

An Aspect Oriented Model for Software Energy

Efficiency in Decentralised Servers

Samuel J. Chinenyeze, Xiaodong Liu and Ahmed Al-Dubai
School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

{s.chinenyeze, x.liu, a.al-dubai}@napier.ac.uk

Abstract—Green software is currently gaining interests

with the increasing impact of IT in energy consumption.

Green-ness in software however, can be achieved at various

stages of the Software Development Life Cycle (SDLC).

Consequently, several software engineering concepts can be

adopted for achieving greener software. Aspect Oriented

Programming (AOP) has been used in solving several

crosscutting concerns of software, such as security and

performance, but has not been well explored within the context

of Energy Efficiency (EE). In this paper we propose and

implement an Aspect-oriented Model for EE (AMEE) which

adopts AOP for software EE as a crosscutting concern and

consequently reducing computational energy consumption

based on client-server architecture, where the server layer is

distributed. By using a selected case study, the paper presents

the energy saving outcome of using AMEE model for different

simulated workload patterns.

Index Terms—Green Software Engineering; Green

Aspects; Greening Legacy Systems; Green Components;

Aspect Oriented Programming.

I. INTRODUCTION

Green software is a matter of concern with increasing

energy bills and environmental impact of IT industry. As the

environmental impact of IT can be directly observed through

the computer hardware components [1], achieving greenness

in software must involve a process which takes into account

the underlying system/platform resources as shown in [2].

Furthermore, computer programs requires processing (or

processor – CPU) time which consumes electric energy [1].

Since energy is saved when the CPU is in deep sleep state

(idle time), a software system with low CPU utilization is

considered more energy efficient (greener), if it completes a

job nearly the same time as its counterpart [2], [3].

In this research we focus on reducing power consumption

levels of the CPU – computational efficiency [2] by

evaluating its utilization with respect to workload.

Furthermore, task consolidation has always been limited to

use of complex resource resolution structures in datacentres

e.g. [4]. For our experiment we present that by employing the

flexibility of Aspects at the server layer, multiple servers

which service similar requests can collaborate to improve

significant and overall energy efficiency either through task

consolidation or resource sharing based on advices in AOP.

II. BACKGROUND INFORMATION

A. Green Software and Concerns

The term ‘Green software’ is commonly used to refer to

software applications that efficiently monitors, manages and

utilizes underlying resource(s) with little (or relatively

minimal) negative impact on the environment [1]. Due to the

high power consumption rates both in datacentres and other

IT organizations, the green software research focus is mainly

on energy efficiency [2]–[4].

Most green software techniques involve the use of

software for monitoring and administrating power levels of

hardware resources [5], as software has notable effect on

power consumption from underlying hardware resources [1],

[6]. Some issues leading to energy inefficiencies in software

applications are improper analysis of requirements,

suboptimal algorithms and inefficient resource allocation in

applications [7]. Software applications however comprise

different life-cycle phases [8]. The GREENSOFT Model [1]

presents the environmental impacts of these phases

(development, usage/runtime and end-of-life) of software life

cycle while proposing tools and procedures to enhance

software sustainability. In relating the software phases,

Naumann, Dick et al. [1] further shows that environmental

impacts of software is traceable to the development phase.

Similarly, software runtime concerns can be addressed at the

development phase [2], hence the concerns of the top level of

abstraction (shown in Table I) is more specific to

development.

TABLE I. SOFTWARE ENERGY CONCERNS

Levels of

Abstraction

Concerns (runtime) Agents

Level 1:

Top

Suboptimal code and

algorithms

Developer

Level 2:

Middle

Mismanaged user input User

Level 3:

Bottom

High resource demand Application-

Platform

2nd International Conference on ICT for Sustainability (ICT4S 2014)

© 2014. The authors - Published by Atlantis Press 112

Furthermore, Kern, Dick, et al. [9] presents that users can

influence software energy consumption at runtime through

configurations. However, the notable cause of power

consumption at runtime is due to resource overutilization [6].

The argument presented in Table I is that high resource

demand as a runtime concern could be a consequence of

mismanaged user input [9] or suboptimal algorithm [6], [7]

which can be addressed at development phase [2] – hence,

the levels of abstraction.

