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1 Introduction and Motivation

Many organisations are currently faced with an increasing requirement to reduce
their environmental footprint, either due to statutory requirements or to meet aspi-
rational goals set by their employees or customers. For organisations with a mo-
bile workforce this requirement can possibly be met, in part through the increased
use of public transport links by the mobile workforce. Public transport, which can
encompasses travel modes such as bus, tram and rail and may also include short
amounts of walking, has the advantages of low cost and low environmental foot-
print when compared to car based travel. However it suffers from the disadvantage
of potentially being slower for many journeys. Even within developed cities, pub-
lic transport will have limited coverage with some addresses being too far from the
nearest access point or too many individual journey legs being required. In addition,
a typical journey by public transport comprises a walking element to the nearest ac-
cess point, one or more legs by public transport, then an additional walk to the final
destination. There may also be short walks involved between individual legs of the
journey (e.g. from bus to tram) with the result that some journeys may be considered
infeasible by public transport. This paper builds upon the brief introduction made
by the authors in [1] and investigates whether an Evolutionary Algorithm can incor-
porate a mixture of travel modes in order to increase the range of solutions created.
Our aim is to explore how public transport links can be introduced within such a
mobile workforce scenario and to assess the impact on the objectives of minimis-
ing the employee time required to make the visits and the environmental impact of
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the solution. For the employer, there are two major considerations when examining
modal choice: environmental impact (CO2 emissions) and travel times. Within the
context of this paper we will examine the effect of making modal choice a decision
variable within a mobile workforce problem to provide schedules that meet time
window constraints but offer multiple solutions that trade-off time against carbon
emissions.

The remainder of this paper is organised as follows, section 2 presents a review
of previous relevant work, section 3 describes the problem instances being investi-
gated, the methodology used (an Evolutionary Algorithm) is described in section 4,
results are given in section 5 with conclusions in section 6.1

2 Previous Work

This paper brings together two strands of work — that of multi-modal Workforce
Routing and Scheduling Problems (WRSP) and vehicle routing to optimise emis-
sions. It extends previous work in bringing together the two issues, and treating the
problem as multi-objective in terms of meeting constraints, minimising time, and
minimising emissions. In addition, it addresses some issues prevalent in the liter-
ature with respect to exploiting realistic data by utilising a government sponsored
journey planning service in conjunction with an emissions model.

The WRSP has been investigated by a number of researchers, for a full survey of
work in this area the reader is referred to [2]. Typically the problem is formulated
around mobile health workers, the aim being to find the optimum allocation of work-
ers to jobs each which have a location and a time window associated with them. The
resulting schedule has to respect constraints such as time windows, working hours
and qualifications. Approaches include Linear programming, constraint program-
ming and meta-heuristics [3], Markov chains [4] and clustering [5].

An investigation into the WRSP incorporating modal choice for transport was
carried out in [6]. A two stage approach is used, the first stage uses constraint pro-
gramming to produce an initial solution. The second stage attempts to improve the
solutions by iteratively apply four meta heuristics - neighborhood search, memetic
algorithm, scatter search and simulated annealing. The modal choices are between
cars and public transportation, it is not clear how the public transport data is gath-
ered. The problem is formulated as a single objective problem, with no focus on
carbon emissions.

The issues of taking into account environmental factors within vehicle routing is
examined by the authors of [7] who examine the routing of light delivery vehicles
within an urban setting. The authors consider a mixed fleet of EFV (Environmen-
tally friendly vehicle) and EUF (Environmentally Unfriendly Vehicles). The novel
approach taken utilises a neural network to calculate the likely environmental ben-
efits (in terms of air and noise pollution) for each street section and subsequently
the Clarke Wright savings algorithm [8] is utilised to find a set of routes that most
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effectively deploys the EFVs within the fleet to gain the maximum environmental
benefits.

