
Algorithm Selection Using Deep Learning Without Feature
Extraction

Mohamad Alissa
Department of Computer Science,
Edinburgh Napier University

M.Alissa@napier.ac.uk

Kevin Sim
Department of Computer Science,
Edinburgh Napier University

K.Sim@napier.ac.uk

Emma Hart
Department of Computer Science,
Edinburgh Napier University

E.Hart@napier.ac.uk

ABSTRACT
We propose a novel technique for algorithm-selection which adopts
a deep-learning approach, specifically a Recurrent-Neural Network
with Long-Short-Term-Memory (RNN-LSTM). In contrast to the
majority of work in algorithm-selection, the approach does not
need any features to be extracted from the data but instead relies
on the temporal data sequence as input. A large case-study in
the domain of 1-d bin packing is undertaken in which instances
can be solved by one of four heuristics. We first evolve a large
set of new problem instances that each have a clear "best solver"
in terms of the heuristics considered. An RNN-LSTM is trained
directly using the sequence data describing each instance to predict
the best-performing heuristic. Experiments conducted on small
and large problem instances with item sizes generated from two
different probability distributions are shown to achieve between 7%
to 11% improvement over the single best solver (SBS) (i.e. the single
heuristic that achieves the best performance over the instance set)
and 0% to 2% lower than the virtual best solver (VBS), i.e the perfect
mapping.

CCS CONCEPTS
• Theory of computation→ Packing and covering problems;
• Computing methodologies→ Machine learning;

KEYWORDS
Deep Learning, Recurrent Neural Network, Algorithm Selection.
ACM Reference Format:
Mohamad Alissa, Kevin Sim, and Emma Hart. 2019. Algorithm Selection Us-
ing Deep Learning Without Feature Extraction. In Genetic and Evolutionary
Computation Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Re-
public. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.
3321845

1 INTRODUCTION
Exploiting the complementary performance of different algorithms
on sets of diverse problem instances drives the goal of algorithm
selection. Determining the best performing algorithm for an unseen
instance has been shown to be a complex problem that has attracted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321845

much interest from researchers over the decades. Originally for-
mulated by Rice [22] the per-instance algorithm selection problem
(ASP) can be defined as:

"Given a set I of instances of a problem P , a set A = A1, ...An of
algorithms for P and a metric m : A × I → R that measures the
performance of any algorithm Aj ∈ A on instance set I , construct
a selector S that maps any problem instance i ∈ I to an algorithm
S(i) ∈ A such that the overall performance of S on I is optimal
according to metricm."[12]

A common approach to tackling the ASP is to treat it as a classifi-
cation problemwhere each instance is described in terms of a vector
of features and an instance’s class indicates the best performing
algorithm. Although there have been a number of successful studies
using this method, the task of identifying features that correlate to
algorithm performance is far from trivial, is time consuming and
not always intuitive.

In this paper we investigate the ASP without the need to define
features. Our novel approach relies solely on temporal patterns
explicitly encoded in the instances used. We train a Long Short
TermMemory Deep Learning model [8] to predict which of 4 simple
approximation algorithms will perform best on a subset of unseen
instances in the 1D-Bin Packing domain (BPP). Input to the model
is simply the ordered list of item-sizes that need to be packed, and
does not include any features derived a-priori from the data sets.

We test our approach on 4 large data sets, totalling 16,000 in-
stances, specifically evolved using an evolutionary algorithm for
the purpose of this study. Instances are evolved that elicit diverse
behaviour (in terms of performance) from four simple approxima-
tion algorithms, resulting in a set of instances that are disparate in
the performance space. Experimental results using our model are
extremely encouraging, achieving an accuracy of between 82.38%
and 95.75% on unseen instances. It should be noted that although
conducted on the 1D-BPP our method can easily be extended to any
discrete combinatorial problem where the sequence of items pre-
sented to the solver is fixed. Examples include packing, scheduling
and routing in industrial settings such as resource allocation.

The main contributions are summarised as follows:
■ The creation of new, large data sets of instances for the 1-D
BPP domain via an evolutionary approach in which each
instance is solved best by exactly one of four heuristic; these
data sets are available for other researchers working in the
field of ASP to compare approaches1

■ The development of a novel ASP approach using deep learn-
ing that is trained using only sequences of instance data and
does not require any features to be extracted from that data

1https://github.com/Kevin-Sim/BPP

https://doi.org/10.1145/3321707.3321845
https://doi.org/10.1145/3321707.3321845
https://doi.org/10.1145/3321707.3321845

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Mohamad Alissa, Kevin Sim, and Emma Hart

Figure 1: Schematic of the Algorithm Selection Problem [22]

2 RELATEDWORK
A schematic of the ASP is shown in Figure 1 [22]. In Rice’s definition:

■ The problem space P represents a potentially infinite sized
set of instances for the problem domain

■ The feature space F describes a set of characteristics derived
using feature extraction from P

■ The algorithm space A is the set of algorithms available for
the problem domain

■ The performance space Y maps each algorithm to a set of
performance metrics [28].

The objective is to identify a mapping between P and A that
maximises Y. For a finite set of problem instances I , a fixed set
of heuristics H and a single performance metric m, the Virtual
Best Solver (VBS) is defined as a perfect mapping between I and
H . The Single best solver (SBS) is the heuristic ∈ H that achieves
the best performance over I . A comprehensive review of different
approaches towards algorithm-selection can be found in a number
of survey papers in this active area of research [12, 14, 30]. Some
of the most relevant approaches are described here.