Furthermore, high resource demand of software at

runtime is a platform concern which can be addressed by

program instrumentation and monitoring [10]. Consequently,

addressing overutilization of resources (layer 3 concern), can

be fixed by manual source-code fixes and automatic code-

optimization techniques [6] (by layer 1 agent). Several tools

(and energy monitors) have been provided for

instrumentation and monitoring energy consumption e.g. [5],

[10], some of which provide Application Programming

Interfaces (APIs) to allow flexibility of program control and

per-process resource monitoring [11], [12].

B. Why AOP?

Aspect oriented programming (AOP) provides a

component-based approach to the implementation of

crosscutting concerns [13] as new requirements (functional

or non-functional) of software systems. The redesign of

software systems in most cases is not because they are

functionally deficient – as their replacements are often

functionally identical – but because they are difficult to

maintain, port, or scale, or are too slow, or have been

compromised by network hackers [8].

AOP and Crosscutting: AOP provides two types of

crosscutting; dynamic crosscutting – which modifies the

behavior of the program, and static crosscutting – which

modifies the static structure of the types (classes, interfaces,

and other aspects) and their weave-time behavior [13].

Dynamic crosscutting dominates the use of AOP [13], we

therefore adopt this for our model.

The example of Figure 1 demonstrates how Aspects can

be used (in a crosscutting manner) to alter the dynamic

behaviour of a system (without directly modifying the

original source code).

A benefit of using AOP technique and libraries (such as

AspectJ [13]), is that crosscutting code can be implemented

once as aspects (e.g. LogInterceptor of Figure 1). And within

these aspects a developer can then define where to weave the

code (e.g. Lines 5 and 7 of LogInterceptor) into existing

objects (e.g. MyFirstClass and MySecondClass).

For clarification of AOP associated terms, some

definitions have been given. Firstly, from Java context,

AspectJ is the canonical Java library which implements AOP

concepts. It adds to Java a few new constructs: pointcuts,

advice, inter-type declarations and aspects. An aspect is an

encapsulation of these new constructs and acts as the unit of

modularity for crosscutting concerns, – analogical to Java

classes, in behavior. An advice defines the code to execute

upon reaching selected point(s) of execution. And a pointcut

is a program construct that selects join points and collects

join point context or data. In object-oriented programs join

points consists of operations such as method calls, method

executions, object instantiations, constructor executions, field

references and handler executions [13][14]. Pointcuts and

advice dynamically affect program flow [14] and will be

adopted for our model implementation.

The Logger example in Figure 1 is one of many

applications of AOP concepts in software engineering.

Massive success has been achieved in the use of AOP to

address security checks, performance, transaction

management etc. [13] as crosscutting concerns, most of

which are non-functional requirements (such as performance

and security). Consequently, to achieve energy efficiency as

a non-functional requirement for green software inspires our

idea of employing AOP techniques such as dynamic

crosscutting.

III. RELATED WORK

Although Energy Efficiency (EE) has been a growing

issue in IT, the issue of applicability to software developers

is also an area of interest. Consequently, resource monitoring

and software energy metering are critical in achieving energy

efficiency in software [2]. Some work has been done to

address energy-efficiency of distributed systems based on

resource monitoring and algorithms, however focused solely

1: public aspect LogInterceptor
2: {
3: public Object invoke ()
4: {
5: Logger.doLoggingBefore();
6: method.execute();
7: Logger.doLoggingAfter();
8: }
9: }

public class MySecondClass
{
 public void function (Object arg)
 {
 //business logic goes here
 }
}

public class MyFirstClass
{
 public void amethod (String bar)
 {
 //business logic goes here
 }
}

Fig. 1. Logging Example of Crosscutting in AOP (snippets shown in Java).

willieb
Typewritten Text

willieb
Typewritten Text
113

on datacentres [4]. [3] closely considers the software

development phase by establishing that architectures has

effect on software power consumption given the CPU

specification, however choice of software architectures are

considerable for design phase before implementation [8]

which raises a question of re-inventing the wheel for

greening legacy systems. We fill this gap by considering EE

as a crosscutting concern. Also, the load-balancing feature

which our algorithm implements, can be achieved by

traditional software load balancers e.g. vanish [15], although

EE is not the main aim but could be a consequence of

utilizing traditional software load balancers. However, we

focus on reducing energy consumption as a crosscutting

concern. We take into consideration, resource monitoring

and energy metering for distributed systems using AOP

technique. Several works present use of AOP for addressing

crosscutting concerns such as performance, security etc.[13],

similarly we demonstrate that AOP can be employed for

software EE using dynamic crosscutting in AOP to modify

system behaviours based on the current system state or

predefined condition such as threshold – as discussed in the

next section.