The problem under consideration in this paper, may be considered to be a mul-
tiplex network [9] in that there is an interaction between the related street network
representing car journeys and the public transport network. Within such a multiplex
network one network may influence the other, which in turn affects processes util-
ising the network. As the public transport network can include tram and rail links
it is not simply a subgraph of the street graph. The author of [10] presents a useful
study looking at the relation between the street graphs in greater London area and
New York, to the graphs represented by their respective underground rail networks.
They investigate the affect of the underground networks on commuting abilities and
travel connectivity across the cities, noting that the underground networks mostly
influence journeys to and from the city centers and within the suburbs. Within the
problem under discussion, the public transport and car networks are both related, a
switch in journey mode for an individual within the WRSP is in practice switching
them between travel networks.

3 Problem Instances

Within this paper two sets of problems are examined, the first one is based upon the
City of Edinburgh and the second on the City of London. To schedule any dataset
requires extensive data covering the car and public transport networks, including
timetabling data to provide journey times and therefore establish feasibility, this case
data from transport providers has been utilised. The problems are generic instances
of routing problems with time windows, each problem comprises a number of visits
which must be made within the working day (defined as 09:00 to 17:00), each visit
lasts 30 minutes. All employees start and finish their working day from a city center
based office location. Each visit must commence within a specified time window
which will always start and end between 09:00 and 17:00. Four different datasets
were created in which the number of time-windows and the length of the time-
window varied ( see table 1). Note that in set 1, there is effectively no time-window
as visits can be placed anywhere in the 8 hour day, whilst in set 4 all visits are
allocated a 1 hour time window within which the visit must commence.

As the aim of this paper is to investigate the incorporation of multiple travel
modes into travel plans these generic instances allow any member of staff to make
any visit, also the number of staff available is not limited, but in many real-life
problems the use of agency staff allows extra staff be deployed at short notice.
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Set Visits Window length No windows

Edinburgh 1 96 8 1
Edinburgh 2 96 4 2
Edinburgh 3 96 2 4
Edinburgh 4 96 1 8

London 1 61 8 1
London 2 61 4 2
London 3 61 2 4
London 4 61 1 8

Table 1 Description of the problem instances used

3.1 The Edinburgh Datasets

The problem instances investigated are based upon a set of 98 random addresses
within the City of Edinburgh, UK and surrounding district, distributed randomly,
each problem uses the same addresses, but with differing time windows. Public
transport provision within the area covered by the problem is mostly provided by
buses, but with a limited tram and rail service. The journey data for public transport
is supplied by the Transport Direct bulk journey planning software [11]. which was
downloaded and stored in a local database the data and problem instances may be
downloaded [12]. Values for emissions for journeys by public transport are supplied
by Transport Direct as part of their journey planning data. Car journeys were mod-
eled using street network data obtained from Open StreetMap [13],and the Graph-
Hopper [14] library to compute journey durations. Estimated emissions were ob-
tained by applying emissions factors obtained from the National Atmospheric Emis-
sions Inventory (NAEI) [15] for a medium sized petrol engined motor car.

3.2 The London Datasets

The London datasets are based upon 61 randomly selected addresses in central Lon-
don. As with the Edinburgh datasets car journey data is derrived from GraphHopper
and Open StreetMap with car emissions factors derrived using NAEI. Time windows
are allocated in the same manner as the Edinburgh datasets.

Transport for London (TfL) is the statutory corporation responsible for trans-
portation within the greater London area, TfL coordinate bus services as well as
operating the Underground and Overgound rail networks. Data is obtained via an
API [16] provided by TfL, emissions values are taken from statistics provided by
TfL [17].
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4 Methodology

4.1 The Evolutionary Algorithm

The Evolutionary Algorithm used is the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) algorithm [18, 19], with the twin objectives of reducing the predicted
emissions generated by the solution and reducing the time required to make the
visits. NSGA-II produces a set of non-dominated solutions to the problem under
consideration allowing the final choice of solution to be left to the end user, who
may examine solutions and choose the one which best fits their current requirements.
Two objectives are defined as follows:

• Minimise total time T =
n
∑

i=1
ti, where n is the number of employees, ti is the total

journey time for employee i, calculated as the time between leaving and returning
to the office, and including travel time, time spent on visits and any waiting time
incurred due to arriving at a visit prior to the time window.

• Minimise total carbon emissions E =
n
∑

i=1
ei, where ei is the emissions associated

with the journeys made by employee i and calculated according to the emissions
values stored in the database as described in section 3.