One of the most common approaches to ASP is to identify fea-
tures using expert knowledge, and then train machine-learning
methods to predict the best performing algorithm(s) for an instance
from its feature-profile [12]. However, identifying features that are
significant in determining performance is complex, usually requires
hand-crafting [10, 19, 20, 29], and often is not intuitive. Often the
approach must also be combined with a feature-reductionmethod to
simplify learning, e.g Principal Component Analysis (PCA) [17, 28],
and understand the correlations between features and algorithm
performance. An approach that tries to avoid having to hand-craft
good features was described in [25] who evolve the parameters
of a set of generic features of 1-d bin-packing problems that best
improve the performance of KNN classifier. A different type of ap-
proach was proposed by Ross et al. [23] that could be used for ASP
with constructive approaches to solution generation; rather than de-
riving features from the original description of an instance, features
were derived from the current instance state each time a heuristic
was applied. A learning classifier system XCS was used to map a
set of problem-states to specific heuristics. An ASP approach that
does not rely on explicit feature identification was proposed by Sim

et al. [26]. Here, a system continuously generates novel heuristics
which are maintained in an ensemble, and sample multiple problem
instances from the environment. Heuristics that "win" an instance
(perform best) are maintained. This was shown to rapidly produce
solutions and generalise over the problem space, but required a
greedy method of actually selecting between generated heuristics.

The majority of previous research just described uses classical
machine-learning algorithms such as K-Nearest Neighbour (KNN),
Wilson’s Learning Classifier System [32] (XCS) and Neural Net-
works (NN). Recently, deep-learning algorithms have gained some
traction in the ASP field due their ability to learn from extremely
large data sets in reasonable time. Mao et al. [18] proposed a heuris-
tics performance predictor using deep neural network trained on a
large set of instances of 1-d bin-packing problem using 16 features
as input. Their prediction system has achieved up to 72% validation
accuracy to select the best performing heuristic that can generate a
better quality bin packing solution. Although concerned with learn-
ing an optimisation method rather than algorithm-selection, Hu
et al. [9] used a deep reinforcement learning (a Pointer Network),
with 3D BPP to optimize the sequence of items to be packed into
the bin by choosing the sequence, orientation and empty maximal
space to pack cuboid shaped items. They claimed that their proposed
method has obtained about 5% improvement than well-designed
heuristic.

The approach proposed in this paper differs substantially from
the previous work just described in that it abandons the need to
derive features from a data set, circumventing the associated issues.
Furthermore, as far as we are aware, it provides the first example
of using a recurrent-neural network with long-short-term memory
as an algorithm-selection technique for data which has tempo-
ral characteristics. Although such networks have demonstrated
"ground-breaking performance on tasks as varied as image caption-
ing, language translation and handwriting recognition" [16], their
features have not been exploited within the ASP domain.

3 1-D BPP: HEURISTICS AND PROBLEM
INSTANCES

The objective of the one dimensional bin packing problem (BPP)
is to find a packing which minimises the number of containers, b,
of fixed capacity c required to accommodate a set of n items with
weights ωj : j ∈ {1 . . .n} falling in the range 1 ≤ ωj ≤ c,ωj ∈ Z
whilst enforcing the constraint that the sum of weights in any bin
does not exceed the bin capacity c . The lower and upper bounds on
b, (bl and bu) respectively, are given by Equation 1. Any heuristic
that does not return empty bins will produce, for a given problem
instance, p, a solution using bp bins where bl ≤ bp ≤ bu .

In this study we are concerned with predicting the best heuristic
for a problem instance based only on temporal information encoded
in the sequence of items that are presented to the solver. By using a
Recurrent Neural Network (RNN), we circumvent the requirement
to first identify features that are typically used to facilitate mapping
algorithm performance to problem instances. To allow us to achieve
this goal a set of heuristics with complimentary performances on
large instance sets is required.

It should be made clear that we address a specific variant of the
offline BPP. All items to be packed are known before packing starts

Algorithm Selection Using Deep Learning Without Feature Extraction GECCO ’19, July 13–17, 2019, Prague, Czech Republic

but the order that items are presented to the packing heuristics
is fixed and cannot change. There have been numerous studies
over the decades that have investigated the performance of simple
approximation algorithms for this variant of the BPP[2, 11]. These
algorithms consider each instance as a fixed order sequence of items,
only making a decision as to which bin to place each item into.
We select 4 simple approximation algorithms from the literature
specifically designed for this variation of the BPP [6].

– First Fit (FF): Places each item into the first feasible bin that
will accommodate it.

– Best Fit (BF): Places each item into the feasible bin that
minimises the residual space.

– Worst Fit (WF): Places each item into the feasible bin with
the most available space.