IV. THE MODEL

Energy efficiency in software systems is often viewed in

terms of power management. Power management is an

aspect of optimisation that can be achieved by any of the

three approaches [16]; implementing the system to

1. do less work or balancing of load for minimal

execution [15],

2. consolidate processes to eliminate resource

overutilization [2], [4], and/or

3. turn off idle elements [4].

Our Aspect-driven model (Figure 2) focuses on power

management by an efficient combination of points 1 and 2, in

a case of server under-utilization or overload. The model is

built on client-server architecture, where the server layer is a

collection of pervasive entities which can interact to

efficiently handle requests. Request handling at the server

layer is controlled by the relative resource consumption state

of the server’s resources.

A. Resource Monitor

The resource monitor uses a system monitoring API

(such as SIGAR [12]) to provide resource consumption

levels such as percentage CPU utilization which are utilized

by the EE-Aspect. The resource monitor is implemented as a

thread which runs independent of the services provided by

the server.

B. EE-Aspect

In an AOP context, an advice defines the code to execute

upon reaching selected point(s) of execution [13]. We use the

term “EE-Aspect” to refer to the AOP module which defines

an advice (and algorithm) for the resource of concern (such

as CPU advice) – see Overload Scenario Algorithm section.

Particularly, our use of “EE-Aspect” does not imply that

AOP alone can achieve EE, but rather signifies an Aspect

which treats EE as a crosscutting concern – aimed at

reducing energy consumption per task. Furthermore, system

resource levels are shared by the server using the EE-Aspect.

C. Virtual Client Handler (VCH)

By utilizing the information from the system monitor, the

Aspect frequent-checks redirects client task (with the Virtual

Client Handler) to alternate server if current server is full, or

consolidates task from a server to another utilized server if

servers are under-utilized. The VCH also keeps a count of

redirected requests.

D. Overload Scenario Algorithm

The Scenario (Greening Legacy System): Clients 1, 2, 3

and 4 requests for service from ServerA and Client 5 from

Request to: ServerB
n CPU-intensive clients
n=1 (client 5)

network

services:
s1, s2, s3

ServerA
Request to: ServerA
n CPU-intensive clients
n=4 (clients 1 to 4)

EE-Aspect
[CPU Advice]

ServerA

Virtual Client
Handler

Resource
Monitor

Services
[s1, s2, s3]

client 1, 2, 3, 4, 5 -
Server under-

utilized

client 1, 2, 3 client 4, 5ServerA full

(a) (b)

services:
s1, s2, s3

ServerB

Services
[s1, s2, s3]

ServerB

Resource
Monitor

Virtual Client
Handler

EE-Aspect
[CPU Advice]

Fig. 2. The (a) Scenario and (b) AMEE Model.

willieb
Typewritten Text
114

ServerB. In the traditional client-server system, servers

handle requests only from directly connected clients.

However, for EE, servers collaborate and service requests

based on overall system consumption rate (i.e. for two

possible scenarios: overutilization/overload or

underutilization of resources).

The overload scenario algorithm (see Aspect 1) is

wrapped-up in an AOP advice, as shown in lines 4-12

(implemented in the EE-Aspect component). The pointcut

ensures that the check in the algorithm is run prior to

handling client requests on the server.

The advice runs a check using cpu consumption state

(from the resource monitoring API) and a set threshold

(which is the choice maximum % utilization) to

manage/control the resource usage at the server layer and

consequently reduce the system’s power consumption per

task.

