
1

Is the Zero-Wait Policy Always Optimum for
Information Freshness (Peak Age) or Throughput?

Basel Barakat, Simeon Keates, Ian Wassell and Kamran Arshad.

Abstract—The Zero-Wait (ZW) policy is widely held to achieve
maximum information ‘freshness’, i.e., to achieve minimum Peak
Age (PA) and maximum throughput, for real-time Internet-of-
Things applications. In this paper, it was shown through a series
of experiments that the ZW policy is not necessarily the optimum
policy for freshness nor throughput in all real-world scenarios.
Firstly, the effect of delay on the ZW policy was shown on a LAN.
Afterward, the server was located on the Internet, and it was
shown that the ZW policy incurred a two-fold PA and throughput
performance degradation compared with continuously sending
status updates.

Index Terms—Real-Time Systems, Status Update, Information
Freshness, Peak Age of information, Zero-Wait Policy.

I. INTRODUCTION

ONE of the main challenges for designing Internet of
Things (IoT) applications is how to deliver information

in a sufficiently timely manner. Outdated information may
interfere with the operation of critical applications, potentially
endangering lives, such as in telehealth or autonomous cars.
Recently, a new metric was proposed to measure and quantify
the information ‘freshness’, i.e., Age of Information (AoI) [1].
More recently, the Peak Age (PA) metric, which is defined
as the mean maximum AoI of a piece of information, was
proposed as a more tangible (utilizable) metric [2], [3]. Both
metrics look at the information freshness from the destination’s
perspective, hence are reactive measures. They do not deter-
mine a proactive policy for the sending of the information to
ensure maximum freshness. This raises the following question:
"How can we ensure that we are delivering the ‘freshest’
possible information from a time-varying process?".

Several policies have been proposed in the literature to
achieve minimum PA, i.e., maximum information ‘freshness’,
such as [1]-[5]. One widely used policy is the Zero-Wait (ZW)
policy, which minimizes the PA by eliminating the waiting
(queuing) time, as explained in section II. The ZW policy
is often referred to as a logical mechanism for minimizing
the PA and maximizing the number of communicated status
updates per time, i.e., maximizing the throughput [5]. Recently
it was shown that the ZW policy is unable to achieve optimum
PA performance when the status update service time changes

B. Barakat is with the Faculty of Engineering and Science, University of
Greenwich, ME4 4TB, Kent, UK. (email:bb141@gre.ac.uk)

S. Keates is with the School of Engineering and the Built Environment,
Edinburgh Napier University, Edinburgh, UK. (email:S.Keates@napier.ac.uk)

I. Wassell is with the Computer Laboratory, University of Cambridge, CB3
0FD, UK.(email:ijw24@cam.ac.uk)

K. Arshad is with the Department of Electrical Engineering, Ajman
University of Science & Technology, Ajman 346, United Arab Emirates (e-
mail: k.arshad@ajman.ac.ae)

Manuscript submitted July 31, 2018; resubmitted December 4, 2018;
revisited February 6, 2019; accepted March 6, 2019.

continuously between long and short duration [5]. However,
it can be argued that such scenario only reflects one special
case and might not be the best characterization of the majority
of real-time IoT applications. Nevertheless, the ZW policy
is still considered as an optimum throughput policy [5].
Furthermore, most of the published work to minimize PA is
purely theoretical without proof-of-concept. Additionally, no
previous work investigated the performance of ZW in a cloud
scenario (in which the conventional theoretical models fail to
evaluate the PA).

In this paper, the outcomes of an experimental study are
presented to evaluate the PA and inter-arrival time (INT) of the
ZW policy. Two scenarios are proposed, tested and evaluated.
The first scenario (S1) has both the source (client) and the
destination (server) of the status updates located in the same
Local Area Network (LAN). In the second scenario (S2),
the server is located in the cloud, i.e., hosted by a remote
service provider. Firstly, the effect of delay on the ZW policy
was investigated by deriving an expression for the ZW PA
performance. Afterward, the threshold delay value in which
the ZW fails to deliver the freshest information is presented
in section III. The PA and INT performance of the ZW policy
are compared with those achieved by the Continuous Updating
(CU) policy. The experiment system model is presented in
section IV.