– Next Fit (NF): Places each item into the current bin.
For all the algorithms listed, if no feasible bin is available to

accommodate the next item then it is placed into a newly opened
bin. NF is different to the other 3 algorithms in that it only ever
considers the most recently opened bin. If an item cannot fit in
the current bin that bin is closed and removed from the problem.
The performance of an algorithm α on instance I is denoted by
A(I). OPT (I) is the optimal solution for that instance. The worst-
case performance ratio (WCPR) of an algorithm is defined as the
smallest real number r (A) > 1 such that A(I)

OPT (I) ≤ r (A) for all
possible instances. The WCPR of NF is known to be 2 [2] and it was
recently concluded after many theoretical studies that the WCPR
of FF and BF is 17

10 [3].

bl =

n∑
j=1

ωj ÷ c

 , bu = n (1)

There are many sets of benchmark problem instances available in
the literature. However, as noted in [30], while benchmark problems
are suitable for comparing different algorithms performances, they
are often unsuitable for investigating the ASP due to being similar in
structure and often tailored towards the abilities of specific solvers.
For illustration, consider the following: taking 5 well researched
data sets totalling 1370 instances from the literature [5, 24] we
find that if the problems are treated in the order that they are
published, FF is the dominant heuristic solving 955 instances better
than any of the other heuristics. BF wins on 414 instances and WF
wins on 1. The success of FF is due to the fact that many of the
published benchmarks are ordered using the best known solution
and hence FF simply recreates that solution. If the item orders are
randomised (we do this once only for interest) then BF, as expected,
becomes the Single Best Solver winning on 926 instances. FF wins
on 381, WF 61 and NF 2. Clearly using these relatively small sets of
benchmark problems would lead to dramatically unbalanced data
sets and hinder an investigation into the ASP.

In order to address this problem and create balanced data sets for
our investigation, we use an Evolutionary Algorithm (EA) to gener-
ate 4 data sets, each with 4000 instances and using the bounds and
distributions shown in Table 1. Each set of 4000 problem instances
comprises of 4 sub-classes of 1000 instances that are uniquely solved
best (according to Equation 2) by one of the four algorithms un-
der investigation. Algorithm 1 describes how each sub-class of

instances is generated. For each instance a population of candidate
sequences is initialised with nitems and weights randomly drawn
from the desired distribution. The EA then attempts to evolve the
order of items such that the performance of the target algorithm
αtarдet exceeds the performance of the other algorithms ∈ A

Table 1: Data set Generation Parameters. Bin Capacity is
fixed at 150

Data set nitems LowerBound - UpperBound Distribution D

DS1 120 [40-60] Gaussian
DS2 120 [20-100] Uniform
DS3 250 [40-60] Gaussian
DS4 250 [20-100] Uniform

Unlike in [1], who used a binary representation and evolved the
weights of items, we use an integer representation: a chromosome is
simply the sequence of nitems defining that instance. Item weights
are randomly initialised at the start, then do not change. Only the
order of items is evolved, preserving the desired weight distribution

Algorithm 1 EA Pseudo Code
Require: A = :The set of algorithms
Require: αtarдet = :The target algorithm
Require: Dtarдet = :The target distribution
Require: I = ∅ :The set of instances being evolved
Require: ninstances = : The number of instances to generate
Require: nitems = : The number of items in each instance
1: repeat
2: population← initialise(popSize , nitems , Dtarдet)
3: for i ← 1,maxIter do
4: parent1← select(population)
5: parent2← select(population)
6: child ← crossover(parent1, parent2)
7: child ← mutate(child)
8: childf itness ← evaluate(child)
9: population← replace(child)
10: end for
11: if evaluate(populationbest) > 0 then
12: I ← I + populationbest
13: end if
14: until |I | = ninstances
15: return I

In the pseudo-code shown, the target algorithm αtarдet is the
algorithm α ∈ A that we are attempting to evolve instances for,
such that the solution fitness (defined by Equation 2) using α is
better than the solutions produced by all the other algorithms ∈ A.
Dtarдet is the distribution from Table 1 that is used to initialise
the population (line 2). When using a Gaussian distribution, item
weights are generated using a Gaussian distribution with standard
deviation (ub − lb) ÷ 2 and mean lb + (ub − lb) ÷ 2. Items generated
with weightw < lb orw > ub are discarded. The lower and upper
bounds on item weights are given in Table 1. For each data set we
run Algorithm 1 once for each αtarдet ∈ A using ninstances= 1000

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Mohamad Alissa, Kevin Sim, and Emma Hart

resulting in 4 balanced data sets of 4000 instances where for each
data set 1000 instances are solved best by each α ∈ A

Fitness =
n∑
j=1
(
f illj

c
)k ÷ n (2)

Falkenauer’s performance metric defined by Equation 2 [5] is
used to gauge the quality of a solution produced by an individual
algorithm α ∈ A. In this study k is fixed at 2. C is the bin capacity
which is fixed at 150, f illj is the sum of the item sizes inbinj andn is
the number of bins used. The evaluation function used in Algorithm
1 assigns a score to each algorithm using Equation 2 and then orders
the algorithms from best to last α1..4. The fitness of a chromosome
is then evaluation = f it(αtarдet) − f it(α2). i.e. The fitness of
a chromosome turns positive when the target algorithm has the
best fitness on that instance. The population size is fixed at 500.
Tournament selection is used with a tournament size of 2. Crossover
is single point crossover applied with 99% probability and mutation
(applied with 2% probability) simply swaps the order of two items
in the chromosome. The child produced replaces the worst member
of the population if it has higher fitness. The algorithm is run for
maxIter = 1X106 iterations. At the end of that time the population
best is kept only if the target algorithm is the best performing
algorithm on that instance. Experiments were conducted on a High
Performance Cluster with 23 nodes each comprising 2 × Xeon
E5-2640v3 2.60GHz 8Core /16 Thread CPUs with 64gb 2133Mhz
Memory per node. Code was implemented in Java.