V. EXPERIMENTS

A. System Implementation

We implement the system and Aspect Model for EE

(AMEE) using Java with Eclipse IDE on a client-server

based architecture. For support of multi-clients at the server,

we make use of Java threads to concurrently handle client

requests. Furthermore, SIGAR API for Java [12] (System

Information Gatherer And Reporter) was employed for CPU

monitoring, with AspectJ plugin for Eclipse as our aspect-

oriented Java extension for implementing the CPU advice.

The Client application was implemented as a simple Java

client (single class), which takes three arguments (server IP

address, port and service request) for making the connection

to the server. The Implementation (see Figure 3) shows three

different primary entities; client, main server and alternate

server. The main server and alternate server are of same class

composition. Figure 3 presents sequence for the main server;

that is, the server which a client request is initially directed

to.

If CPU consumption exceeds the set threshold (in Figure

3 as c > x%), the Aspect redirects the request to the alternate

server (with low CPU utilization). An extra check is added

(in Figure 3 as !r.redirected) to avoid redirecting a request

that was already redirected.

We obtain the time length of each client’s request to the

server by the difference in the send and receive time at the

client (using Java timestamp facility similar to [3]).

Subsequently we present the overall system performance as

Server ClientThread
Service

[Iterator]

new()

startService

returnResult

request, r
from client

AMEE

before(): execution(ClientThread.new(..))

CPUMonitor

check CPU
consumption, c

if c > x% &
!r.redirected

redirect to alt server
blockService

else

check service

response to client Client

Alternate Server
CPU utilization thresholdx%

Key:

Fig. 3. Sequence Diagram for System Implementation.

// Aspect: EE-Aspect on main_server

1: Continuous_check: monitor cpu_consumption
2: Pointcut: before handling new client_request
3:
4: Advice:
5: IF (cpu_consumption > threshold)
6: {
7: block service on main_server;
8: VCH: connect to free_server;
9: VCH: redirect client_request to free_server;
10: VCH: retrieve client_response from free_server;
11: send response from free_server to client;
12: }

Aspect 1. Algorithm for Overload scenario

willieb
Typewritten Text
115

the difference in the start/request time of the first client and

the finish/response time of the last client.

The Service package: To simulate a CPU intensive task

we implemented an Iterator class as the service provided by

the Server. The Iterator class performs string manipulation

with for-loop for 50,000,000 times and returns the length of

string when loop is completed. To reduce threats to validity

(due to string manipulations) we randomly generate the client

requests (through batches as shown in next section) and

further repeat the experiment.

B. Deployment Settings

Figure 4 presents the environment setup for the

deployment of our experiment. To run the experiment, a

Windows 7 Virtual Machine (VM) was set up using VMware

Workstation and the following configurations; 1GB Memory,

Intel Core i7 2.20GHz CPU (on VM:1 Processor 2 Cores),

and 20GB Hard Disk. We then cloned (full clone) the VM

into three VMs.

Subsequently, two different servers, Server A and Server

B are setup on two different VMs, VM1 and VM2

respectively – with the servers listening on port 5 (as shown

in Figure 4).

For random request generation (multi-client simulation),

we build a Java batch program to randomly start up four

clients at different VMs (VM3 and VM4). The VM3 and

VM4 batch begin execution at the same time. The batch

process randomly fires up a client request (at random times;

Ta, Tb, Tc, Td for each client, determined by Java random

number generator API) until four clients are reached on

respective VMs.

Furthermore, for VM power metering we use Joulemeter

[10], and we employ experimental repetition to minimize

inaccuracies in Joulemeter VM power estimation presented

in [10]. The same deployment configuration is used to deploy

two systems: one with our Aspect model for EE and another

without. Note that; Joulemeter gives the CPU power

consumption (in W) for every second (s) timestamp (as

shown in later discussed Figures 4 and 5). However, we

calculate the energy usage to complete given tasks in Joules

(Ws) using the provided Joulemeter readings.

Set Parameters: The experiment involving our model

was simulated using 65% CPU utilization threshold. This

threshold is used since the clients involved are fewer in

number and requests are run concurrently. Different factors

can influence the choice of threshold, including; the type of

VM1.VM3.