Each problem assumes an unlimited number of employees are available for allo-
cating work too, therefore all solutions are valid in that they guarantee that all work
items are scheduled.

The genotype representation used within the EA is that of a grand tour [20] which
is a permutation of visits, each vist comprises the visit identifier (which is linked to
the location and time window data) and the travel mode identifier. The travel mode
identifier assigns a travel mode for that visit, a value of 1 for public transport, a
value of 0 for car transport. Hence, the EA must evolve must optimise the ordering
of customers fed to the decoder, and the mode of travel that should be assigned for
each customer.

With the EA a fixed sized population of 300 solutions is used, the size being
determined by empirical experimentation. Each new population is the same size as
the previous population, the parents being selected by binary tournament from the
previous population. Children are created using a permutation crossover operator
that copies a complete route, selected at random, from one parent, remaining routes,
less any duplicate genes, are copied from the other parent in the order they appear
and are appended to the child. Each child has one of two mutation operators, selected
at random, applied to it. The first operator selects an entry from the grand tour at
random and moves it to a new randomly selected position within the grand tour.
The second mutation operator selects a visit at random from the the grand tour and
’flips’ the travel mode.
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4.2 Decoding Solutions

A complete solution consists of a number of individual employee tours, each visit
being included in a tour. When constructing a solution, the decoder considers each
travel mode in turn, firstly public transport and secondly car based visits in the
order that they appear within the grand tour. Visits are initially added to the first
employee, as each visit is added the arrival time is calculated based upon the journey
times (see section 3) for that mode of transport. If an arrival time is earlier than
the commencement of the time window then the employee waits until the start of
the time window in order to make the visit. If the arrival time is after the end of
the time window then a new employee tour is added to the solution and the visit
allocated to the new tour. This decoding process continues until of the visits for the
current travel mode have been added. The decoder then passes through the grand
tour considering visits with next travel mode. In this way each pass through the
grand tour creates a set of employee routes for that travel mode. Note that when
considering public transport, not all journies are feasible, if a visit has been allocated
to public transport, but travel from the previous visit is not possible, then the travel
mode is changed to car and the decoder continues. This repair mechanism ensures
that a feasible solution is always constructed, by using car transport as the default
choice. A pseudo code implementation of the decoder is presented in algorithm 1.
After applying the decoder, the carbon emissions ei and time ti associated with each
individual tour can be evaluated and therefore the values of the two objectives.

4.3 Experiments

For each dataset described in table 1 two initial experiments were performed:

• Using only car based transport - labeled in the results as car
• Using a combination of car and public transport - labeled in the results as pTrans

The EA was limited to 1,000,000 evaluations on each run as empirical experi-
mentation demonstrated that beyond that value improvements in the quality of so-
lution were seldom noted. Each run of the solver was repeated 10 times in order to
obtain a set of results. The Pareto-fronts obtained from the 10 runs were combined
and plotted as described in the next section.

5 Results

Figure 2 shows the Pareto fronts obtained when combining the output of 10 runs,
using only car transport (in black) and using a combination of car and public trans-
port. A summary of all results may be found in table 2. Considering the car-only
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Algorithm 1 The decoder used to transform the grand tour genotype into the phe-
notype.
1: procedure DECODE(chromosome)
2: solution = new Phenotype . The chromosome willl be expanded into a set of routes

within the phenotype
3: for travel-mode= 0 to MAX-MODE do . Cycle through each of the allowable travel

modes
4: current-route = new Route(travel-mode) . Create a new route and add it to the

solution
5: solution=current-route
6: previous = OFFICE-BASE
7: for each gene in chromosome do
8: if gene.getMode() == travel-mode then
9: if (feasibleTrip(previuous,gene,current-mode) then . True if the travel mode

will allow the trip
10: if (current-route.feasibleVisit(gene) then . True if the visit can be made

within the time window
11: current-route.add(gene)
12: previous = gene
13: else . Add a new route to the solution
14: current-route = new Route
15: current-route.setMode(travel-mode)
16: previous = OFFICE-BASE
17: end if
18: else
19: gene.setMode(CAR) . If trip not feasible by current mode, default to car
20: end if
21: end if
22: end for
23: end for
24: return solution
25: end procedure

