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Abstract—Green software is currently gaining interests 

with the increasing impact of IT in energy consumption. 

Green-ness in software however, can be achieved at various 

stages of the Software Development Life Cycle (SDLC). 

Consequently, several software engineering concepts can be 

adopted for achieving greener software. Aspect Oriented 

Programming (AOP) has been used in solving several 

crosscutting concerns of software, such as security and 

performance, but has not been well explored within the context 

of Energy Efficiency (EE). In this paper we propose and 

implement an Aspect-oriented Model for EE (AMEE) which 

adopts AOP for software EE as a crosscutting concern and 

consequently reducing computational energy consumption 

based on client-server architecture, where the server layer is 

distributed. By using a selected case study, the paper presents 

the energy saving outcome of using AMEE model for different 

simulated workload patterns. 

Index Terms—Green Software Engineering; Green 

Aspects; Greening Legacy Systems; Green Components; 

Aspect Oriented Programming. 

I.  INTRODUCTION 

Green software is a matter of concern with increasing 

energy bills and environmental impact of IT industry. As the 

environmental impact of IT can be directly observed through 

the computer hardware components [1], achieving greenness 

in software must involve a process which takes into account 

the underlying system/platform resources as shown in [2]. 

Furthermore, computer programs requires processing (or 

processor – CPU) time which consumes electric energy [1]. 

Since energy is saved when the CPU is in deep sleep state 

(idle time), a software system with low CPU utilization is 

considered more energy efficient (greener), if it completes a 

job nearly the same time as its counterpart [2], [3]. 

In this research we focus on reducing power consumption 

levels of the CPU – computational efficiency [2] by 

evaluating its utilization with respect to workload. 

Furthermore, task consolidation has always been limited to 

use of complex resource resolution structures in datacentres 

e.g. [4]. For our experiment we present that by employing the 

flexibility of Aspects at the server layer, multiple servers 

which service similar requests can collaborate to improve 

significant and overall energy efficiency either through task 

consolidation or resource sharing based on advices in AOP. 

II. BACKGROUND INFORMATION 

A. Green Software and Concerns 

The term ‘Green software’ is commonly used to refer to 

software applications that efficiently monitors, manages and 

utilizes underlying resource(s) with little (or relatively 

minimal) negative impact on the environment [1]. Due to the 

high power consumption rates both in datacentres and other 

IT organizations, the green software research focus is mainly 

on energy efficiency [2]–[4]. 

Most green software techniques involve the use of 

software for monitoring and administrating power levels of 

hardware resources [5], as software has notable effect on 

power consumption from underlying hardware resources [1], 

[6]. Some issues leading to energy inefficiencies in software 

applications are improper analysis of requirements, 

suboptimal algorithms and inefficient resource allocation in 

applications [7]. Software applications however comprise 

different life-cycle phases [8]. The GREENSOFT Model [1] 

presents the environmental impacts of these phases 

(development, usage/runtime and end-of-life) of software life 

cycle while proposing tools and procedures to enhance 

software sustainability. In relating the software phases, 

Naumann, Dick et al. [1] further shows that environmental 

impacts of software is traceable to the development phase. 

Similarly, software runtime concerns can be addressed at the 

development phase [2], hence the concerns of the top level of 

abstraction (shown in Table I) is more specific to 

development. 

TABLE I. SOFTWARE ENERGY CONCERNS 

Levels of 

Abstraction 

Concerns (runtime) Agents 

Level 1: 

Top 

Suboptimal code and 

algorithms 

Developer 

Level 2: 

Middle 

Mismanaged user input User 

Level 3: 

Bottom 

High resource demand Application-

Platform 
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Furthermore, Kern, Dick, et al. [9] presents that users can 

influence software energy consumption at runtime through 

configurations. However, the notable cause of power 

consumption at runtime is due to resource overutilization [6]. 

The argument presented in Table I is that high resource 

demand as a runtime concern could be a consequence of 

mismanaged user input [9] or suboptimal algorithm [6], [7] 

which can be addressed at development phase [2] – hence, 

the levels of abstraction. 