The PA and INT performance of the ZW policy was
significantly different in the two given scenarios, as shown in
section V. In S1, the ZW PA performance clearly outperformed
the CU policy, as predicted. However, the ZW PA performance
in S2 is much worse than in S1. In particular, the CU
policy outperformed the ZW in terms of PA and INT by a
factor of two in S2. The results of statistical tests are also
presented to validate the results. Section III presents the cases
in which the ZW policy fails to achieve the most optimum
PA performance. Finally, conclusions and proposals for future
work are presented in section VI.

II. PEAK AGE AND ZERO-WAIT POLICY

The PA metric is defined as the mean maximum elapsed
time since the latest status update received, was generated [2].
Let In be the period between generating two consecutive status
updates, i.e., INT. Tn is the status update delay time (T), i.e.,
the time between the generation and completion of processing
update n or Tn = E{1/µn +Wn}. Hence, Pn is given as [3]

Pn = E{In + Tn} = E
{

1
λn
+

1
µn
+Wn

}
, ∀n. (1)

2

Where E{.} is the expectation operator, 1/µn is the status
service time and Wn is the waiting time. In other words, the
PA is equal to the inter-arrival duration plus the delay time.

It can be argued that ZW can minimize PA and In by
achieving a zero-waiting time i.e., Wn = 0, ∀n [3]. In the ZW
policy, the clients (e.g., sensors) may generate status updates
only when the server is idle, the ZW system model is shown
in Fig. 1. Therefore, the clients must wait for the server to
send an Acknowledgment (ACK) for each status update [5].
Hence, In depends on the delay time of both the status update
and the ACK (i.e., T ACK

n). Fig. 2 illustrates the PA and INT
of the ZW policy. The ZW model proposed in [3], [6] was
based on the assumption that the client would receive the ACK
and generate a new status update instantaneously. However,
this assumption does not represent many IoT applications
accurately and holds true only in some special cases, such
as point to point communication.

Client

Queue

Server

ACK

Fig. 1. Zero-Wait policy network as in [5], where the client sends the updates
through the queue to the server, and the server sends an ACK to the client.

n n+1

!" #"$%& !"'(

Source

Destination

)"

*"

+"

,"

+"'(

,"'(

Fig. 2. An illustration of Peak Age for the Zero-Wait policy. Where tn is the
time at which update n was generated, rn is the time update n was received,
T ACK
n is n ACK delay time, I represents the inter-arrival time and Pn is

the Peak Age of update n.

III. WHEN IS THE ZERO-WAIT NOT OPTIMAL?

To understand the limitations of ZW policy, it is important
to explicitly identify the scenarios that the ZW is not optimal.
Hence, it is useful to have a closed form expression for the
ZW PA, as (1) represents the general case of PA. For the ZW,
the waiting time is equal to zero,i.e., Wn = 0, ∀n. On the other
hand, the inter-arrival times depend on the service time for
the update and the corresponding ACK delay time (T ACK). In
particular, the inter-arrival time for ZW,

IZWn = Sn + T ACK
n , (2)

therefore,

PZW
n = 2Tn + T ACK

n =
2
µn
+ T ACK

n . (3)

Therefore, using (1) and (3) the ZW would achieve a longer
PA than a general status updating policy (P) if,

P < PZW i f f E{w +
1
µ
+

1
λ
} < E{

2
µ
+ T ACK } (4)

P < PZW i f f E{w +
1
λ
−

1
µ
} < E{T ACK }. (5)

Consider an M/M/1 queue where the client updates inter-
arrival time follows an exponential inter-arrival time; its wait-
ing time is w = λ

µ(µ−λ) . If the waiting time is substituted in
(5), the condition can be written as,

PM/M/1 < PZW i f f E{
ρ

µ − λ
+

1
λ
−

1
µ
} < E{T ACK }. (6)

For M/D/1 queue the w =
ρ

2µ(1−ρ) the threshold is

PM/D/1 < PZW i f f E{
ρ

2µ(1 − ρ)
+

1
λ
−

1
µ
} < E{T ACK }. (7)

From (6) and (7), the threshold ACK delay time τ (in which
the ZW would be not optimal) for an M/M/1 and M/D/1 queue
with a µ = 1 is shown in Fig. 3. In other words, if the ACK
delay time exceeds the τ value the ZW would fail to deliver
the information as fresh as a general updating policy.