solutions as we would expect the output forms a curve ranging from high CO2 so-
lutions taking less time than the lower CO2 solutions at the other end of the curve.
Shown alongside this is the curve generated by combining the ouput from 10 runs
where both public transport and car travel is used. As the pt runs control the decision
variable we would expect them to be able to create car-only runs which would cover
the same solution space as the car runs resulting in a pareto fron that overlaps that
produced from the car runs. Viewing figure 2 shows that this is not the case, none
of the graphs show the expected overlap. We note that in no case were the public
transport based solutions able to find a solution with the same as or less time than
the car-only solution, although in some cases (graphs a, c and d) high CO2 solutions
were found, but none of them exhibited low time values. Comparing between the
two cities we note that for the London based problems (graphs e to h) the solver
rarely finds high CO2 solutions unlike the Edinburgh based datasets.

When considering the results to be returned to the user, it is important that the
Pareto set, as it’s limits encompasses extreme solutions, for instance the all car high
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CI2 low time solution and the all public transport low CO2 high time value solution,
clearly the results presented in figure 2 do not encompass those solutions. We may
surmise that the fitness landscape is not conducive to NSGA-II exploring car-only
solutions. We investigate two possible approaches to resolving this issue the results
of which are shown in figure 3. The initial approach taken was to combine the out-
puts of the car and pt runs to produce a combined set of non-dominated solutions,
these are labeled comb. Within figure 3 we can see that combining the outputs pro-
duces a Pareto set that encompasses the desired range of solutions. In some cases
(noticeably the Edinburgh datasets) we can clearly see a gap in the pareto front
which would appear to delineate the car and pt solution spaces.

Whilst combining outputs produces a useful set of solutions, it does has the dis-
advantage that it requires the algorithm to be executed twice, thus potentially in-
creasing the runtime by a factor of 2. A second approach towards finding low time,
high CO2 solutions utilises a second mutation operator. The new mutation operator
sets all of the travel mode identifiers to 0 (car travel). Whilst this may seem ex-
treme, experiments with only setting part of the chromosome to car did not produce
any soltuons within the desired area. The rate for this chromosome had to be set to
0.60 (ie applied to 60% of all child solutions) in order to produce solutions in the
desired space. Figure 3 show the mutation operator achieving a rang of solutions
comparable to those achieved by combining the separate results. Figure 3 graphs
a-d show that when applied to the Edinburgh dataset the mutation opertor results in
the production of low time, high CO2 solutions, but has a detrimental effect on the
production of low CO2 solutions.

Instance Criterion for best Car only Public Transport Modified
Time Emissions Time Emissions Time Emissions

Edin 1 Window Time 3369 119995.34 3474.00 118917.03 3358 119620.88
Emissions 3432 94471.37 4778.01 73986.22 4725 79761.21

Edin 2 Windows Time 3576 138192.45 3835 114682.47 3585 130331.66
Emissions 4091 104052.55 5627 74084.64 5347 76455.2

Edin 4 Windows Time 3779 123826.16 4154 161021.05 3768 140161.99
Emissions 4532 108137.63 5936.01 85692.63 6752.01 92530.02

Edin 8 Windows Time 3932 181014.68 4277.01 195616.28 3998.01 179210.1
Emissions 6618.01 114441.52 6719.01 82449.23 7062.01 94264.53

London 1 Window Time 2176 43456 2258 34931.14 2194 38685
Emissions 2286 36252 3429 9292.98 3523 9104.5

London 2 Windows Time 2321 45322 2550 35318.07 2381 48022
Emissions 3537 40226 4185 9621.33 4638 10071.96

London 4 Windows Time 2411 51454 2813 41631.31 2423 56755
Emissions 3080 42195 4886 11296.9 4576 11966.33

London 8 Windows Time 2544 66842 2796 58451.19 2542 72612
Emissions 3503 50985 4868 14019.83 5266 14148.74

Table 2 Key: Time - Minutes, Emissions - CO2 g. A summary of the best solutions found with
and without using public transport links. The figures in brackets within the time columns represent
the number of employees required within the solution.
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6 Conclusions and Future work