VMnet2

ServerA
port

5

Joulemeter

Key:

T(a,b,c,d)

Batch start time with
random client request
generation (a,b,c,d)

T

C1 (ServerA, port5)
C2 (ServerA, port5)
C3 (ServerA, port5)
C4 (ServerA, port5)

Batch process

VM4.

T(a,b,c,d)
C5 (ServerB, port5)
C6 (ServerB, port5)
C7 (ServerB, port5)
C8 (ServerB, port5) VM2.

ServerB
port

5

Fig. 4. Environment Setup for Experiment.

TABLE II. RESULTS OF EXPERIMENT

Client Set 1: Time (ms[ss]) Set 2: Time (ms[ss]) Set 3: Time (ms[ss])
With AMEE No AMEE With AMEE No AMEE With AMEE No AMEE

1 25368[01] 33998[01] 31765[01] 36756[01] 24562[01] 23752[01]

2 27799[04] 39065[03] 45679[02]R 38721[02] 27256[07] 32809[07]

3 33327[14]R 39408[04] 31061[02] 39298[02] 39969[08]R 33729[08]

4 29844[18]R 38470[05] 44883[03]R 38674[03] 38923[09]R 32824[09]

5 36634[02] 25646[02] 45804[02] 41841[02] 41160[01] 34576[01]

6 37101[03] 31243[05] 47675[02] 41077[02] 42953[02] 36245[02]

7 27489[05]R 30314[15] 46927[02] 40530[02] 42577[03] 36478[03]

8 37409[06]R 28861[17] 32387[03]R 39968[03] 27535[07]R 34118[07]

Time Total 45s 42s 47s 41s 44s 39s

Consumption 396.6J 442.2J 410.8J 429.4J 396.2J 419.2J

willieb
Typewritten Text
116

application (single or multi-threaded), the demand/workload

on the application (how high?), the type of and amount of

CPU cores of the host system, etc. The case would be that,

by using our Aspect Model for EE (AMEE) with random

client request generation, clients would be redirected to the

alternate server if the main server is full.

C. Results and Discussion

The experiment is conducted for two scenarios using

same deployment settings:

1. Server layer with our proposed Aspect Model

for EE (With AMEE) and

2. Non-EE optimised server layer (No AMEE).

Key for Table II: The experimental results are presented

in Time (ms[ss]) column. The time column shows the

response time in milliseconds, and in square brackets; the

start-time (obtained from the timestamp seconds unit, i.e. ss

in hh:mm:ss) for each randomly generated client. R signifies

that the client concerned was redirected to an alternate

server.

As shown in Table II, we present three results of the

experiment based on randomly generated client requests to

depict different workload scenarios of operation – we discuss

these scenarios in this section with their associated graphs.

The aim of the workload scenarios is to show the effect of

the distribution of a fixed number of client requests on the

server in relation to the AMEE proposed model.

Legend for Figure 5 and 6: The features with a prime

sign (e.g. A') are used for No AMEE scenario while features

without prime sign (e.g. A) are used for With AMEE

scenario. Also, the feature, I, denotes the average idle

consumption which is about 0.2W.

 Dispersed Requests. The first and third result set

(also shown in Figure 5) are classified as a scenario where

requests to the server are dispersed. In such dispersed

scenario there is more energy savings by adopting AMEE.

Different features are presented in the Figure 5. The

feature A', in the non-optimised scenario of Set 1 is a peak

derived from sending/starting closely packed requests (from

clients 3, 4 and 6) to the servers, and with the dispersed time

difference in the requests the wattage is stable with small

triggered peaks but still at the top of the graph (as seen in A'

of Set 3), as opposed to A of Set 3 (also seen in B of Set 1)

which falls due to redirect. The feature, A and B of Set 1 are

the peak power consumption from use of AMEE traced to

the redirection of client requests, a consequence of

registering the clients to an alternate server (similar to the

mobile experiment of [17]).

Due to the dispersion in request time (shown in [ss]

column), the allocation of requests to server (by AMEE –

using the overload algorithm) saves more energy (about 45J

in Set 1 and 23J in Set 3). However, since the AMEE and

non-AMEE scenario for Set 3 were produced with the same

timing in client request generation, we prioritise the energy

savings for Set 3 dispersed scenario which is 5.49% savings.

