
A Novel Heuristic Generator for JSSP Using a Tree-Based
Representation of Dispatching Rules

Kevin Sim
Institute for Informatics and Digital Innovation

Edinburgh Napier University
Edinburgh, Scotland, UK
k.sim@napier.ac.uk

Emma Hart
Institute for Informatics and Digital Innovation

Edinburgh Napier University
Edinburgh, Scotland, UK
e.hart@napier.ac.uk

ABSTRACT
A previously described hyper-heuristic framework named
NELLI is adapted for the classic Job Shop Scheduling Prob-
lem (JSSP) and used to find ensembles of reusable heuris-
tics that cooperate to cover the heuristic search space. A
new heuristic generator is incorporated that creates novel
heuristics, formulated as GP-like tree structures, by com-
bining problem specific information formulated as a large set
of terminal nodes. The new heuristics operate as dynamic
dispatching rules, selecting at each iteration the highest pri-
ority operation available for scheduling. The new system
is trained and tested on a large set of 1400 newly generated
problem instances, using both makespan and weighted tardi-
ness as fitness metrics. Results on unseen test instances show
that relatively small ensembles of evolved heuristics signifi-
cantly outperform any individual one size fits all heuristic
and a greedy selection from a large set of existing rules.

Categories and Subject Descriptors
Computing methodologies [Machine learning]: Machine
learning algorithms

Keywords
Hyper-heuristics; Artificial Immune Systems

1. INTRODUCTION
1

Amongst the most successful approaches for solving the
widely studied Job Shop Scheduling Problem (JSSP) are
metaheuristics that provide excellent results when tailored
to the problem instances that they are used to solve. How-
ever such approaches are often infeasible in real world ap-
plications due to their cost in terms of computational effort
and the need to adapt the techniques to the constraints im-
posed by different job-shop environments. It is therefore of-
ten the case that simple dispatching rules are used to solve
real world scheduling problems due to their simplicity, un-
derstandability, and speed of execution. Recent approaches
using Genetic Programming techniques to automate the de-
sign of dispatching rules have shown that automated ap-
proaches can outperform human designed equivalents [3]

1This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive
Version was published in GECCO 2015, http://dx.doi.org/
10.1145/2739482.2764697.

We adapt a previously developed hyper-heuristic frame-
work dubbed NELLI, described fully in [2], that has been
used to generate ensembles of simple heuristics that collec-
tively exhibit good performance across very large problem
sets in the domains of bin packing and job shop scheduling.
One of the core elements of NELLI is a heuristic genera-
tor that in NELLI’s previous application to the JSSP [1]
created new ‘’heuristics’ by combining existing, well-known
dispatching rules into variable length sequences that were
iteratively applied to a problem instance until all operations
were scheduled. Although published results improve on the
performance of the component rules, performance is limited
by the size and diversity of the fixed set of hand crafted
dispatching rules. Two improvements to the heuristic gen-
erator are presented that increase the number and diversity
of available rules that are sequenced by NELLI into heuris-
tics. Firstly, the set of pre-defined rules is increased in size to
incorporate additional and more dynamic information about
a schedule. Secondly, by using a tree-based rule represen-
tation, typical to that used in Genetic Programming, we
are able to generate completely novel composite dispatching
rules. The new system is trained and tested on a large set
of JSSP generated as described in the following section.

2. PROBLEM DESCRIPTION
Two variations of JSSP are investigated, denoted using

the conventional α|β|γ notation as Jm||Cmax and Jm||
∑
ωiTi

where the term Jm translates as a Job Shop environment
and the last term corresponds to the objective (Makespan
(Cmax) and Summed Weighted Tardiness (SWT) respec-
tively). Due to the lack of any widely used large sets of
benchmark problems, two new sets of problems are gener-
ated comprising of 500 and 200 instances that are solved
separately using the two different objective fitness functions
effectively making 1400 problems in total. 1000 are used
during training and the remaining 400 are used to evalu-
ate the evolved heuristics. Problems are generated using
all combinations of machines m and jobs n where m ∈
[5, 10, 15, 20, 25] and n ∈ [10, 25, 50, 100]. For each of the
20 parameter combinations 25 problems are generated for
the training set and 10 for the test set. Each problem is
considered using both fitness metrics, doubling the number
of training and test instances. The processing time for an
operation is selected randomly from a uniform distribution
using pi,j,k = U [m/2,m2] Release dates are drawn randomly
from one of two distributions depending on the number of
jobs in the problem instance. For instances with less than 50
jobs ri = U [0, 20] and for those with 50 or more ri = U [0, 40]

http://dx.doi.org/10.1145/2739482.2764697
http://dx.doi.org/10.1145/2739482.2764697

Due dates and job weights, used by the SWT objective, are
added using di = ri +c×

∑n
j=1 pij with c is fixed at 1.3. and

by the 4:2:1 rule respectively. The later is informed by re-
search suggesting that 20% of a company’s customers are the
most important (weight 4), 60% of medium importance(2)
and 20% less important (1).

This process results in 1400 problems containing a total
of 64750 jobs and 971250 operations.

