contributed to a.

P (s
i

|a) = P (s|a)P (a)

P (s)
=

P (s|a)P (a)

P (s|a)P (a) + P (s|a)P (a)
(8)

2) Multiple Contributory Causes Tracking: If an attack
happened, the probability of any individual risk could be
calculated by applying above approach. Similarly, the model
is able to calculate the probability of any individual risk group
assumed to cause the attack. The group causes tracking method
enables the identification of the group causes of an attack after
it happened.

P (a1|s) = P (a1a2|s) + P (a1a2|s) (9)
P (a2|s) = P (a1a2|s) + P (a1a2|s). (10)

Then, we have

P (a1a2|s) =
P (s|a1a2)P (a1a2)

P (s)
(11)

in which,

P (s) = P (s|a1a2)P (a1)P (a2) + P (s|a1a2P (a1)p(a2)

+P (s|a1a2)P (a1)P (a2) (12)
= P (s|a1a2)P (a1)P (a2) + P (s|a1a2P (a1)p(a2)

F. Determining out-system causal effects
An app could be installed by many users. When an app

has failed (or been compromised) on a mobile system, it is
important to predict the possibility that the same app will
fail (or will be compromised) on other mobile systems. In

7

fact, the observation that an app failed could increase the
possibility that an attack will occur on other systems. This
prediction could be helpful for refining the CPTs for other
systems. Accordingly, for two mobile system S1 and S2,

P (S2) = P (S1 \ S2) + P (S1 \ S2) (13)

we further have

P (S2) = P (S1 \ S2) + P (S1 \ S2)

= P (S2|S1)P (S1) + P (S2|S1)P (S1). (14)

Hence, when an app fails on a mobile system, it implies the
increase of the probability that the app will fail if it is installed
on other mobile systems. Similarly, when an attack happened
on a mobile system, the probability that an attack with same
contributory causes will happen on other systems will also
increase.

V. RISKS ANALYSIS WITH HBRG - A CASE STUDY

As discussed in above sections, the HBRG model is able
to analyse risks associated with apps or mobile system by
integrating the static analysis, dynamic analysis, and behavior
analysis into a Bayesian risk graph. One possible real-world
risk is that posed by the Fake app patch, which is an issue
which can be found in the Android environment.

For instance, Google published an app ‘Android Market
Security (AMS)’ to undo the side effects caused by Android.
Rootcager is a Trojan horse that steals information from
Android device. This app was automatically pushed to devices
of users who had downloaded and installed an infected app.
However, a repackaged version of AMS was found on third
party app markets, and for discussion purposes the authors
name it rAMS. The rAMS might threaten the users’ privacy
information and may cause other issues. As an example,
HBRG was used to analyse rAMS to demonstrate how HBRG
can be used in a risk analysis.

In risks evaluation of an app or system, the statistically
learned CPTs require many samples to test whether one can or
cannot cause other effect or make contribution on other risks.
To characterise existing Android risky malware, particularly
within static and dynamic analysis, most known risky features
can be collected and classified that cover the majority of
existing Android malware families. This helps to build a risks
library for efficient evaluation of mobile security. Fortunately,
the Malware Genome Project has collected more than 12, 000
malware samples that cover the majority of existing Android
malware families. It has been successfully used to detect most
existing malware apps. In this paper, CPTs have been evaluated
based on statistic results with the reported harmful features of
apps.

TABLE I
STATIC ANALYSIS (SIZE)

apps Total (KB) Apps (KB) Data (KB) Cache(KB)
AMS 140 140 0.00 0.00
rAMS 208 196 12.00 0.00

In static analysis layer, the following features are first
checked: (1) Size, (2) Permission requested by AMS and

rAMS, (3) Package structure. This is shown in Table. I
and Table. II. The size of rAMS is bigger than that of
AMS, which might be caused by repacking risks. It can be
identified that the requested permissions are different and the
rAMS requests extra permissions that could bring risks to the
app and system. After checking the package structure, it is
found that the structure for AMS and rAMS are different.
AMS includes a ‘google.android’ package that contains three
sub-packages googleapps and googlelogin, however
in rAMS, the google.android package was obviously
repackaged as mss.bg, which includes three new packages:
transaction, ui, util. The eighteen potential static
risks in rAMS are analysed in Fig.4, which involves per-
missions, internet accessing, storage, and privacy, which are
organized as 18 BRG nodes from S1 to S18 as shown in
Fig.5. All risks combinations in this example are assumed to
be OR-combinations for simplicity.

