Demo paper: AGADE

Scalability of ontology based agent simulations

Thomas Farrenkopf!, Michael Guckert!, Neil Urquhart?
and Simon Wells?

! KITE - Kompetenzzentrum fiir Informationstechnologie,
Technische Hochschule Mittelhessen, Germany
{thomas.farrenkopf, michael.guckert}@mnd.thm.de
2 School of Computing, Edinburgh Napier University, Scotland
{n.urquhart, s.wells}@napier.ac.uk

Abstract. Simulations of real world scenarios often require consider-
ably large numbers of agents. With increasing level of detail and resolu-
tion in the underlying models machine limitations both in the aspect of
memory and computing power are reached. Even more when additional
features like reasoning mechanisms of semantic technologies are used as
in the AGADE framework where we have extended the principal BDI
paradigm with an interface to OWL ontologies. We have observed that
the extensive use of ontologies results in high memory consumption due
to the large number of String objects used in the reasoning process and
caching mechanisms of the OWL API. We address this issue by running
simulations in a highly distributed environment. In this paper we demon-
strate how we enabled AGADE to be run in such an environment and
the necessary architectural modifications. Furthermore, we discuss the
potential size of simulations that can be run in such a setting.

Keywords: Multi-Agent System, BDI, OWL Ontology, Market Simu-
lation, Distributed Simulation

1 Introduction

Using OWL ontologies [7] in a usual single instance setting memory consumption
is not a serious issue. But using ontologies in multi-agent simulations where
each agent is equipped with its own ontology memory usage increases linearly
due to the extensive use of String objects used in the reasoning process and
caching mechanisms of the OWL API [4]. As AGADE keeps representations of
social relations in the ontology the effect is enforced with increasing number of
agents and consequently rising numbers of mutual connections. AGADE uses
ontologies to flexibly model world knowledge in a BDI architecture. See [1] for
detailed examples of how ontologies can be integrated into the BDI concept in
general and the Jadex [6] framework in particular. Although, distributed agent
platforms have long been available, but the support of crucial elements of multi-
agent simulations e.g. schedulers for managing time, synchronising agents and



data collection is often not available [5]. Therefore AGADE been implemented in
a non distributed environment at first and has then been extended. Multi-agent
simulations can now be run in a network and offer full support of a model of
time and elaborate communication mechanisms so that scenarios can be scaled
up and run in the network or not.

2 Main purpose

AGADE is a BDI based framework that supports the development of dynamic
business scenarios with individual access to semantic reasoning for each agent [2].
AGADE agents are equipped with their own inference engine (reasoner) and pri-
vate ontology using the OWL API [4]. The ontology allows a flexible architecture
as aspects of the agent may be expressed in the rules rather than static code [1].
We distinguish between the abstract domain layer (ADL) containing general
knowledge and the specific domain layer (SDL) shared by all agents and the
individual domain layer (IDL) specific to each agent. AGADE allows scaling
up the amount of agents participating in a simulation scenario using a direct-
ing agent that orchestrates the set of agents and controls the flow of time and
communication. Each round (time step) of the simulation is structured into four
phases (calculation, socialisation, action, control) with defined functionality and
integration into the BDI paradigm.

3 Demonstration

AGADE implements a Java RMI (Remote Method Invocation) based communi-
cation mechanism with which the agents can send and receive messages. RMI is
directly based on socket communication and is therefore more efficient than al-
ternative technologies like Web Services or CORBA. We ran various benchmarks
comparing the alternatives with results similar to what has been published be-
fore (e.g. [3]). Consequently, we decided to use RMI which is currently still the
best technology for running distributed tasks in the context of multi-threaded
applications in Java.

On an abstract level AGADE knows two different kinds of BDI agents: a
single director type agent that acts as controlling instance of the simulation
and performs central administrative tasks (e.g. controlling simulation rounds by
triggering each agent), and a participant type agent that acts in the simulation
(i.e. consumer or seller). The communication between participating agents and
between participating agent and director agent uses RMI based services both in
distributed and in non-distributed mode ensuring a unified architecture for the
framework.