Each of the Figures 2 a-c shows the performance of all algorithms
on the subset of 1000 instances from DS2 identified in the caption
by the target class. In all cases the target algorithm significantly
outperforms the other algorithms. Figure 2d shows that for NF
the difference in performance between the target class and the
other algorithm appears less pronounced although it is still highly
significant (comparing BF and NF using a paired Wilcoxon Signed-
Rank Test gives a p − value of 2.2e−16). NF is known to have the
worst WCPR of all the algorithms investigated and the task of
evolving these instances required many more attempts than for the
other algorithms, taking around 3 times the computational effort
to find 1000 instances for each data set. Plots for the other data sets
show similar patterns but are omitted due to space limitations.

Figure 3 shows the performance of all algorithms on the full set
of 4000 instances in DS2. Best Fit is the Single Best Solver across
all 4000 instances (this is the same for the other data sets). The plot
labeled VBS shows the Virtual Best Solver i.e. the performance of the
Oracle that greedily selects the best algorithm for each instance. The
objective for the ASP is to achieve the same performance as the VBS.
To further illustrate the diversity in performance on the evolved
instances Figure 4 shows the performance of each algorithm on DS2
reduced from 4 dimensional performance space to 2 dimensions
using PCA.

Clearly we have succeeded in generating a set of instances that
cover the performance space from the perspective of the algorithms
and metric investigated. Figure 5 emphasises this further showing
a Principal Component Analysis plot of the performance of each
algorithm on the full set of 16,000 instances reduced from 4 to 2
dimensions. BF and FF are the closest in terms of their eigenvectors
but are clearly still disparate. NF is isolated as the worst performing

(a) αtarдet = First Fit (b) αtarдet = Best Fit

(c) αtarдet = Worst Fit (d) αtarдet = Next Fit

Figure 2: Each plot shows how the 4 heuristics perform
on the sub-class of 1000 instances evolved for each target
heuristic (DS2 120 items U[20, 100])

0.5

0.6

0.7

0.8

0.9

1.0

Heuristic

F
itn
e
ss

FF BF WF NF VBS

Figure 3: DS2 Performance

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●●

●

●
●

● ●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

−0.04

−0.02

0.00

0.02

0.04

−0.03 −0.02 −0.01 0.00 0.01 0.02
PC1 (43.35%)

P
C

2
 (

3
7

.3
2

%
) ● BF

FF

NF

WF

Figure 4: PCA plot of the performance of all heuristics on
all 4,000 problem instance from DS2

Algorithm Selection Using Deep Learning Without Feature Extraction GECCO ’19, July 13–17, 2019, Prague, Czech Republic

heuristic — as expected due to its poor WCPR. If we shuffle the
orders of instances to destroy the evolved sequences and replot with
PCA (Figure 6) it it clear that there is now no identifying structure
apparent in the plot that a selection method might exploit. On the
randomised instances, BF wins for 10875 instances, FF 4586, WF
539 and NF fails to win on any instance.

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●
●

● ●

●

●
●

●

●

● ●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●●

●●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●
●

●

●

●

● ●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●
●●

●●

● ●

●

●●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ● ●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●●

● ●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●
●

●

●

●
●

●

●

●●

●● ●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
● ●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

−0.02

−0.01

0.00

0.01

0.02

0.03

−0.02 −0.01 0.00 0.01
PC1 (44.51%)

P
C

2
 (

3
3

.6
2

%
) ● BF

FF

NF

WF

Figure 5: PCA plot of the performance of all heuristics on
all 16,000 evolved problem instances

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

● ●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
● ●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●●

●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●
●

●

●

●

●
● ●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●
● ●

●●

●●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

−0.050

−0.025

0.000

0.025

−0.02 −0.01 0.00 0.01 0.02
PC1 (67.17%)

P
C

2
 (

2
3

.4
5

%
)

● BF

FF

WF

Figure 6: PCA plot of the performance of all heuristics on all
16,000 instances after the ordering of items is randomised

4 A DEEP LEARNING MODEL FOR
ALGORITHM SELECTION

Conventional Machine Learning techniques used for the ASP con-
sider vectors of features with little consideration to the order that
features are presented. Candidate features typically describe spa-
tial or statistical characteristics, identified for the problem domain
while temporal information can be overlooked (although it could
be argued that some temporal information is implicit in those ap-
proaches that dynamically calculate problem state and use this to

select heuristics [23, 25]). We argue that for the algorithms inves-
tigated, that are restricted to packing items in the order that they
are presented, it is crucial to consider information explicit in the
ordering as the dominant factor affecting the performance of differ-
ent solvers. Deep Learning has achieved ground breaking results in
applications where the input is formatted as time-series data or in
domains where sequences have specific orderings but without any
explicit notion of time [16]. Examples including video and image
recognition, natural language processing, music generation and
speech recognition [7, 21, 27]

The benefit of algorithm selection relies on complementary per-
formances between algorithms over large sets of problem instances
for a given metric. Section 3 highlights that benchmark instances,
or randomly generated instances, are largely unbalanced in terms
of the relative performance they elicit in different algorithms. In
order to facilitate our investigation of algorithm selection using or-
dered data, we have generated balanced data sets that maximise the
complementary performance of a fixed set of algorithms. We have
shown that the order items are presented is crucial with respect to
the performance of different solvers. Here we use DL in an attempt
to map information encoded in these sequences that identifies the
best performing algorithm.