TABLE II
STATIC ANALYSIS (PERMISSIONS)

permissions AMS rAMS
Storage Y Y
Location N Y
Network Y Y
Phones Call Y Y
Default Y Y
Message N Y
Money N Y
Systems N Y

In the dynamic layer, further analysis of the dynamic
risks can be carried out. By de-assembling the app it was
found that the rAMS is collecting the following information:
(imei, version, smscentre, handled, pid,

install time, sysversion, author, fare,

and phonenumber). The collected information was saved
in a hidden file upload.xml.

In the dynamic layer, it was found that the rAMS used
the HTTP POST method and the related URI was identified as
http://www.youlubg.com:82/Coop/request3.php.
This means that the rAMS was able to send the collected
information onwards to a remote server. Based on the analysis
at static layer, the following potential risks were identified:
repacking, sending SMS, receiving SMS, http post, http get,
block sms, which are organized as BRG nodes D1 to D7.
Two virtual nodes Da and Db are created and mapped to B3
and B4, respectively.

Similarly, at the behavior layer, behavioral risks could be
identified based on matching with the behavioral risk lib. It
is found that the rAMS is able to interact with the above
identified server. By further checking the network activities of
rAMS, it was found that the rAMS could receive commands
from the reply generated by the POST request and save
the commands into a hidden file serverinfo.xml. This
identified a risk that the remote attackers are able to send
SMS messages from the compromised device. rAMS also has
the capability to block incoming SMS messages. Based on
the behavior features extracted from Genome Project, four
behavior risks are recognized from rAMS: B1: Costs; B2:

8

Regularly connect third part Server; B3: Collecting Privacy
Data; B4: System Leakage as shown in Fig.4.

A HBRG could be built as shown in Fig.5, in which the
blue edges denote the Intra-relations and the red edges denote
Inter-relations. Two virtual nodes, Da and Db, are created
to reduce the relation space. Then is trivial to transform the
HBRG model to a BN model, where the probabilities and
CPTs are pre-specified according to the statistical learning
data. Fig.6 (a) shows the risk analysis at the static layer for
rAMS, in which the joint probabilities are shown in the table.
As an example, Fig.6 (b) shows the CPT maintained by node
‘LOG PRV’. For rAMS, the static layer analysis shows there
is only a 25.7% chance of rAMS at risk.

TABLE III
RISK ANALYSIS FOR RAMS USING HBRG

Node Risk Layer
S1 Size.Total Static Layer
S2 Size.Data Static Layer
S3 Size.Application Static Layer
S4 Permision.RECEIVE BOOT COMPLETE Static Layer
S5 Permision.RECEIVE SMS Static Layer
S6 Permision.SEND SMS Static Layer
S6 Permision.ACCESS NETWORK STATE Static Layer
S7 Permision.CHANGE NETWORK STATE Static Layer
S8 Permision.INTERNET Static Layer
S9 Permision.SYSTEM TOOLS Static Layer
S10 Permision.WRITE EXTERNAL STORAGE Static Layer
S11 Permision.ACCESS COARSE LOCATION Static Layer
S12 SMS Access Static Layer
S13 Storage Static Layer
S14 SYStem Version Static Layer
S15 IMEI Static Layer
S16 Install time Static Layer
S17 Location Static Layer
S18 Log reading Static Layer
S19 Static Risks Static Layer
D1 Repackage Dynamic Layer
D2 HTTP Request Dynamic Layer
D3 HTTP Response Dynamic Layer
D4 Send SMS Dynamic Layer
D5 Receives SMS Dynamic Layer
D6 Block SMS Dynamic Layer
D7 Dynamic risks Dynamic Layer
Da Collecting Privacy Dynamic/Behavior
Db System Leakage Dynamic/Behavior
B1 Costs Behavior Layer
B2 Connection third part Server Behavior Layer
B3 Collection Privacy Behavior Layer
B4 System Leakage Behavior Layer
B5 Behavior risks Behavior Layer

Similarly, based on HBRG, the app probability that rAMS
is in risk was found to be 88.5% at dynamic layer and 46% at
behavior layer. Fig. 7 shows the overall risk of rAMS is 77.7%
and the risk score is 2.325(2 [2.0� 3.0]), which means rAMS
is considered to be at the severe risk level.

In practice, if a risk occurred, it is possible to analyse the
possible contributory causes and determine out-system causal
effects as discussed in above sections.