Fig. 3. The threshold ACK delay time (τ) in which updating using the PA
of M/M/1 and M/D/1 queues with µ = 100 is shorter than ZW.

Moreover, the ZW would fail to deliver the freshest infor-
mation if the updates were sent through the internet. One the
other hand, in several IoT applications the sensors transmit
status updates to a server located in the cloud and which is
provided by a service provider. Indeed, several IoT service
providers rely on Infrastructure as a Service (IaaS) to support
the sensors. As an example, Amazon provides Amazon Web
Services (AWS), Google offers the Google Cloud Platform and
Microsoft provides Microsoft Azure Platform. Thus, for such
IoT networks, it is of paramount importance to consider the
effect of ACK delay time on the PA performance. However,
the proposed condition proposed in (5) is only applicable to
a closed queue, and it is not applicable to the cloud scenario.
Hence, to understand the limitation of the ZW in the cloud it
must be evaluated experimentally.

3

IV. EXPERIMENT SETUP

In this paper, the performance of the ZW policy in terms of
PA and throughput is obtained using a Server-Client network
topology for the following two scenarios: S1 and S2. In
S1, both server and client were placed on the same LAN
while in S2 a virtual server was used that was located on
an IaaS provider and the client was located at the University
of Greenwich, Medway campus.

The status updates were sent from the client to the server.
Each update contained the instantaneous time-stamp represent-
ing the time of the generation of the update (t). Subsequently,
the client only generated a new update and time-stamp after
receiving an ACK from the server. A flowchart demonstrating
the client function is presented in Fig. 4. In S1, a delay
was added in the server to investigate the effect of the
service time on the PA and throughput performance. The delay
followed an exponential distribution. After the delay period,
the server sent an ACK back to the client. In S2, as soon
as the server received an update, it sent an ACK back to the
client with no added delay to investigate the effect of delays
arising from using a cloud-based server rather than a LAN
one. Subsequently, in both scenarios, the server recorded the
corresponding instantaneous time-stamp (r) for each update
received and logged both the time of the generation and the
receipt of the update.

Start
Generate

Time-
stamp

Send
Status

Update

No

Yes

Wait for
ACK

ACK
Received ?

Fig. 4. Zero-Wait client flowchart. The client generates a time-stamp, sends
it, then waits for an ACK and then it will repeat this procedure.

The PA and INT performance of the ZW policy was
compared with the CU policy. The CU policy is a very simple
policy in which the client generates a time-stamp and sends
it to the server. Instantly after that, it would generate the next
time-stamp. Therefore, the inter-arrival time depends on how
quickly the client can generate and transmit an update (or
on the client’s processor clock frequency). In the experiments
conducted, in S1 λ ≈ µ.

The PA and delay time of the nth status update can be
calculated as follows:

Pn = rn+1 − tn and Tn = rn − tn (8)

The PA vector is defined as δ = (P1, P2,, PN−1), where N
is the total number of status updates sent. Similarly, the inter-
arrival time vector is i = (I1, I2, ..., IN−1). The experimental
PA (P) and the value of INT, as calculated in experiments,
denoted by I, is equal to the median value of the i vector, can
be calculated as

P = δ̃ and I = ĩ (9)

where δ̃ is the median value of the vector δ.