Out of curiosity, and without expectation, we conducted ex-
ploratory experiments with conventional ML techniques using only
the instance data as input — that is, the ordered list of item weights
was presented as input. We conducted a 10 fold cross validation on
DS4 using both the Multi Layer Perceptron (MLP) and the Random
Forest (RF) classifiers available in Weka [4] without altering any of
the default parameters. The RF achieved 67.55 % accuracy with a
Kappa statistic of 57.3% (explained in the next section). MLP was
equally successful, achieving 67.08% accuracy with Kappa = 56.1%.
Although better than expected, we hypothesise that a DL approach
that has been designed to work with sequential data should provide
more rigorous results.

We select a recurrent neural-network (RNN) as a machine learn-
ing method designed to learn from sequences of time series data.
RNNs are one of the two most common architectures described
under the umbrella term deep-learning (DL). They differ from Feed-
forward Neural Networks due to the presence of cyclic connections
from each layers’ output to the next layers input, with feedback
loops returning to the previous layer (Fig 7-a) [16, 31]. This struc-
ture prevents traditional back-propagation being applied since there
is not an end point where the back-propagation can stop. Instead,
Back Propagation Through Time (BPTT) is applied: the RNN struc-
ture is unfolded to several neural networks with certain time steps
and then the traditional back-propagation is applied to each one of
them (Fig 7-b) [31]. RNNs are specifically designed to learn from
time-series data where temporal information explicit in the order
of sequences is used to identify relationships between the data and
the expected outputs from the network.

In this study we use a specialised RNN known as a Long Short-
TermMemory (LSTM) [8] that has been shown to be highly efficient
and extremely effective in learning long-term dependencies from
sequences of ordered data. LSTMs incorporate additional gates
between neurons that can retain, retrieve and forget information
over long periods of time [7]. In the LSTM network, the classic
neurons in the hidden layer are replaced by memory blocks. Fig

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Mohamad Alissa, Kevin Sim, and Emma Hart

Figure 7: (a) a Simple RNN and (b) an example of unfolded
RNN with two time steps [16]

8 shows that the block’s input comes from the network through
the input node and the only outputs from the block to the rest
of the network emanate from the output gate multiplication. The
input and output gates multiply the input and output of the cell
respectively, while the forget gatemultiplies the cell’s previous state.
A more comprehensive description of the rapidly expanding field
of DL, which has many competing, but no prevalent architectures,
is outwith the scope of this study.

Figure 8: LSTMmemory block with one cell where the small
black circles are multiplications and the weighted connec-
tions from the cell to the gates are shown with dashed lines
[7]

5 EXPERIMENTS AND RESULTS
We use the Keras library2 implementation of an LSTM in “sequence-
to-one mode” where input is an ordered list of item weights and
output is a “one-hot” encoding using 4 bits to identify the best
heuristic (1000 = BF, 0100 = FF, 0010 = NF, 0001 = WF). Experiments
are conducted on Google Colab3 with Tensor Processing Unite
(TPU) run-time used to execute the experiments. A preliminary em-
pirical investigation was conducted to tune the LSTM architecture
2https://github.com/fchollet/keras
3https://colab.research.google.com/notebooks/welcome.ipynb

Table 2:MeanKappa values from experiments onDS1 toDS5
from the validation set

Data set Mean Kappa std Avg Learning Iteration
DS1 71.50% (+/- 6.33%) 251
DS2 86.54% (+/- 2.31%) 102
DS3 74.58% (+/- 4.77%) 451
DS4 93.79% (+/- 2.94%) 352
DS5 76.08% (+/- 2.63%) 337

and hyper-parameters. The "Adam" optimiser [13] was selected due
to its reported accuracy, speed and low memory requirements. We
undertook preliminary investigations using between one and four
LSTM layers. Batch sizes of between 8 and 128 were used, with
learning iterations varied between 100 and 700. Based on our find-
ings we selected an LSTM with 2 layers, each layer composed of 32
neurons. We applied a batch-size of 32 using the “Adam” Optimiser
with a learning rate of 0.001 and categorical cross-entropy used as
the loss function (since we have more than two classes). We used
300 learning iterations for DS1 and DS2 and 700 learning iterations
for DS3, DS4 and DS5 since the longer instances were found to
require more learning iterations.

We conduct independent experiments using DS1-4 to train and
test our LSTM models. A further experiment is carried out using
a data set composed of a mixture of instances taken from all 4
data sets (identified as DS5). We do this to investigate whether
our LSTM model can generalise across a mixed set of instances of
different lengths with itemweights drawn from different probability
distributions and bounds. DS5 contains 4000 instances with 1000
instances selected from each data set. For each data set 250 instances
were selected at random for each class (FF, BF,WF and NF), resulting
in a balanced data set containing equal numbers of instances from
each class and each distribution.

Each data set (DS1-5) was split into training (80%) and test (20%)
sets while maintaining the balance in size of each target class (each
test set has 800 instances where 200 are solved best by each algo-
rithm). The LSTM was trained using 10-fold cross validation using
10% of the training instances to verify each fold. The best model
from each experiment was then tested on the corresponding test
set comprising 800 unseen instances.