VI. SUMMARY AND FUTURE WORK

This paper proposed a HBRG model as a risk evaluation
framework in Android mobile systems. The HBRG can pro-
vide users with a friendly risk evaluation framework, which
is able to show users where the potential causes of risks

exist. It will lead users to select apps with lower risk and
help to know how secure their apps or systems are. It is also
possible that this model will allow people to well understand
the potential risks in their system and create an incentive for
developer to create lower-risk apps that do not contain invasive
ad networks and avoid over-requesting permissions. This study
is not the last word on the question of how to best present
risk information, but future work will continue to investigate
hidden risk mitigation and propagation in Android systems.

9

Storage

SMS Access

Location

Install time

IMEI

System version

Total
Application

Data
Cache

Si
ze

BROADCAST_SMS
CONNECTIVITY_CHANGE

ACCESS_COARSE_LOCATION

RECEIVE_BOOT_COMPLETE
RECEIVE_SMS

SEND_SMS
ACCESS_NETWORK_STATE

CHANGE_NETWORK_STATE
INTERNET

WAKE_LOCK
WRITE_EXTERNAL_STORAGE

READ_PHONE_STATE
COST_MONEY

SYSTEM_TOOLS

Pe
rm

iss
io

n

Repackage Send SMS

Receives SMS BLOCK SMS

Regularly connect third-part
Server

Costs Collecting Privacy

System Leakage

HTTP Request

HTTP Response

Log reading

Behavior risks

Dynamic risks

Static risks

Overall Risks

Static analysis

Dynamic analysis

Behavior analysis

Intra-relation Inter-relation Cross-relation

Fig. 4. Risks analysis for rAMS using HBRG

10

!"#$%&$'(%#)*"

!"#'$&$'(%#)*"

+$*,,&$'(%#)*"

-.

-/

-0

1/

1.

10

12

13

4/.

45

46

47

1%

4/6

4/3

4/2

4/0

4/8

4/7

4/

4.

40

43

42

48

4/94/9

4//4//
4/5

18

15 16

-2

-3

1:

-%;%<)*$=>%?'$

1?"%@)A=>%?'$

4#%#)A=>%?'$

B#*@=$),C="*D'

E*$@%(=$),C="*D'

F),C&,A*$'

Fig. 5. HBRG model for rAMS

RECEIVE_SMS
true
false

13.0
87.0

AS_NET_STATE
true
false

16.0
84.0

SEND_SMS
true
false

11.0
89.0

SYSTEM_TOOL
true
false

21.0
79.0

W_E_STORAGE
true
false

32.0
68.0

SYS_TOOL
true
false

10.0
90.0

SMS_ASSESS
true
false

10.8
89.2

IMEI
true
false

1.90
98.1

SYS_VER
true
false

33.0
67.0

INS_TIME
true
false

1.90
98.1

INS_TIME
true
false

10.0
90.0

ACCESS_C_LOC
true
false

28.0
72.0

STORAGE
true
false

13.2
86.8

LOG_PRV
true
false

76.6
23.4

STATIC_RISK
true
false

25.4
74.6

(a) Risks analysis at Static Layer for rAMS (b) CPT at node LOG PRV

Fig. 6. Risks analysis on Static Layer for rAMS

Fig. 7. Risks analysis on Static Layer for rAMS

11

REFERENCES

[1] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating
Android anti-malware against transformation attacks, in Proc. ACM
ASIACCS , pp.329-334, May 2013,

[2] Vaibhav Rastogi, Yan Chen, Xuxian Jiang, “Catch Me If You Can:
Evaluating Android Anti-Malware Against Transformation Attacks”,
IEEE Transactions on Information Forensics and Security, vol.9, no.1,
pp.99-108, Jan. 2014.

[3] Xuxian Jiang, “ An Evaluation of the Application (”App”) Verification
Service in Android 4.2”, http://www.cs.ncsu.edu/faculty/jiang/appverify/,
available on 04 Nov, 2015.

[4] Yajin Zhou, Xuxian Jiang, “Dissecting Android Malware: Characteriza-
tion and Evolution”, IEEE Symposium on Security and Privacy, pp.95-
109, 2012.

[5] Poolsappasit, N., Rolla, MO, USA ; Dewri, R. ; Ray, I., “Dynamic
Security Risk Management Using Bayesian Attack Graphs”, IEEE
Transactions on Dependable and Secure Computing, vol.9, no.1, pp.61-
74, Jan. 2012.

[6] Yu Liu and Hong Man, “Network Vulnerability Assessment Using
Bayesian Networks”,Proceedings of the SPIE, vol.5812, pp.61-71, 2005.