Furthermore, high resource demand of software at 

runtime is a platform concern which can be addressed by 

program instrumentation and monitoring [10]. Consequently, 

addressing overutilization of resources (layer 3 concern), can 

be fixed by manual source-code fixes and automatic code-

optimization techniques [6] (by layer 1 agent). Several tools 

(and energy monitors) have been provided for 

instrumentation and monitoring energy consumption e.g. [5], 

[10], some of which provide Application Programming 

Interfaces (APIs) to allow flexibility of program control and 

per-process resource monitoring [11], [12]. 

B. Why AOP? 

Aspect oriented programming (AOP) provides a 

component-based approach to the implementation of 

crosscutting concerns [13] as new requirements (functional 

or non-functional) of software systems. The redesign of 

software systems in most cases is not because they are 

functionally deficient – as their replacements are often 

functionally identical – but because they are difficult to 

maintain, port, or scale, or are too slow, or have been 

compromised by network hackers [8]. 

AOP and Crosscutting: AOP provides two types of 

crosscutting; dynamic crosscutting – which modifies the 

behavior of the program, and static crosscutting – which 

modifies the static structure of the types (classes, interfaces, 

and other aspects) and their weave-time behavior [13]. 

Dynamic crosscutting dominates the use of AOP [13], we 

therefore adopt this for our model. 

The example of Figure 1 demonstrates how Aspects can 

be used (in a crosscutting manner) to alter the dynamic 

behaviour of a system (without directly modifying the 

original source code). 

A benefit of using AOP technique and libraries (such as 

AspectJ [13]), is that crosscutting code can be implemented 

once as aspects (e.g. LogInterceptor of Figure 1). And within 

these aspects a developer can then define where to weave the 

code (e.g. Lines 5 and 7 of LogInterceptor) into existing 

objects (e.g. MyFirstClass and MySecondClass). 

For clarification of AOP associated terms, some 

definitions have been given. Firstly, from Java context, 

AspectJ is the canonical Java library which implements AOP 

concepts. It adds to Java a few new constructs: pointcuts, 

advice, inter-type declarations and aspects.  An aspect is an 

encapsulation of these new constructs and acts as the unit of 

modularity for crosscutting concerns, – analogical to Java 

classes, in behavior. An advice defines the code to execute 

upon reaching selected point(s) of execution. And a pointcut 

is a program construct that selects join points and collects 

join point context or data. In object-oriented programs join 

points consists of operations such as method calls, method 

executions, object instantiations, constructor executions, field 

references and handler executions [13][14]. Pointcuts and 

advice dynamically affect program flow [14] and will be 

adopted for our model implementation. 

The Logger example in Figure 1 is one of many 

applications of AOP concepts in software engineering. 

Massive success has been achieved in the use of AOP to 

address security checks, performance, transaction 

management etc. [13] as crosscutting concerns, most of 

which are non-functional requirements (such as performance 

and security). Consequently, to achieve energy efficiency as 

a non-functional requirement for green software inspires our 

idea of employing AOP techniques such as dynamic 

crosscutting. 

III. RELATED WORK 

Although Energy Efficiency (EE) has been a growing 

issue in IT, the issue of applicability to software developers 

is also an area of interest. Consequently, resource monitoring 

and software energy metering are critical in achieving energy 

efficiency in software [2]. Some work has been done to 

address energy-efficiency of distributed systems based on 

resource monitoring and algorithms, however focused solely 

1: public aspect LogInterceptor
2: {
3:    public Object invoke ()
4:    {
5:        Logger.doLoggingBefore();
6:        method.execute();
7:        Logger.doLoggingAfter();
8:    }
9: }

public class MySecondClass
{
    public void function (Object arg)
    {
        //business logic goes here
    }
}

public class MyFirstClass
{
    public void amethod (String bar)
    {
        //business logic goes here
    }
}

 

Fig. 1. Logging Example of Crosscutting in AOP (snippets shown in Java). 
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on datacentres [4]. [3] closely considers the software 

development phase by establishing that architectures has 

effect on software power consumption given the CPU 

specification, however choice of software architectures are 

considerable for design phase before implementation [8] 

which raises a question of re-inventing the wheel for 

greening legacy systems. We fill this gap by considering EE 

as a crosscutting concern. Also, the load-balancing feature 

which our algorithm implements, can be achieved by 

traditional software load balancers e.g. vanish [15], although 

EE is not the main aim but could be a consequence of 

utilizing traditional software load balancers. However, we 

focus on reducing energy consumption as a crosscutting 

concern. We take into consideration, resource monitoring 

and energy metering for distributed systems using AOP 

technique. Several works present use of AOP for addressing 

crosscutting concerns such as performance, security etc.[13], 

similarly we demonstrate that AOP can be employed for 

software EE using dynamic crosscutting in AOP to modify 

system behaviours based on the current system state or 

predefined condition such as threshold – as discussed in the 

next section. 