Table 2 shows results achieved on the validation sets used during
training. Results on DS2 and DS4 are better than on the other data
sets suggesting that correlations are easier to find in the data sets
comprised of item weights generated from a wider range of values
following a uniform distribution. It is well known that problems
with an average weight of C

3 are more difficult to solve [5] and
it is interesting that problems with those characteristics are more
difficult to classify. Kappa provides a measure of statistical agree-
ment between the predicted class and the actual class that takes
into consideration the probability that the model classifies correctly
by chance [15]. Kappa values >75% are considered to be a strong
indicator that the classifier’s performance is excellent; between 40%
to 75% is considered as fair to good; lower than 40% is understood
to be weak.

For each data set we select the best model (the model with the
highest Kappa statistic from the 10-fold validation) and use it to

Algorithm Selection Using Deep Learning Without Feature Extraction GECCO ’19, July 13–17, 2019, Prague, Czech Republic

predict the target class for the corresponding unseen test set. Table
3 shows results achieved on each test set.We report Kappa, accuracy
and precision as indicators of the LSTM’s predictive ability. The p-
values reported compare the range of fitness values achieved by the
predicted algorithm in a pairwise fashion to the fitness achieved by
the SBS and the VBS. Falkenauer’s performance metric (equation 2)
is used to evaluate solution quality and returns a value between 0
and 1. However, 1 is only achievable if all bins are filled to capacity
and for individual instances the fitness achieved by the VBS can be
as low as 0.5 (as is shown in Figure 3 for DS2). We therefore use a
Wilcoxon signed-rank test to evaluate significance in a pairwise
fashion for all comparisons of performance.

Table 3: Kappa, classification accuracy and average precision
values of the bestmodel in each experiment from the test set

Metric DS1 DS2 DS3 DS4 DS5
Kappa 76.5% 88.67% 77.83% 94.33% 77.83%

Accuracy 82.38% 91.5% 83.38% 95.75% 83.38%
Average precision 93% 97% 93% 99% 92%
P value with SBS 10−48 10−78 10−43 10−80 10−41

P value with VBS 10−7 0.044 2x10−6 0.31 3x10−6

We observe that the experiments on instances from DS2 and DS4
obtain better results than the experiments on instances from DS1
and DS3. It might be that the instances that are evolved with items
in the range [40-60] have fewer distinct item sizes than instances
generated with items in the range [20-100], regardless of the length
of the instances. It is interesting to note that for both distributions
the results on the longer instances exceed those reported on the
data sets with smaller numbers of items. We conjecture that the
longer instances provide the LSTM with more information, hence
increasing the ability to determine patterns in the item sequences.
Training the LSTM on the longer instances requires significantly
more learning iterations before themodels converge, but the trained
models from the experiments on DS3 and 4 with 250 items are more
accurate than the models trained on shorter instances with only
120 items and the same distribution (i.e. results on DS3 are more
accurate than DS1 and those for DS4 are more accurate than for
DS2). The results of the experiment conducted on the combined DS5
set shows intermediate results with accuracy between that achieved
on the experiments on instances with uniform distribution and
those with Gaussian distribution. This model is able to generalise
over instances sampled from all of the problem lengths and the
different weight distributions investigated without any apparent
loss of precision.

Table 4 presents confusion matrices extracted from the experi-
ments conducted on the test sets from DS4 and DS5. On DS4, 766
out of 800 test instances correctly classified (96%). In most other
cases (only 2 matrices are shown due to space limitations) the mod-
els were most frequently confused when attempting to classify the
sequences identified as being solved best by FF and BF. It is inter-
esting to note that these two algorithms are the closest in terms
of performance as is shown by the proximity of their eigenvectors
in Fig 5. Similarly, instances labeled as NF appear to be the easiest
to identify and correspondingly are the most isolated in the per-
formance space. It appears that the patterns shown by conducting

0.5

0.6

0.7

0.8

0.9

1.0

F
itn
es
s

FF BF WF NF VBS LSTM

Figure 9: Evaluating LSTM predictor VS Traditional heuris-
tics and VBS for DS1

a PCA analysis of the performance space are correlated with the
ability of LSTM to identify the best performing algorithm from the
raw instance sequences.

Table 4: The Confusion Matrix of the best model in experi-
ment on DS4 and DS5 from the testset

DS4 DS5
Heuristic BF FF NF WF BF FF NF WF

BF 194 4 0 2 160 36 0 4
FF 6 185 1 8 48 133 0 19
NF 0 0 196 4 0 0 198 2
WF 0 8 1 191 2 13 9 176

Figures 9 to 13 show the performance distributions achieved by
each of the target algorithms investigated, by the VBS and by our
LSTM selector, for each of the test sets DS[1-5]. For all experiments
the LSTM significantly improves on the SBS (BF is the SBS for all
data sets) and is close to the VBS (the perfect mapping) in some
cases. On DS4 a pairwise comparison of the performance of the
VBS and our LSTM returns a p-value of 0.31 indicating that there
is no significant difference between the two performance vectors.
Comparing the median performance of our LSTM predictor and the
SBS we achieve between 7% to 11% improvement which is between
0% to 2% less than the VBS.