[7] D Wu, D. L. Olson, John Birge. “Operational Research in Risk Man-
agement”, Computers & Operations Research, vol.39, no.4, pp.751-752,
2012.

[8] D Wu, David L. Olson, John R. Birge. “Introduction to Special Issue
on Enterprise risk Management in Operations”, International Journal of
Production Economics, vol.134, no.1, pp.1-2, 2011.

[9] Haiying Tu, Allanach, J., Singh, Satnam, Pattipati, K.R., “Information
integration via hierarchical and hybrid bayesian networks”, IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans,
vol.36, no.1, pp.19-33, Jan. 2007.

[10] Luis M. de Campos, Juan M. Fernndez-Luna, Juan F. Huete, “A Layered
Bayesian Network Model for Document Retrieval”, LNCS Advances in
Information Retrieval, vol.2291, pp.169-182, 2002.

[11] Desheng Dash Wu, “Selling to the Socially Interactive Consumer: Order
More or Less?”, IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol.45, no.3, pp.399-410, 2015.

[12] D. Wu, C. Luo, D. Olso. “Efficiency Evaluation for Supply Chains Using
Maximin Decision Support”, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol.44, no.8, pp.1088-1097, 2014.

[13] Panagiotis Andriotis, George Oikonomou, Theo Tryfonas, and Shancang
Li, “Highlighting Relationships of a Smartphones Social Ecosystem in
Potentially Large Investigations”, IEEE Transactions on Cybernetics,
(DOI: 10.1109/TCYB.2015.2454733), 2015.

[14] Shancang Li, George Oikonomou, Theo Tryfonas, Thomas Chen, L
Xu, “A Distributed Consensus Algorithm for Decision Making in
Service-Oriented Internet of Things”, IEEE Transactions on Industrial
Informatics, vol.10, no.2, pp.1461-1468, 2014.

[15] Suleyman Kondakci, “Network security risk assessment using Bayesian
belief networks”, IEEE International Conference on Social Computing
and Privacy Security Risk and Trust, pp.952-960, 2010.

[16] Jian Li, Xiaolong Li, Bin Yang, Xingming Sun, “Segmentation-based
Image Copy-move Forgery Detection Scheme,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 3, pp. 507-518, Mar.
2015.

[17] Zhihua Xia, Xinhui Wang, Xingming Sun, and Qian Wang, “A Secure
and Dynamic Multi-keyword Ranked Search Scheme over Encrypted
Cloud Data,” IEEE Transactions on Parallel and Distributed Systems,
(DOI: 10.1109/TPDS.2015.2401003), 2015.

[18] Bin Gu, Victor S. Sheng, Keng Yeow Tay, Walter Romano, and Shuo
Li, “Incremental Support Vector Learning for Ordinal Regression,”
IEEE Transactions on Neural Networks and Learning Systems, (DOI:
10.1109/TNNLS.2014.2342533), 2015.

[19] L Xu, H. Wu, S. Li, “Internet of Things in Industries: A Survey ”,
IEEE Transactions on Industrial Informatics, vol.10, no.4, pp.2233-
2243, 2015.

[20] InfoWord, “A clear-eyed guide to Android’s actual security risks”,
online: http://www.infoworld.com/d/mobile-technology/clear-eyed-
guide-androids-actual-security-risks-232034?page=0,2, available on 25
Jun, 2014.

[21] Cenzic Inc, “Application vulnerability trends report”, online:
http://www.cenzic.com/downloads/), available on Aug 2014.

[22] Rr1. E. Chin, A.P. Felt, V. Sekar, and D. Wagner, Measuring User
Confidence in Smartphone Security and Privacy, Proc. Eighth Symp.
Usable Privacy and Security (SOUPS 12), pp. 1-16, 2012.

[23] A.P. Felt, K. Greenwood, and D. Wagner, “The Effectiveness of Ap-
plication Permissions, Proc. Second USENIX Conf. Web Applica- tion
Development (WebApps 11), 2011.

[24] P.G. Kelley, S. Consolvo, L.F. Cranor, J. Jung, N. Sadeh, and D.
Wetherall, “A Conundrum of Permissions: Installing Applications on
an Android Smartphone, Proc. Workshop Usable Security (USEC 12),
Feb. 2012.

[25] Christopher S. Gates, Jing Chen, Ninghui Li, and Robert W. Proctor,
“Effective Risk Communication for Android Apps”, IEEE Transactions
on Dependable and Secure Computing, vol.11, no.3, pp.252-266, May.
2014.