V. ZERO-WAIT PEAK AGE AND THROUGHPUT
PERFORMANCE

Initially, the effect of the ACK delay on the ZW PA
performance was investigated. Fig. 5, presents the PA of ZW

and M/M/1 with µ = 100. As proposed in (6), the PA of
ZW exceed the PA of the M/M/1 queue when the ACK delay
approaches the τ value. Also, it is observed that the results
validate the expression derived in (3).

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

Pe
ak

 A
ge

 (m
s)

ACK Delay Time (ms)

Zero Wait Policy
M/M/1 ⍴ = 0.5

"

Fig. 5. ZW and M/M/1 queue, PA performance (P) versus ACK delay time.

The ZW policy shows significantly different performance
for the two given scenarios. Fig. 6 and Fig. 7 show P and I
respectively for 1000 updates in S1 compared with the mean
service time. In S1, the Zero-Wait policy outperformed the CU
policy in terms of both P and I, as shown in Fig. 6 and Fig. 7.
In particular, the CU PA is 60 times longer than the ZW policy
for all the service times that were tested. This considerable
difference was due to the exponentially increasing waiting time
of the CU policy. On the other hand, the ZW policy achieved
a low waiting time. The median INT I, as a function of mean
service time, was similar for both policies as shown in Fig. 7.

0.21 0.41 0.61 0.81 1.01 1.21 1.41 1.61 1.81 2.01
13.40

26.42

39.50

52.85

65.76

78.80

91.78

104.59

117.68

130.28

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1M
ed

ia
n

Pe
ak

 A
ge

 (
P

) (
s)

Mean Service Time 1⁄μ (s)

ZW PA

CU PA

Fig. 6. ZW and CU, PA performance (P) versus service time for S1. The
PA value for both policies increase with the service time, however, its value
for CU is notably higher.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ed

ia
n

In
te

r-a
rri

va
l

Ti
m

e
(I)

(s
)

Mean Service Time 1⁄μ (s)

ZW INT

CU INT

Fig. 7. ZW and CU, INT performance (I) versus service time for S1. The
inter-arrival time performance of both policies is approximately equal.

4

The results shown in Fig. 6 and 7 are plausible and in
agreement with the literature [2], [3]. In particular, the ZW
policy achieved low PA and INT times. Thus, in S1, it can
be assumed that the ACK service time is short enough to be
neglected in comparison with the waiting and service time.

However, in S2 (when the server is in the cloud) the ACK
delay time has a noticeable impact on the PA and INT times.
In particular, the argument that the ZW policy is optimum
in terms of PA and throughput does not hold true in S2, as
shown in Fig. 8. Here both the P and I for the ZW policy are
approximately twice that of the CU policy. Consequently, in
this scenario, it can be argued that CU would outperform ZW
in terms of both PA and throughput.

239.70

401.70

162.78

324.92

0

50

100

150

200

250

300

350

400

Ti
m

e
(m

s)

CU PA ZW PA CU INT ZW INT

Fig. 8. ZW and CU, performance when the server is located in the cloud
(S2). The CU policy outperforms the ZW policy for both the PA and the INT.

To validate the experimental results, a statistical analysis
(presented in Table 1) was performed. An analysis was con-
ducted on the delay time to make sure that the performance
was not unduly affected by the fluctuations in the Internet load,
which would affect the data propagation time. The analysis
results are shown in Table I. It is observed that the difference in
the T between the two policies is negligible (less than 0.1 ms).
It can also be observed from the measures of the variance of
T for both policies that the number of updates communicated
was sufficient to mitigate for any Internet load fluctuations.
Consequently, it is noted that the fluctuations in the T did not
have a major effect on the performance of the policies.

