
Cloud Migration Patterns: A Multi-Cloud Service

Architecture Perspective

Pooyan Jamshidi1, Claus Pahl1, Samuel Chinenyeze2, Xiaodong Liu2

1 IC4 – the Irish Centre for Cloud Computing and Commerce, Dublin City University, Ireland

{pooyan.jamshidi,claus.pahl}@computing.dcu.ie
2 Centre for Information & Software Systems, School of Computing, Edinburgh Napier University, UK

{s.chinenyeze,x.liu}@napier.ac.uk

Abstract. Many organizations migrate their on-premise software systems to the cloud.

However, current coarse-grained cloud migration solutions have made a transparent

migration of on-premise applications to the cloud a difficult, sometimes trial-and-error

based endeavor. This paper suggests a catalogue of fine-grained service-based cloud

architecture migration patterns that target multi-cloud settings and are specified with

architectural notations. The proposed migration patterns are based on empirical evi-

dence from a number of migration projects, best practices for cloud architectures and a

systematic literature review of existing research. The pattern catalogue allows an or-

ganization to (1) select appropriate architecture migration patterns based on their ob-

jectives, (2) compose them to define a migration plan, and (3) extend them based on

the identification of new patterns in new contexts.

Keywords: Cloud Architecture, Cloud Migration, Migration Pattern, Multi-Cloud.

1 Introduction

Cloud migration [1] benefits from the cloud promise of converting capital expenditure to

operational cost [2]. Mixing cloud architecture with private data centers adds operational

efficiency for workload bursts while legacy systems [3] on-premise still support core busi-

ness services. Instead of re-architecting applications, they can be re-hosted from on-premise

to possibly multiple cloud architectures, either private or public ones. We are concerned with

the migration of legacy on-premise software to multi-cloud architectures. Multi-cloud de-

ployment [4] is particularly effective in dealing with the following challenges:

 Users are widely distributed where they are located around multiple data centers.

 Country regulations limit options for storing data in specific data centers, e.g., EU.

 Circumstances where public clouds are used jointly with on-premises resources.

 Cloud-based application must be resilient to the loss of a single data center.

Current migration solutions are coarse-grained, making detailed planning difficult. For

these cloud migration processes [1], a migration plan as a verifiable artefact is not consid-

ered. The plan is prepared at either a very broad strategic level with no technical value or

very thorough and technical not suitable for non-technical stakeholders. Thus, the repeatabil-

mailto:claus.pahl%7d@computing

ity of migration processes decreases. Architecture migration patterns can make this repeata-

ble and transparent.

We address (i) how to reorganize multi-tier applications into disjoint groups of service

components, such that (ii) each such group can be deployed separately in different platforms

(i.e., cloud platforms, on-premise platform) while preserving and in most cases enhancing

the desired properties of the application. We report on 9 fined-grained core and 6 variant

cloud-specific architecture migration patterns, extracted based on empirical evidence from a

number of migration projects [5], best practice for cloud architectures [4], [6] and a system-

atic literature review [1]. Our main contribution is a set of fine-grained service-oriented mi-

gration fragments that allows application developers and architects to plan the migration and

communicate the plan and the decision with non-technical stakeholders.

The patterns define architectural change in the application re-engineering and deployment

setting, through which an application is gradually modernized and deployed in a multi-cloud.

A migration plan is defined as a composition of selected patterns for specific situations.

Cloud migration methods define activities to plan, execute and evaluate migration [7]. To

account for the situational context of applications, e.g., security, performance, availability

needs, existing approaches [1] suggest a trade-off between flexibility and ease of migration

using a fixed set of migration strategies. We propose an assembly-based approach based on

our experience in situational method engineering [8] where a method is constructed from

reusable method fragments and chunks [9]. This allows creating a migration plan from

scratch by combining existing migration building blocks in the form of migration patterns.

The usability of the approach is evaluated through a cloud migration case study at the end.

2 Background

We first introduce architecture migration patterns and the multi-cloud deployment setting.