IV. THE MODEL 

Energy efficiency in software systems is often viewed in 

terms of power management. Power management is an 

aspect of optimisation that can be achieved by any of the 

three approaches [16]; implementing the system to 

1. do less work or balancing of load for minimal 

execution [15], 

2. consolidate processes to eliminate resource 

overutilization [2], [4], and/or 

3. turn off idle elements [4]. 

Our Aspect-driven model (Figure 2) focuses on power 

management by an efficient combination of points 1 and 2, in 

a case of server under-utilization or overload. The model is 

built on client-server architecture, where the server layer is a 

collection of pervasive entities which can interact to 

efficiently handle requests. Request handling at the server 

layer is controlled by the relative resource consumption state 

of the server’s resources. 

A. Resource Monitor 

The resource monitor uses a system monitoring API 

(such as SIGAR [12]) to provide resource consumption 

levels such as percentage CPU utilization which are utilized 

by the EE-Aspect. The resource monitor is implemented as a 

thread which runs independent of the services provided by 

the server. 

B. EE-Aspect 

In an AOP context, an advice defines the code to execute 

upon reaching selected point(s) of execution [13]. We use the 

term “EE-Aspect” to refer to the AOP module which defines 

an advice (and algorithm) for the resource of concern (such 

as CPU advice) – see Overload Scenario Algorithm section. 

Particularly, our use of “EE-Aspect” does not imply that 

AOP alone can achieve EE, but rather signifies an Aspect 

which treats EE as a crosscutting concern – aimed at 

reducing energy consumption per task. Furthermore, system 

resource levels are shared by the server using the EE-Aspect. 

C. Virtual Client Handler (VCH) 

By utilizing the information from the system monitor, the 

Aspect frequent-checks redirects client task (with the Virtual 

Client Handler) to alternate server if current server is full, or 

consolidates task from a server to another utilized server if 

servers are under-utilized. The VCH also keeps a count of 

redirected requests. 

D. Overload Scenario Algorithm 

The Scenario (Greening Legacy System): Clients 1, 2, 3 

and 4 requests for service from ServerA and Client 5 from 

Request to: ServerB
n CPU-intensive clients
n=1 (client 5)

network

services:
s1, s2, s3

ServerA
Request to: ServerA
n CPU-intensive clients
n=4 (clients 1 to 4)

EE-Aspect
[CPU Advice]

ServerA

Virtual Client
Handler

Resource 
Monitor

Services
[s1, s2, s3]

client 1, 2, 3, 4, 5 -
Server under-

utilized

client 1, 2, 3 client 4, 5ServerA full

(a) (b)

services:
s1, s2, s3

ServerB

Services
[s1, s2, s3]

ServerB

Resource 
Monitor

Virtual Client
Handler

EE-Aspect
[CPU Advice]

 
Fig. 2. The (a) Scenario and (b) AMEE Model. 
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ServerB. In the traditional client-server system, servers 

handle requests only from directly connected clients. 

However, for EE, servers collaborate and service requests 

based on overall system consumption rate (i.e. for two 

possible scenarios: overutilization/overload or 

underutilization of resources). 

The overload scenario algorithm (see Aspect 1) is 

wrapped-up in an AOP advice, as shown in lines 4-12 

(implemented in the EE-Aspect component). The pointcut 

ensures that the check in the algorithm is run prior to 

handling client requests on the server. 

The advice runs a check using cpu consumption state 

(from the resource monitoring API) and a set threshold 

(which is the choice maximum % utilization) to 

manage/control the resource usage at the server layer and 

consequently reduce the system’s power consumption per 

task. 