3. HEURISTIC GENERATOR
The main focus of the paper is to improve the diversity of

the dispatching rules (DR) that are combined into heuristics
(linear sequences of rules) and used by NELLI. We increase
the set of 13 DRs used previously to 28 and implement these
as Terminal Nodes that can be further combined into GP-
like tree structure enabling substantially greater numbers of
novel composite rules to be generated. The 28 rules, not de-
scribed here due to space limitations, include simple static
and dynamic DR taken from the literature that return in-
formation about an operation, the associated job or the as-
sociated machine. Also included are a number of composite
rules such as Job Apparent Tardiness Cost (JATC) which
encapsulates features of both the weighted shortest process-
ing time and minimum slack rules and has been shown to
outperform its component parts [4] for the SWT objective.

The function set includes the mathematical operators +,-
,X,/, abs,max,exp and one 3 operand conditional operator
which evaluates the second operand if the first is less than
or equal to zero otherwise the third operand is evaluated.

Each of the 28 terminal nodes may be used in isolation or
may be combined into a tree structure along with nodes from
the function set and used as a DR. Using NELLI we generate
sets of heuristics (strings of rules) that cooperate to cover
the training problem sets. Rules are initialised using the
standard GP ramped half and half method and combined
into sequences by NELLI as described in[2, 1]. The rules
that make up the heuristics sustained by NELLI act as the
GP population. Each iteration a new heuristic is generated
and added to the system by either randomly initialisation or
by mutating an existing heuristic. Where a heuristic is mu-
tated (rules added, mutated or removed) existing rules may
undergo mutation. Mutation of an existing rule is conducted
using a replace operator that replaces a random branch with
a newly initialised sub-tree. The system is evaluated using
the following empirical investigation.

4. EXPERIMENTS AND RESULTS
For each of the 2 objectives considered the maximum

number of heuristics allowed in the system was limited to
1, 2, 4, 8, 16, 32, 64, 128, 256, Unrestricted NELLI is run 30
times on the corresponding 500 training problems for each
scenario for a total of 5000 iterations. In addition, each in-
dividual Terminal node was executed 30 times on each of
the 1400 problems in order to allow a comparison between
evolved rules and their component parts. Figures 1a and 1b
show results on the unseen test problems for Cmax and SWT
respectively. The first box on each plot shows the single Ter-
minal Node (DR) that performed best on the corresponding
test problems. The next box labelled GSR shows the to-
tal summed objective (Cmax or SWT) achieved following a
greedy selection of the best component DR for each indi-
vidual problem instance. These 2 boxes allow a comparison

between evolved rules and the component rules from which
they are created.

The plots labelled 1 . . . 256H show how NELLI performs
when the number of heuristics allowed in the system is re-
stricted. The plots labelled UH and SR UH allow a compar-
ison between heuristics composed of evolved DR and those
composed of only single Terminal Node DRs respectively for
the case where the number of heuristics is unrestricted.

67000

68000

69000

70000

71000

72000

-J
R

P
T

G
 S

R

1
 H

2
 H

4
 H

8
 H

1
6
 H

3
2
 H

6
4
 H

1
2
8
 H

2
5
6
 H

U
 H

S
R

 U
H

T
o
ta

l
S
u
m

m
ed

 M
a
k
es

p
a
n

(a) Makespan test problems

3.1

3.15

3.2

3.25

3.3

3.35

-J
A

T
C

G
 S

R

1
H

2
H

4
H

8
H

16
 H

32
 H

64
 H

12
8

H

25
6

H

U
 H

S
R

 U
HT

ot
al

 S
u
m

m
ed

 W
ei

gh
te

d
 T

ar
d
in

es
s (X 10

6
)

(b) Tardiness test problems

Figure 1: Results on the unseen test problems using Cmax

and SWT as objectives

5. CONCLUSIONS AND FUTURE WORK
The paper has described a heuristic generator that uses

a tree based representation in conjunction with a large set
of terminal nodes to evolve new dispatching rules that are
combined using NELLI into ensembles of linear sequences of
rules defined as heuristics. Results on 1400 new problems,
from the JSSP domain, using two objective functions show
that the new system outperforms dispatching rules from the
literature, and improves upon the previous application that
created heuristics composed only of sequences of existing
dispatching rules. The reusable heuristic ensembles gener-
ated can be used to provide quick and high-quality solutions
to unseen problems or to provide a set of diverse solutions as
seeds for metaheuristic approaches. We show that by com-
bining relatively weak heuristics into an ensemble the system
performance is greater than the sum of its parts.

6. REFERENCES
[1] K. Sim and E. Hart. An improved immune inspired

hyper-heuristic for combinatorial optimisation
problems. In GECCO ’14: Proceeding of the sixteenth
annual conference on Genetic and evolutionary
computation conference, 2014.

[2] K. Sim, E. Hart, and B. Paechter. A lifelong learning
hyper-heuristic method for bin packing. Evolutionary
Computation Journal, In Press, January 2014.

[3] J. C. Tay and N. B. Ho. Evolving dispatching rules
using genetic programming for solving multi-objective
flexible job-shop problems. Computers & Industrial
Engineering, 54(3):453–473, 2008.

[4] A. P. J. Vepsalainen and T. E. Morton. Priority rules
for job shops with weighted tardiness costs.
Management Science, 33(8):1035–1047, 1987.

	Introduction
	Problem Description
	Heuristic Generator
	Experiments and Results
	Conclusions and Future Work
	References