Migration Pattern MP1: Re-deployment

Definition: An application (component) is re-deployed (moved, re-hosted) as-is on cloud platform(s)

Problem: Resource constraints limit scalability, Need to improve performance, Single point of failure, Reduce cost, Modernization

Solution: Re-deploy on cloud environments, make use of elastic resources, multiple cloud deployment for failover and scalability.

Benefits: Improved Backup and Failover, Coarse-grained scalability at application level, Simple coarse-grained re-deployment.

Challenges: Existing architecture constrains portability, deployment time/cost, scalability, integration may introduce complexity.

Migration Patterns. For each migration pattern, an architectural migration schema has to

be defined. A migration pattern is represented by an architecture diagram of the service ar-

chitecture deployment before and after migration, i.e. a migration pattern is a transformation

triple consisting of source and target architecture together with the applied pattern as the

transformation specification. Each architecture is represented by well-defined architectural

elements including services and connectors, deployment platforms (on-premise and cloud-

based) and cloud services. The notation here is loosely aligned with UML component dia-

grams, with specific component types color-coded. A service component can either be atom-

ic or contain internal components allowing for hierarchical decomposition. For example, the

migration pattern MP1 consists of a coarse-grained component that consumes services of an

on-premise deployment platform. These can be coordination services that orchestrate differ-

ent components in larger compartments or simply configurable IaaS resources providing

required operating system or storage features. After migration, this component, instead of

using on-premise platforms, uses public cloud platform services offered. Thus, the applica-

tion component is re-deployed as-is on a cloud platform. The current architecture is mirrored

in the cloud, but can take advantage of virtualization to not only reduce operational expendi-

ture, but also to create multiple instances of the application to improve scalability and failo-

ver without increasing capital expenditure. The key risk is that underlying architecture issues

are not addressed. A monolithic legacy application in the cloud is still monolithic with limi-

tations such as lack of scalability. Scalability is coarse-grained and cannot easily be achieved

if, e.g., the architecture does not allow the database to be updated by multiple instances.

Multi-Cloud. In order to build highly scalable and reliable applications, a multi-cloud de-

ployment is appropriate. Our objective is to provide architectural guidance for migrating

cloud-based systems that run on multiple independent clouds. Multi-cloud denotes the usage

of multiple, independent clouds by a client or a service. A multi-cloud environment is capa-

ble of distributing work to resources deployed across multiple clouds [10]. A multi-cloud is

different from federation where, a set of cloud providers voluntarily interconnect their infra-

structures to allow sharing of resources [10]. Hybrid deployment can be considered as a spe-

cial case of multi-cloud where an application is deployed in both on-premise as well as cloud

platforms. This deployment model is essential in cases where critical data needs to be kept in

house in corporate data centers. We reviewed different application types and their require-

ments that necessitate multi-cloud deployment – see the supplementary materials here [11].

Note that we primarily target Platform-as-a-Service (PaaS) clouds that provide middle-

ware services to host and manage application services. PaaS clouds like Microsoft Azure or

Cloud Foundry generally provide mechanisms to support the re-architecting activities here.

3 Research Methodology

The first step to identify migration patterns was to identify the concerns of organizations

moving on-premise applications to the cloud. We have identified four categories based on

feedback from industry partners in our IC4 research centre [5]:

 Availability. Cloud environments typically guarantee a minimum availability.

 Management. Use runtime information to monitor and support on-the-fly changes.

 Scalability. Scale out to meet bursts in demand and scale in when demand decreases.

 Resiliency. Provide ability for systems to gracefully handle and recover from failure.

Focus Groups / Expert Interviews. We used focus groups to identify migration process

concerns. The organizations involved were consultants for SME migration and larger multi-

nationals – technology providers and systems integrators [5]. Through migration expert in-

terviews, we looked at common processes for migration towards cloud as a framework for

more fine-grained patterns. These covered IaaS, PaaS and SaaS migration projects.