The energy savings in Set 1 can be further interpreted as

resulting from: client 7 and 8 of (AMEE scenario) being

consolidated to server A while client 3 and 4 requests were

redirected to server B since the CPU resource of server A

was overloaded. Furthermore, the cost of starting more cores

for client 7 and 8 at the time (ss: 15 and 17) resulted in more

computational power at the no-AMEE scenario of Set 1.

 Clustered Requests. The AMEE and non-AMEE

scenario for Set 2 were produced with the same timing in

client request generation. Set 2 shows the use of AMEE to

achieve an energy saving of 4.33%. The workload pattern

and the CPU energy consumption for Set 2 are presented in

Figure 6. From Figure 6, the feature A', is the peak CPU

power consumption observed with the no AMEE scenario

(i.e. prior to optimization). The feature A, however shows a

parallel reduction in the peak wattage – this was traced from

the redirection of client 2 request (see Table II). We therefore

Fig. 5. (a) Set 1 and (b) Set 3 Analysis: Dispersed Requests.

0

2

4

6

8

10

12

14

1.372E+12 1.372E+12 1.372E+12

A' A

0

2

4

6

8

10

12

14

1.372E+12 1.372E+12 1.372E+12

(a) (b)

Time (s)

C
P

U
 W

at
ta

ge
 (

W
)

B

With AMEE
No AMEE

I

C
P

U
 W

at
ta

ge
 (

W
)

Time (s)

A

A'
With AMEE
No AMEE

I

442.2J

396.6J

419.2J

396.2J

willieb
Typewritten Text
117

deduce that, optimization attempts that aim to lower different

peaks in wattage can achieve overall system energy savings,

for any given time interval.

At all scenarios of AMEE result samples, however, there

seem to be an overall delay in response due to the redirection

of requests, the reason being due to our focus on reduction of

energy consumption through our model. With the focus on

reduction of energy consumption, AMEE control mechanism

was based on resource consumption, as shown in the

algorithm (see Aspect 1 presented earlier):

Advice:
IF (cpu_consumption > threshold) THEN (ACTION)

To extend efficiency an overall monitoring of other

software quality attribute has to be taken into consideration at

the EE-Aspect component of the AMEE model. For instance:

a balance between performance and energy consumption

may implement an algorithm as follows:

Advice:
IF (cpu_consumption > threshold) AND
(cpu_performance is pi) THEN (ACTION)

As presented above; cpu performance is a factor of cpu

specification/speed, and client pool size at the VCH in

AMEE – which is implementable in ENUMs – denoted by Pi

states, e.g.:

p1 = {cpu_type_1, pool_size_1},

p2 = {cpu_type_2, pool_size_2},

…

The recommended algorithm above would consequently

resolve the delay in responses to client requests – caused by

redirection, R.

Conclusively, the results show that by using AMEE and

understanding workload patterns we can save energy. The

experiment in this paper proved that AOP can be employed

in server systems with CPU-intensive services to monitor and

reduce over-all system energy consumption caused by

software processes, thus addressing the layer 3 concern (high

resource demand) mentioned in section 2. AMEE manages

the distribution of requests, and to reduce performance

overhead redirection is done once. This is so because

unmanaged distribution of requests is a source of long

resource consumption and increased waiting time for a

shared resource [3].

VI. CONCLUSIONS AND FUTURE WORK

This paper has been able to present a new model which

adopts AOP to address the issue of software energy

consumption, by treating EE as a crosscutting concern. The

Aspect-Oriented Model proposed was defined to encapsulate

all the ‘EE concerns’ of a system (CPU energy consumption

in our case study). The consequence of the encapsulation of

EE concerns achieved reusability of the EE component

module across multi-server systems.

The AMEE model can be used to complement existing

software architecture design process to improve runtime

energy concerns. It could be argued that re-directing a client

request to different server for reduction of energy

consumption per task could result in a performance

overhead; the criteria for re-direction however, can be further

optimised based on different considerations such as work

load patterns.

Since our proposal was based on virtualised

environments, future work will include evaluation of the

model using power meters and physical machines. Also we

focused the current work on AMEE model on CPU resource,

for future work we look to expand the model to take into

consideration other system resources, which raise EE

concerns like disk, network and memory.