[26] Mark Guido, Jared Ondricek, Justin Grover, David Wilburn, Thanh
Nguyen, Andrew Hunt, “Automated identification of installed malicious
Android applications”, Digital Investigation, vol.10, pp.96-104, 2013.

[27] Xuxian Jiang, “An Evaluation of the Application (”App”)
Verification Service in Android 4.2”, online available,
http://www.csc.ncsu.edu/faculty/jiang/appverify/, Jul. 2014.

[28] Naser Peiravian and Xingquan Zhu, “Machine Learning for Android
Malware Detection Using Permission and API Calls”, IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI),
Herndon, pp.300-305, Nov. 2013.

[29] Erika Chin Adrienne Porter Felt Kate Greenwood David Wagner,
“Analyzing Inter-Application Communication in Android”, Proceedings
of the 9th international conference on Mobile systems, applications, and
services, pp.239-252, New York, 2011.

[30] Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
Android: Versatile protection for smartphones”, in Proc. 26th Annual
ACM Computer Security Applications Conference, Austin, USA, pp.347-
356, 2010.

[31] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets”, in Proc. 19th Annual Network and Distributed System Security
Symposium, San Diego, USA, 2012.

[32] Yajin Zhou, Xuxian Jiang , “Dissecting Android Malware: Character-
ization and Evolution”, Proceedings of the 33rd IEEE Symposium on
Security and Privacy (Oakland 2012), pp.95-109, San Francisco, CA,
May 2012.

[33] Zhaohui Wang, Ryan Johnson, Rahul Murmuria, and Angelos Stavrou,
“Exposing Security Risks for Commercial Mobile Devices”, LNCS
Computer Network Security, vol.7531, pp.3-21, 2012.

[34] Guanglei Liu and Chuanyi Ji, “Resilience of All-Optical Network
Architectures under In-Band Crosstalk Attacks: A Graphical Model
Approach”, IEEE Journal on Selected Areas in Communications, vol.25,
no.4, pp.1-16, Aprl. 2007.

Shancang Li received the B.Sc. and M.Sc. degrees
in mechanics engineering and the Ph.D. degree in
computer science from Xi‘an Jiaotong University,
Xi‘an, China, in 2001, 2004, and 2008, respectively.

He is currently a lecturer with school of comput-
ing and a member of the Institute for Informatics and
Digital Innovation, Edinburgh Napier University, Ed-
inburgh, Scotland, UK. His current research interests
include digital forensics for emerging technologies,
network security, cyber attacks, wireless sensor net-
works, the Internet of Things, and the lightweight

cryptography in resource constrained devices. He is a member of the British
Computer Society.

12

Theo Tryfonas received the B.Sc. degree in
computer science from the University of Crete,
Rethymno, Greece, in 1996, and the M.Sc. degree
in information systems and the Ph.D. degree in in-
formatics from the Athens University of Economics,
Athens, Greece, in 1998 and 2003, respectively.

He is an expert in cybersecurity and systems en-
gineering with research work focused on assurance
and resilience of critical infrastructures including
transportation, utilities, healthcare, and government.
He researched in particular on systems for maritime

safety and port security, public transport security, protection of Unmanned
Aerial Vehicles, telecom revenue and system assurance, information security
risk analysis as well as assisted in the investigation of computer crimes.
His current research interests include modeling cyber-capability with system
dynamics and applications of game theory to the analysis of cyber attacks.

Gordon Russell Gordon Russell was born in Scot-
land, UK, in 1969. He received his BSc in computing
and electronics in 1990, and his PhD in computing
in 1995, both from the University of Strathclyde,
Scotland.

In 1995, he joined the computing department
of Edinburgh Napier University as a Lecturer, and
became a Senior Lecturer in 2008. As part of his
role, he leads the computer systems and network-
ing subject group, and is a member of the cyber
security research group. His research specialisms

include computer security and networking, with particular interests in cloud
technology and computer forensics. Dr Russell is a member of the British
Computer Society and the Institute of Engineering and Technology, as well
as being a fellow of the Higher Education Academy.

Panagiotis Andriotis received the B.Sc. degree in
Mathematics from the National Kapodistrian Univer-
sity of Athens, Greece, in 2006, and the M.Sc. (with
distinction) and Ph.D. degrees in Computer Science
from the University of Bristol, U.K., in 2011 and
2016, respectively.

He is currently a Research Associate with the
University College London, U.K. At the past he
was with the banking sector and also a Mathematics
Teacher in Greece. His current research interests
include digital forensics with a special focus on the

Android OS, data mining, data hiding, steganalysis, social network analysis,
and human aspects of information security, privacy, and trust.