V. EXPERIMENTS 

A. System Implementation 

We implement the system and Aspect Model for EE 

(AMEE) using Java with Eclipse IDE on a client-server 

based architecture. For support of multi-clients at the server, 

we make use of Java threads to concurrently handle client 

requests. Furthermore, SIGAR API for Java [12] (System 

Information Gatherer And Reporter) was employed for CPU 

monitoring, with AspectJ plugin for Eclipse as our aspect-

oriented Java extension for implementing the CPU advice. 

The Client application was implemented as a simple Java 

client (single class), which takes three arguments (server IP 

address, port and service request) for making the connection 

to the server. The Implementation (see Figure 3) shows three 

different primary entities; client, main server and alternate 

server. The main server and alternate server are of same class 

composition. Figure 3 presents sequence for the main server; 

that is, the server which a client request is initially directed 

to. 

If CPU consumption exceeds the set threshold (in Figure 

3 as c > x%), the Aspect redirects the request to the alternate 

server (with low CPU utilization). An extra check is added 

(in Figure 3 as !r.redirected) to avoid redirecting a request 

that was already redirected. 

We obtain the time length of each client’s request to the 

server by the difference in the send and receive time at the 

client (using Java timestamp facility similar to [3]). 

Subsequently we present the overall system performance as 

Server ClientThread
Service

[Iterator]

new()

startService

returnResult

request, r 
from client

AMEE

before(): execution(ClientThread.new(..))

CPUMonitor

check CPU
consumption, c

if c > x% & 
!r.redirected

redirect to alt server
blockService

else

check service

response to client  Client

Alternate Server
CPU utilization thresholdx%

Key:

 
Fig. 3. Sequence Diagram for System Implementation. 

 

// Aspect: EE-Aspect on main_server 
 
1: Continuous_check: monitor cpu_consumption 
2: Pointcut: before handling new client_request 
3:  
4: Advice: 
5: IF (cpu_consumption > threshold) 
6:  { 
7:    block service on main_server; 
8:    VCH: connect to free_server; 
9:    VCH: redirect client_request to free_server; 
10:   VCH: retrieve client_response from free_server; 
11:   send response from free_server to client; 
12: } 

Aspect 1. Algorithm for Overload scenario 
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the difference in the start/request time of the first client and 

the finish/response time of the last client. 

The Service package: To simulate a CPU intensive task 

we implemented an Iterator class as the service provided by 

the Server. The Iterator class performs string manipulation 

with for-loop for 50,000,000 times and returns the length of 

string when loop is completed. To reduce threats to validity 

(due to string manipulations) we randomly generate the client 

requests (through batches as shown in next section) and 

further repeat the experiment. 

B. Deployment Settings 

Figure 4 presents the environment setup for the 

deployment of our experiment. To run the experiment, a 

Windows 7 Virtual Machine (VM) was set up using VMware 

Workstation and the following configurations; 1GB Memory, 

Intel Core i7 2.20GHz CPU (on VM:1 Processor 2 Cores),  

and 20GB Hard Disk. We then cloned (full clone) the VM 

into three VMs. 

Subsequently, two different servers, Server A and Server 

B are setup on two different VMs, VM1 and VM2 

respectively – with the servers listening on port 5 (as shown 

in Figure 4). 

For random request generation (multi-client simulation), 

we build a Java batch program to randomly start up four 

clients at different VMs (VM3 and VM4). The VM3 and 

VM4 batch begin execution at the same time. The batch 

process randomly fires up a client request (at random times; 

Ta, Tb, Tc, Td for each client, determined by Java random 

number generator API) until four clients are reached on 

respective VMs. 

Furthermore, for VM power metering we use Joulemeter 

[10], and we employ experimental repetition to minimize 

inaccuracies in Joulemeter VM power estimation presented 

in [10]. The same deployment configuration is used to deploy 

two systems: one with our Aspect model for EE and another 

without. Note that; Joulemeter gives the CPU power 

consumption (in W) for every second (s) timestamp (as 

shown in later discussed Figures 4 and 5). However, we 

calculate the energy usage to complete given tasks in Joules 

(Ws) using the provided Joulemeter readings. 

Set Parameters: The experiment involving our model 

was simulated using 65% CPU utilization threshold. This 

threshold is used since the clients involved are fewer in 

number and requests are run concurrently. Different factors 

can influence the choice of threshold, including; the type of 

VM1.VM3.