REFERENCES

[1] S. Naumann, M. Dick, E. Kern, and T. Johann, “The

GREENSOFT Model: A reference model for green and

sustainable software and its engineering,” Sustain. Comput.

Informatics Syst., vol. 1, no. 4, pp. 294–304, Dec. 2011.

[2] B. Steigerwald and A. Agrawal, “Developing Green Software

| Intel® Developer Zone,” 2011. [Online]. Available:

http://software.intel.com/en-us/articles/developing-green-

software. [Accessed: 16-May-2014].

[3] B. Zhong, M. F. M. Feng, and C.-H. L. C.-H. Lung, “A

Green Computing Based Architecture Comparison and

Analysis,” 2010 IEEEACM Intl Conf. Green Comput.

Commun. Intl Conf. Cyber Phys. Soc. Comput., pp. 386–391,

Dec. 2010.

[4] C.-H. Hsu, S.-C. Chen, C.-C. Lee, H.-Y. Chang, K.-C. Lai,

K.-C. Li, and C. Rong, “Energy-Aware Task Consolidation

Technique for Cloud Computing,” in 2011 IEEE Third

International Conference on Cloud Computing Technology

and Science (CloudCom), 2011, pp. 115–121.

[5] N. Amsel and B. Tomlinson, “Green Tracker : A Tool for

Estimating the Energy Consumption of Software,” in CHI

’10 Extended Abstracts on Human Factors in Computing

Systems, 2010, pp. 3337–3342.

Fig. 6. Set 2 Analysis: Clustered Requests.

0

2

4

6

8

10

12

14

1.372E+12 1.372E+12 1.372E+12

C
P

U
 W

at
ta

ge
 (

W
) With AMEE

No AMEE

Time (s)

A' A

I

410.8J

429.4J

willieb
Typewritten Text
118

[6] G. Software, “Software Bloat and Wasted Joules : Is

Modularity a Hurdle to Green Software?,” no. September, pp.

97–101, 2011.

[7] D. Rogers and U. Homann, “Application Patterns for Green

IT,” The Architecture Journal - Green Computing, 2009.

[Online]. Available: http://msdn.microsoft.com/en-

us/architecture/dd393307. [Accessed: 16-May-2014].

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice, 2nd ed. Boston: Addison-Wesley Professional,

2003.

[9] E. Kern, M. Dick, T. Johann, and S. Naumann, “Green

Software and Green IT: An End Users Perspective,” vol. 3,

pp. 199–211, 2011.

[10] A. Kansal, F. Zhao, and A. A. Bhattacharya, “Virtual

Machine Power Metering and Provisioning,” pp. 39–50.

[11] I. Ari and N. Muhtaroglu, “Design and implementation of a

cloud computing service for finite element analysis,” Adv.

Eng. Softw., vol. 60–61, pp. 122–135, Jun. 2013.

[12] R. Morgan and D. MacEachern, “SIGAR - System

Information Gatherer And Reporter,” 2010. [Online].

Available:

https://support.hyperic.com/display/SIGAR/Home.

[Accessed: 16-May-2014].

[13] R. Laddad, AspectJ In Action: Enterprise AOP with Spring

Applications, Second Ed. Manning Publications Co., 2010.

[14] “The AspectJ (TM) Programming Guide.” [Online].

Available:

http://www.eclipse.org/aspectj/doc/released/progguide/index.

html. [Accessed: 16-May-2014].

[15] Varnish Software, “Load balancing with Varnish.” [Online].

Available: https://www.varnish-

cache.org/trac/wiki/LoadBalancing. [Accessed: 16-May-

2014].

[16] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet,

and P. Demeester, “Overall ICT footprint and green

communication technologies,” 2010 4th Int. Symp. Commun.

Control Signal Process., pp. 1–6, Mar. 2010.

[17] C. Siebra, P. Costa, R. Miranda, F. Q. B. Silva, and A.

Santos, “The software perspective for energy-efficient

mobile applications development,” Proc. 10th Int. Conf. Adv.

Mob. Comput. Multimed. - MoMM ’12, p. 143, 2012.

willieb
Typewritten Text
119

willieb
Typewritten Text