We have used Falkenauer’s performance metric (Equation 2)
throughout this paper to assess the quality of individual solutions
as it provides a higher precision measure of performance than
simply using the number of bins. However, the overall objective
of the BPP is to minimise the number of bins used to pack a set
of items. Ultimately, the number of containers defines the cost of
any real-world solution. Table 5 shows the number of bins required
to pack all 800 test instances for each DS[1-5] and contrasts this
against the lowest possible number of bins used by the VBS and
the number of bins needed using the algorithms predicted by our
LSTM selector. The LSTM uses between 1.2% and 2.3% fewer bins
than the SBS and between 0.2% and 1.4% more than the VBS. On
DS4 we use over 1000 bins fewer than the SBS and only 238 (0.2%)
more than the VBS which uses 83,823 bins.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Mohamad Alissa, Kevin Sim, and Emma Hart

0.5

0.6

0.7

0.8

0.9

1.0

F
itn
es
s

FF BF WF NF VBS LSTM

Figure 10: Evaluating LSTM predictor VS Traditional heuris-
tics and VBS for DS2

0.5

0.6

0.7

0.8

0.9

1.0

F
itn
es
s

FF BF WF NF VBS LSTM

Figure 11: Evaluating LSTM predictor VS Traditional heuris-
tics and VBS for DS3

0.5

0.6

0.7

0.8

0.9

1.0

F
itn
es
s

FF BF WF NF VBS LSTM

Figure 12: Evaluating LSTM predictor VS Traditional heuris-
tics and VBS for DS4

Table 5: Total Bins required to pack instances in the test set

FF BF WF NF VBS LSTM

DS1 34815 34722 35357 38357 33439 33908
DS2 41494 41062 43031 47961 39929 40133
DS3 71839 71741 73312 79498 69638 70359
DS4 85677 85166 89435 100439 83823 84061
DS5 58536 58242 60345 66672 56772 57525

0.5

0.6

0.7

0.8

0.9

1.0

F
itn
es
s

FF BF WF NF VBS LSTM

Figure 13: Evaluating LSTM predictor VS Traditional heuris-
tics and VBS for DS5

6 CONCLUSION
We have described an approach to algorithm selection for combina-
torial problems that exhibit an ordering with respect to the elements
of the problem and how they should be dealt with. The approach
does not require the design and selection of features to describe an
instance. A deep-neural network (RNN-LSTSM) was trained using
the sequence of items representing an instance directly as input to
predict the best algorithm to solve the instance. The accuracy of
the model ranges from 82-96%, depending on the data set used. In
terms of performance, we show between 7% to 11% improvement
over the single best solver (SBS) when considering the data set a
whole, and 0% to 2% lower than the virtual best solver (VBS). As far
we aware, this is the first time that such an approach has been used,
and represents a significant step forward in algorithm selection,
where the difficulties associated with defining suitable features and
selecting from large sets of potential features are well understood.

The method was thoroughly evaluated on 4 different large data
sets, exhibiting different numbers of items and different distribu-
tions of item-sizes. To facilitate training, we evolved a new, large
database of instances, in which each instance has a distinct best-
solver. This provides a balanced data set to use in training. The
database is available as a resource to other researchers; moreover,
the method used to evolve these instances could be generalised to
evolve new instances for other classes of temporal problem, for
example job-shop scheduling.

Future work will focus on extending the approach to larger and
more complex sets of algorithms and to applying the method to
other domains that have a temporal nature such as flow-shop/job-
shop scheduling. We also intend to investigate if the method can
be adapted to online problems where continuous streams of items
are presented. By using a moving window, only examining the next
n items to be packed, our method may be able to adapt to a con-
tinuously changing environment. Ultimately, the goal is to extract
knowledge from the trained models in order to gain new insight
into the correlation between orderings and predicted results.

REFERENCES
[1] Ivan Amaya, José Carlos Ortiz-Bayliss, Santiago Enrique Conant-Pablos, Hugo

Terashima-Marín, and Carlos A Coello Coello. 2018. Tailoring Instances of the
1D Bin Packing Problem for Assessing Strengths and Weaknesses of Its Solvers.
In International Conference on Parallel Problem Solving from Nature. Springer,

Algorithm Selection Using Deep Learning Without Feature Extraction GECCO ’19, July 13–17, 2019, Prague, Czech Republic

373–384.
[2] Maxence Delorme, Manuel Iori, and Silvano Martello. 2016. Bin packing and

cutting stock problems: Mathematical models and exact algorithms. European
Journal of Operational Research 255, 1 (2016), 1 – 20. https://doi.org/10.1016/j.
ejor.2016.04.030

[3] György Dósa and Jiří Sgall. 2014. Optimal Analysis of Best Fit Bin Packing.
In Automata, Languages, and Programming, Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 429–441.

[4] Frank Eibe, A. Hall Mark, and H. Witten Ian. 2016. The WEKAWorkbench. Online
Appendix for DataMining: Practical Machine Learning Tools and Techniques (fourth
edition ed.). Morgan Kaufmann.

[5] Emanuel Falkenauer and Alain Delchambre. 1992. A genetic algorithm for bin
packing and line balancing. In Robotics and Automation, 1992. Proceedings., 1992
IEEE International Conference on. IEEE, 1186–1192.

[6] M. R. Garey and D. S. Johnson. 1981. Approximation Algorithms for Bin Packing
Problems: A Survey. Springer Vienna, Vienna, 147–172. https://doi.org/10.1007/
978-3-7091-2748-3_8

[7] Alex Graves. 2012. Supervised sequence labelling. In Supervised sequence labelling
with recurrent neural networks. Springer, 5–13.

[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[9] Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, and Yinghui Xu.
2017. Solving a new 3d bin packing problem with deep reinforcement learning
method. arXiv preprint arXiv:1708.05930 (2017).

[10] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2014. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence 206 (2014), 79 –
111.

[11] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. 1974. Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms. SIAM J.
Comput. 3, 4 (1974), 299–325.