VMnet2

ServerA
port

5

Joulemeter

Key:

T(a,b,c,d)

Batch start time with 
random client request 
generation (a,b,c,d)

T

C1 (ServerA, port5)
C2 (ServerA, port5)
C3 (ServerA, port5)
C4 (ServerA, port5)

Batch process

VM4.

T(a,b,c,d)
C5 (ServerB, port5)
C6 (ServerB, port5)
C7 (ServerB, port5)
C8 (ServerB, port5) VM2.

ServerB
port

5

 

Fig. 4. Environment Setup for Experiment. 

TABLE II. RESULTS OF EXPERIMENT 

Client Set 1: Time (ms[ss]) Set 2: Time (ms[ss]) Set 3: Time (ms[ss]) 
With AMEE No AMEE With AMEE No AMEE With AMEE No AMEE 

1 25368[01] 33998[01] 31765[01] 36756[01] 24562[01] 23752[01] 

2 27799[04] 39065[03] 45679[02]R 38721[02] 27256[07] 32809[07] 

3 33327[14]R 39408[04] 31061[02] 39298[02] 39969[08]R 33729[08] 

4 29844[18]R 38470[05] 44883[03]R 38674[03] 38923[09]R 32824[09] 

5 36634[02] 25646[02] 45804[02] 41841[02] 41160[01] 34576[01] 

6 37101[03] 31243[05] 47675[02] 41077[02] 42953[02] 36245[02] 

7 27489[05]R 30314[15] 46927[02] 40530[02] 42577[03] 36478[03] 

8 37409[06]R 28861[17] 32387[03]R 39968[03] 27535[07]R 34118[07] 

Time Total 45s 42s 47s 41s 44s 39s 

Consumption 396.6J 442.2J 410.8J 429.4J 396.2J 419.2J 
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application (single or multi-threaded), the demand/workload 

on the application (how high?), the type of and amount of 

CPU cores of the host system, etc. The case would be that, 

by using our Aspect Model for EE (AMEE) with random 

client request generation, clients would be redirected to the 

alternate server if the main server is full. 

C. Results and Discussion 

The experiment is conducted for two scenarios using 

same deployment settings: 

1. Server layer with our proposed Aspect Model 

for EE (With AMEE) and  

2. Non-EE optimised server layer (No AMEE). 

Key for Table II: The experimental results are presented 

in Time (ms[ss]) column. The time column shows the 

response time in milliseconds, and in square brackets; the 

start-time (obtained from the timestamp seconds unit, i.e. ss 

in hh:mm:ss) for each randomly generated client. R signifies 

that the client concerned was redirected to an alternate 

server. 

As shown in Table II, we present three results of the 

experiment based on randomly generated client requests to 

depict different workload scenarios of operation – we discuss 

these scenarios in this section with their associated graphs. 

The aim of the workload scenarios is to show the effect of 

the distribution of a fixed number of client requests on the 

server in relation to the AMEE proposed model.  

Legend for Figure 5 and 6: The features with a prime 

sign (e.g. A') are used for No AMEE scenario while features 

without prime sign (e.g. A) are used for With AMEE 

scenario. Also, the feature, I, denotes the average idle 

consumption which is about 0.2W. 

 

 Dispersed Requests. The first and third result set 

(also shown in Figure 5) are classified as a scenario where 

requests to the server are dispersed. In such dispersed 

scenario there is more energy savings by adopting AMEE.  

Different features are presented in the Figure 5. The 

feature A', in the non-optimised scenario of Set 1 is a peak 

derived from sending/starting closely packed requests (from 

clients 3, 4 and 6) to the servers, and with the dispersed time 

difference in the requests the wattage is stable with small 

triggered peaks but still at the top of the graph (as seen in A'  

of Set 3), as opposed to A of Set 3 (also seen in B of Set 1) 

which falls due to redirect. The feature, A and B of Set 1 are 

the peak power consumption from use of AMEE traced to 

the redirection of client requests, a consequence of 

registering the clients to an alternate server (similar to the 

mobile experiment of [17]). 