TABLE I
STATISTICAL ANALYSIS OF THE SECOND SCENARIO RESULTS FOR DELAY

TIME T , PEAK AGE δ AND INTER-ARRIVAL TIME i

Parameter T δ i
Percentile CU ZW CU ZW CU ZW
10% (ms) 76.57 76.64 237.70 398.30 160.80 321.50
25% (ms) 76.62 76.69 238.30 399.80 161.30 322.90

50%
(Median) (ms) 76.85 76.75 239.70 401.70 162.80 324.90

75% (ms) 77.23 76.93 241.40 403.30 164.60 326.40
90% (ms) 77.49 77.23 242.50 405.10 165.40 328.30

Mean (ms) 77.02 76.86 240.20 408.60 163.20 331.70
SD 0.002 0.000 0.004 0.127 0.004 0.127

The median PA value, i.e., P, differs significantly between
the ZW and CU policies. As presented in Fig. 8, the P for
the CU and ZW policies are approximately 240 (ms) and 402
(ms) respectively. Consequently, it can be claimed that the CU
outperforms ZW in terms of P performance. Furthermore, the

TABLE II
T TEST: TWO-SAMPLE ASSUMING UNEQUAL VARIANCES

Parameter δ i
Policy CU ZW CU ZW
Mean 0.24 0.41 0.16 0.33

Variance 0.000 0.016 0.000 0.016
t Stat -41.86 -41.91

P(T<=t) one-tail <1% <1%
t Critical one-tail 1.646 1.646

median INT duration i.e., I, of the CU is approximately half
that of the ZW policy. Thus, it can be seen clearly that CU
outperforms ZW by a factor of two for this scenario.

To investigate the difference in the performance of both
policies, a Student t-test was performed on the PA and INT
results i.e., δ and i, for both policies. As shown in Table I,
the variance of the policies differed notably, hence the t-test
with unequal variances was used [7]. We assumed that the
hypothesis was that CU outperforms the ZW policy (in both
PA and INT) is H1 hypothesis and the null hypothesis, H0
is that there is no difference between the policies. Table II
shows the null hypothesis H0 can be rejected at the 1% level.
Consequently, it can be argued that the ZW policy resulted
in statistically significantly higher PA and INT times. Hence
it is asserted that the ZW policy PA and INT performance in
the cloud-based server scenario does not outperform the CU
policy. Indeed, the CU policy outperforms it significantly and
thus, the ZW policy is not optimum in this scenario.

VI. CONCLUSIONS

In this paper, it has been shown that the ZW policy is not
always the optimum policy for either PA or throughput. The
results presented contradict the current paradigm that ZW is
always the optimum throughput policy. The next step is either
to investigate policies that are able to outperform the CU in
the cloud server scenario or to investigate policies that are able
to outperform the ZW in the LAN scenario. The ultimate goal
is to provide guidance on which policy is the most likely to
be optimum for a range of known scenarios. In the case of
time-critical applications, such as telehealth applications, such
choices could carry significant consequences.

REFERENCES

[1] S. Kaul, R. Yates and M. Gruteser, "Real-time status: How often should
one update?," 2012 Proceedings IEEE INFOCOM, Orlando, FL, 2012,
pp. 2731-2735.

[2] M. Costa, M. Codreanu and A. Ephremides, "On the Age of Information
in Status Update Systems With Packet Management," in IEEE Transac-
tions on Information Theory, vol. 62, no. 4, April 2016 , pp. 1897-1910.

[3] L. Huang and E. Modiano, "Optimizing age-of-information in a multi-
class queueing system," 2015 IEEE International Symposium on Infor-
mation Theory (ISIT), Hong Kong, 2015, pp. 1681-1685.

[4] S. K. Kaul, R. D. Yates and M. Gruteser, "Status updates through queues,"
2012 46th Annual Conference on Information Sciences and Systems
(CISS), Princeton, NJ, 2012, pp. 1-6.

[5] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal and N. B. Shroff,
"Update or Wait: How to Keep Your Data Fresh," in IEEE Transactions
on Information Theory, vol. 63, no. 11, Nov. 2017, pp. 7492-7508.

[6] R. D. Yates, "Lazy is timely: Status updates by an energy harvesting
source," 2015 IEEE International Symposium on Information Theory
(ISIT), Hong Kong, 2015, pp. 3008-3012.

[7] S. S. Sawilowsky, ’The Probable Difference Between Two Means When
σ 1 2 , σ 2 2,’ vol. 1, no. 2, 2002, pp. 461-472.