The typical RMI flow of execution starts with an initial registration of objects
in the RMI registry of a server using a unique name which makes the objects
available for client access. Clients can now query the lookup service of the RMI
registry to get a reference to the objects. The client can then invoke appropriately
published methods. In our AGADE implementation the role of server and client



are interchangeable i.e. each node in the network can act as client and as server
thus allowing two way communication with asynchronous method invocation (see
Fig. 1). AGADE implements a YellowPages service in each node where agents
and their node are published to be used in inter-agent communication. Note that
two nodes in the network do not necessarily have to be connected through yellow
page entries as they may not have to communicate at all during the simulation.
But at least one distinguished central node must be aware of all other nodes
and can then act as a broker and can enable communication if requested. Once
communication between two nodes has been established mutual entries are made
in the yellow pages. This lazy set up of communication information reduces
initial messaging efforts and provides direct links only if requested. The director
agent and the GUI communication with the user obviously have to be placed on
the central node as well. The delivery process of inter-agent communication is
therefore implemented as follows:

— query local yellow pages on client-side and deliver message directly if both
address information is available

— request broker on central node to provide necessary information and initiate
communication

Central Node

<<component>>
YellowPage

RMIService YellowPage

L

<<component>> H <<component>>
I

<<component>> <component>>
RMIService YellowPage

Node

Fig.1. AGADE nodes model.

In the inter-client communication scenario, the client is querying the server
for the client-address and will then deliver the message to the specific client di-
rectly. RMI message mechanisms use Java serialisation to deliver objects. OWL
components are represented as Strings and can therefore undergo the standard
RMI serialisation process. Thus the content of each agent message is eventu-
ally a serialised instance of String. The typical message content size of an
OWL concept is about 850 Byte = 0.0068 Mbit. Theoretically, a typical network
bandwidth of 1000MBit/s allows sending ~ 147,058 messages simultaneously



with respect to the content size without limitations neglecting connection over-
head usage. To reduce the amount of network traffic between clients, we further
compress the message content by using gzip which reduces the size by roughly
50 percent.

This architecture allows to scale up simulations considerably. We successfully
tested the robustness of this architecture by simulating a homogeneous crowd
of buyers acting in a mobile phone market where we have run 100,000 agents
over 100 rounds on 6 clients each connected with 100 MBits network speed and
equipped with various hardware settings (RAM/CPU).

4 Conclusion

In this demonstration paper, we have presented an improved version of AGADE,
where round-based multi-agent simulations with elaborate agent behaviour mod-
elled in OWL can be scaled up considerably. We addressed the high memory con-
sumption of the OWL reasoning process by running simulations in a distributed
environment where full support of crucial characteristics of MAS (e.g. well de-
fined phases, common model of time,...) are guaranteed. As a result, AGADE
can now handle simulation scenarios with a much higher number of agents in a
single architecture that can easily be configured to be run on a single machine
or in a network with distributed nodes.

References

1. Farrenkopf, T., Guckert, M., Hoffmann, B., Urquhart, N.: Multiagent System Tech-
nologies: 12th German Conference, MATES 2014, Stuttgart, Germany, September
23-25, 2014. Proceedings, chap. AGADE How Individual Guidance Leads to Group
Behaviour and How This Can Be Simulated, pp. 234-250. Springer International
Publishing, Cham (2014), http://dx.doi.org/10.1007/978-3-319-11584-9_16

2. Farrenkopf, T., Guckert, M., Urquhart, N.: Advances in Practical Applications of
Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection: 13th In-
ternational Conference, PAAMS 2015, Salamanca, Spain, June 3-4, 2015, Proceed-
ings, chap. AGADE Using Personal Preferences and World Knowledge to Model
Agent Behaviour, pp. 93-106. Springer International Publishing, Cham (2015),
http://dx.doi.org/10.1007/978-3-319-18944-4_8

3. Gray, N.A.B.: Comparison of web services, java-rmi, and corba service implementa-
tion. In: Fifth Australasian Workshop on Software and System Architectures (2004)

4. Horridge, M., Bechhofer, S.: The owl api: A java api for owl ontologies. Semantic
Web 2(1), 11-21 (2011)

5. Mengistu, D., Troger, P., Lundberg, L., Davidsson, P.: Scalability in distributed
multi-agent based simulations: The jade case. Future Generation Communication
and Networking Symposia, International Conference on 5, 93-99 (2008)

6. Pokahr, A., Braubach, L., Jander, K.: The jadex project: Programming model. In:
Ganzha, M., Jain, L.C. (eds.) Multiagent Systems and Applications, Intelligent Sys-
tems Reference Library, vol. 45, pp. 21-53. Springer Berlin Heidelberg (2013)

7. W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (11 December 2012), available at http://www.w3.org/TR/
2012/REC-owl2-overview-20121211/


http://dx.doi.org/10.1007/978-3-319-11584-9_16
http://dx.doi.org/10.1007/978-3-319-18944-4_8
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

	Demo paper: AGADE