Due to the dispersion in request time (shown in [ss] 

column), the allocation of requests to server (by AMEE – 

using the overload algorithm) saves more energy (about 45J 

in Set 1 and 23J in Set 3). However, since the AMEE and 

non-AMEE scenario for Set 3 were produced with the same 

timing in client request generation, we prioritise the energy 

savings for Set 3 dispersed scenario which is 5.49% savings. 

The energy savings in Set 1 can be further interpreted as 

resulting from: client 7 and 8 of (AMEE scenario) being 

consolidated to server A while client 3 and 4 requests were 

redirected to server B since the CPU resource of server A 

was overloaded. Furthermore, the cost of starting more cores 

for client 7 and 8 at the time (ss: 15 and 17) resulted in more 

computational power at the no-AMEE scenario of Set 1. 

 

 Clustered Requests. The AMEE and non-AMEE 

scenario for Set 2 were produced with the same timing in 

client request generation. Set 2 shows the use of AMEE to 

achieve an energy saving of 4.33%. The workload pattern 

and the CPU energy consumption for Set 2 are presented in 

Figure 6. From Figure 6, the feature A', is the peak CPU 

power consumption observed with the no AMEE scenario 

(i.e. prior to optimization). The feature A, however shows a 

parallel reduction in the peak wattage – this was traced from 

the redirection of client 2 request (see Table II). We therefore 

 
Fig. 5. (a) Set 1 and (b) Set 3 Analysis: Dispersed Requests. 
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deduce that, optimization attempts that aim to lower different 

peaks in wattage can achieve overall system energy savings, 

for any given time interval. 

 

At all scenarios of AMEE result samples, however, there 

seem to be an overall delay in response due to the redirection 

of requests, the reason being due to our focus on reduction of 

energy consumption through our model. With the focus on 

reduction of energy consumption, AMEE control mechanism 

was based on resource consumption, as shown in the 

algorithm (see Aspect 1 presented earlier): 

 
Advice: 
IF (cpu_consumption > threshold) THEN (ACTION) 

 

To extend efficiency an overall monitoring of other 

software quality attribute has to be taken into consideration at 

the EE-Aspect component of the AMEE model. For instance: 

a balance between performance and energy consumption 

may implement an algorithm as follows: 

 
Advice: 
IF (cpu_consumption > threshold) AND 
(cpu_performance is pi) THEN (ACTION) 

 

As presented above; cpu performance is a factor of cpu 

specification/speed, and client pool size at the VCH in 

AMEE – which is implementable in ENUMs – denoted by Pi 

states, e.g.: 
 

p1 = {cpu_type_1, pool_size_1}, 

p2 = {cpu_type_2, pool_size_2}, 

… 

 

The recommended algorithm above would consequently 

resolve the delay in responses to client requests – caused by 

redirection, R. 

Conclusively, the results show that by using AMEE and 

understanding workload patterns we can save energy. The 

experiment in this paper proved that AOP can be employed 

in server systems with CPU-intensive services to monitor and 

reduce over-all system energy consumption caused by 

software processes, thus addressing the layer 3 concern (high 

resource demand) mentioned in section 2. AMEE manages 

the distribution of requests, and to reduce performance 

overhead redirection is done once. This is so because 

unmanaged distribution of requests is a source of long 

resource consumption and increased waiting time for a 

shared resource [3]. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has been able to present a new model which 

adopts AOP to address the issue of software energy 

consumption, by treating EE as a crosscutting concern. The 

Aspect-Oriented Model proposed was defined to encapsulate 

all the ‘EE concerns’ of a system (CPU energy consumption 

in our case study). The consequence of the encapsulation of 

EE concerns achieved reusability of the EE component 

module across multi-server systems. 

The AMEE model can be used to complement existing 

software architecture design process to improve runtime 

energy concerns. It could be argued that re-directing a client 

request to different server for reduction of energy 

consumption per task could result in a performance 

overhead; the criteria for re-direction however, can be further 

optimised based on different considerations such as work 

load patterns. 

Since our proposal was based on virtualised 

environments, future work will include evaluation of the 

model using power meters and physical machines. Also we 

focused the current work on AMEE model on CPU resource, 

for future work we look to expand the model to take into 

consideration other system resources, which raise EE 

concerns like disk, network and memory. 
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