[12] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. 2018.
Automated Algorithm Selection: Survey and Perspectives. Evolutionary compu-
tation (2018), 1–47.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Lars Kotthoff. 2016. Algorithm Selection for Combinatorial Search Problems: A
Survey. Springer International Publishing, Cham, 149–190. https://doi.org/10.
1007/978-3-319-50137-6_7

[15] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[16] Zachary C Lipton, John Berkowitz, and Charles Elkan. 2015. A critical review of
recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019
(2015).

[17] Eunice López-Camacho, Hugo Terashima-Marín, Gabriela Ochoa, and Santi-
ago Enrique Conant-Pablos. 2013. Understanding the structure of bin packing
problems through principal component analysis. International Journal of Produc-
tion Economics 145, 2 (2013), 488–499.

[18] Feng Mao, Edgar Blanco, Mingang Fu, Rohit Jain, Anurag Gupta, Sebastien
Mancel, Rong Yuan, Stephen Guo, Sai Kumar, and Yayang Tian. 2017. Small

Boxes Big Data: A Deep Learning Approach to Optimize Variable Sized Bin
Packing. In Third IEEE International Conference on Big Data Computing Service
and Applications, BigDataService 2017, Redwood City, CA, USA, April 6-9, 2017.
80–89.

[19] Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav
Shoham. 2004. Understanding Random SAT: Beyond the Clauses-to-Variables
Ratio. In Principles and Practice of Constraint Programming – CP 2004, Mark
Wallace (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 438–452.

[20] J. Pihera and N. Musliu. 2014. Application of Machine Learning to Algorithm
Selection for TSP. In 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence. 47–54. https://doi.org/10.1109/ICTAI.2014.18

[21] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. 2018. A Survey on
Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv.
51, 5, Article 92 (Sept. 2018), 36 pages. https://doi.org/10.1145/3234150

[22] John R Rice. 1976. The Algorithm Selection Problem. In Advances in Computers,
Morris Rubinoff and Marshall C. Yovits (Eds.). Vol. 15. Elsevier, 65 – 118.

[23] Peter Ross, Sonia Schulenburg, Javier G Marín-Bläzquez, and Emma Hart. 2002.
Hyper-heuristics: learning to combine simple heuristics in bin-packing prob-
lems. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 942–948.

[24] Armin Scholl, Robert Klein, and Christian Jurgens. 1997. Bison: A fast hybrid
procedure for exactly solving the one-dimensional bin packing problem. Com-
puters & Operations Research 24, 7 (1997), 627 – 645. https://doi.org/10.1016/
S0305-0548(96)00082-2

[25] Kevin Sim, Emma Hart, and Ben Paechter. 2012. A Hyper-heuristic Classifier for
One Dimensional Bin Packing Problems: Improving Classification Accuracy by
Attribute Evolution. In Proceedings of the 12th International Conference on Parallel
Problem Solving from Nature - Volume Part II (PPSN’12). Springer-Verlag, Berlin,
Heidelberg, 348–357. https://doi.org/10.1007/978-3-642-32964-7_35

[26] Kevin Sim, Emma Hart, and Ben Paechter. 2015. A lifelong learning hyper-
heuristic method for bin packing. Evolutionary computation 23, 1 (2015), 37–67.

[27] Sandro Skansi. 2018. Introduction to Deep Learning: From Logical Calculus to
Artificial Intelligence. Springer.

[28] Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis. 2014.
Towards objective measures of algorithm performance across instance space.
Computers & Operations Research 45 (2014), 12 – 24. https://doi.org/10.1016/j.cor.
2013.11.015

[29] Kate Smith-Miles and Jano van Hemert. 2011. Discovering the suitability of opti-
misation algorithms by learning from evolved instances. Annals of Mathematics
and Artificial Intelligence 61, 2 (01 Feb 2011), 87–104. https://doi.org/10.1007/
s10472-011-9230-5

[30] Kate A. Smith-Miles. 2009. Cross-disciplinary Perspectives on Meta-learning
for Algorithm Selection. ACM Comput. Surv. 41, 1, Article 6 (2009), 25 pages.
https://doi.org/10.1145/1456650.1456656

[31] Haohan Wang and Bhiksha Raj. 2017. On the origin of deep learning. arXiv
preprint arXiv:1702.07800 (2017).

[32] Stewart W. Wilson. 1995. Classifier Fitness Based on Accuracy. Evol. Comput. 3,
2 (June 1995), 149–175. https://doi.org/10.1162/evco.1995.3.2.149

https://doi.org/10.1016/j.ejor.2016.04.030
https://doi.org/10.1016/j.ejor.2016.04.030
https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1109/ICTAI.2014.18
https://doi.org/10.1145/3234150
https://doi.org/10.1016/S0305-0548(96)00082-2
https://doi.org/10.1016/S0305-0548(96)00082-2
https://doi.org/10.1007/978-3-642-32964-7_35
https://doi.org/10.1016/j.cor.2013.11.015
https://doi.org/10.1016/j.cor.2013.11.015
https://doi.org/10.1007/s10472-011-9230-5
https://doi.org/10.1007/s10472-011-9230-5
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1162/evco.1995.3.2.149

	Abstract
	1 Introduction
	2 Related Work
	3 1-D BPP: Heuristics and Problem Instances
	4 A Deep Learning Model for Algorithm Selection
	5 Experiments and Results
	6 Conclusion
	References