6.1 Conclusions

The paper set out to investigate the trade-offs that could be obtained in terms of time
and emissions when scheduling a mobile workforce to complete a set of customer
visits. Using data from a real public transport and road network, a multi-objective
EA was used to evolve solutions under three scenarios: using a car only, using mixed
modes of transport and using mixed modes with an added constraint that excluded
some potential routes based on public transport due to excessive walking or change-
overs. Experiments investigated the trade-offs between the two objectives in four
different scenarios in which the time-window for a visit was varied between 1 and 8
hours.

Based on the evidence presented in section 5 the NSGA-II based solver is capa-
ble of producing solutions that make use of public transport links in order to reduce
CO2. The aim of using NSGA-II is to give the user a choice of non-dominated so-
lutions to choose from, in this case to allow the user the option of trading off CO2
against travel time by allowing public transport to be included within the solution.
As initially presented (figure 2 the NSGA-II solver has difficulty in evolving a set
of solutions that encompass low time values, despite the car only based solutions

Fig. 1 An example of a solution constructed from the london data set. The start point is represented
by the office building in the middle of the map, visits made by car are noted by the car icon and
visits by public transport by the bus icon. Map data c©OpenStreetMap contributors using the Open
Database License. https://www.openstreetmap.org/copyright
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(a) 1 time window (8hrs long) (b) 2 time windows (4 hrs long)

(c) 4 time windows (2 hrs long) (d) 8 time windows (1 hr long)

(e) 1 time window (8hrs long) (f) 2 time windows (4 hrs long)

(g) 4 time windows (2 hrs long) (h) 8 time windows (1 hr long)

Fig. 2 Total solutions produced for each problem instance using only car transport and combin-
ing car (shown as car) and public transport (shown as PT). Figures a-d represent the Edinburgh
problem instances, figures e-h represent the London instances.
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(a) 1 time window (8hrs long) (b) 2 time windows (4 hrs long)

(c) 4 time windows (2 hrs long) (d) 8 time windows (1 hr long)

(e) 1 time window (8hrs long) (f) 2 time windows (4 hrs long)

(g) 4 time windows (2 hrs long) (h) 8 time windows (1 hr long)

Fig. 3 Total solutions produced for each problem instance by combing the outputs from figure
2 noted as comb and the modified mutation noted as mut. Figures a-d represent the Edinburgh
problem instances, figures e-h represent the London instances.
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proving that low time solutuions are feasible. This problem is overcome by the sim-
plistic expedient of combining the Pareto fronts produced using car only solutions
and public transport with car solutions, but this has a penalty in the form of increased
run times.

Finally, we note that a number of commercial geographical information systems
offer public transport data, but currently the costs involved in acquiring data for a
problem such as this make them uneconomic. Storing the data in a local database as
described not only reduces the requirement for repeated access to on line databases
but also decreases the running time of the evolutionary algorithm. However, it is
recognised that a future extension of the system would include frequent updating of
the database in order to take account of changing travel conditions.

6.2 Future work

In the immediate future further investigation of the issues involved in generating a
reasonable spread of soltions are to be investigated, both of the solutions proposed
in this paper have disadvantages (increased runtime and inconsistent performance).

It is hoped to undertake further studies based on real-world mobile work force
problems, and to increase the constraints within the problem to match those typ-
ically found in such problems, such as some visits requiring specific workers or
workers with a specific attribute or multiple workers. It is also planned to expand
the problem formulation to include more transport modes, such as car share, cycling
and taxis, such a formulation could include transport costs as one of its optimisation
criterion. Future work will also include scaling journey times a specific times in or-
der to reflect rush hour congestion, such scaling would affect road based transport to
a far greater degree than rail transport. The scenario investigated here is simplistic,
future work will examine problems where there are fixed numbers of staff and con-
straints on travel modes (e.g. not all staff can drive). We recognise that the problem
of finding and optimising transport routes through a city is not restricted to work-
ers, but also occurs in domestic and social situations as well, in the longer term an
investigation into optimising travel activities in these areas would be appropriate.
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