Systematic Literature Review (SLR). We recorded existing cloud design and architec-

ture patterns [4][6]. A major role in this process played a SLR on cloud migration [1]. We

detected shortcomings associated with these design patterns when we applied them in migra-

tion planning. The patterns were either limited to specific platforms [4] or fine-grained at a

very technical level [6]. To redesign an on-premise application with these patterns, it re-

quires deep knowledge of vendor-specific services as well as fair understanding of detailed

design documents. Thus, a migration plan based on these patters cannot be communicated

with non-technical stakeholders. Thus, we generalize the architectural elements of these

cloud architectures with general concepts of software architecture, i.e., components, con-

nector, on-premise/cloud platform, cloud service, cloud broker.

Empirical Analysis and Pattern Synthesis. We analyzed migration projects for a range

of CRM and retail systems as well as PaaS platform services. We generalized emerging pat-

terns, considering patterns retrieved from the SLR based on different architecture scenarios

that satisfy the migration concerns. Coarse-grained on-premise applications are not agile

enough to respond to variations in workload. In the cloud, the deployment of high-usage

components can be optimized independently of low-usage ones. Re-architecting into inde-

pendent components reduces dependencies and enables optimization for scalability and per-

formance. However, challenges remain: (1) on-premise application modernized in isolation,

not part of a consistent architecture, (2) modernization performed primarily for technical

reasons resulting in sub-optimal response to business change, (3) architectures determined

bottom-up from existing APIs and transactions may need re-evaluation for multi-clouds.

4 Cloud Architecture Migration Patterns

Some applications are integrated and support core business processes and services, but

many of them support utility needs, are certainly non-core applications and are independent.

The latter category may be obvious candidates for direct re-deployment. For the former inte-

grated core ones, refactoring (re-architecting or redesigning) is more appropriate. Our migra-

tion patterns are sequences of architectural changes in the application deployment setting,

through which the current application is gradually modernized.

To obtain unambiguous pattern descriptions and to ground pattern-based migration plan-

ning, we provide a template-based definition of migration patterns. This definition is based

on the semantics of architectural schemas before and after migration. In some migration

patterns, it may only be possible to deploy application components in a public cloud. How-

ever, for those patterns that consider re-architecting, the application can be deployed in hy-

brid public/private platforms. Due to space limitations, we do not describe all patterns fully,

for more details refer to [11]. We use a template-based description of patterns. The usability

of the patterns in migration planning will be shown through a method engineering process in

Section 5 and through a case study in Section 6.

For space reasons, only the core patterns are presented. The patterns missing from this list

are variants of some core patterns (which will be summarized afterwards). The core patterns

highlight the different construction principles for the cloud architecture: re-deployment,

cloudification, relocation, refactoring, rebinding, replacement and modernization.

Migration Pattern MP2: Cloudification

Definition: Application hosted on-premise as-is but use public cloud services for added capabilities instead of on-premise ones.

Problem: Need to improve reusability, extensibility, Avoid redundancy by consuming existing publicly accessible cloud services

Solution: Extend the on-premise application by integrating with existing public cloud services.

Benefits: Improved time to market.

Challenges: Integration may introduce greater complexity.

Migration Pattern MP3: Relocation [see variant MP4]

Definition: Component re-deployed (relocated) on cloud platform is cloudified but without evolution in the application architecture.

Problem: Enhance performance without significant architecture change, without capital expenditure for on-premise hardware.

Solution: Use cloud services to improve throughput by leveraging Queues, Database partitioning/sharding, NoSQL, Cache

Benefits: As component re-hosting in cloud and optimized performance.

Challenges: The type of application requests changes over time for example proportion of read only calls reduces, Cloud provider

does not provide the necessary services to wrap the optimizations around the application without re-architecting.

Migration Pattern MP5: Multi-Cloud Refactoring [see variants MP6, MP7, MP8, MP9]

Definition: An on-premise application is re-architected for deployment on cloud platform to provide better QoS.

Problem: Coarse-grained applications are not agile enough to respond to requirement changes or variations in workload, and cannot

take full advantage of the performance improvements that can be offered by cloud platforms.

Solution: Application re-architected into fine-grained components; deployment of high-usage comp. optimized independently of

low-usage ones; parallel design for better throughput to multi-cloud platforms; components as independent integrity units.

Benefits: Optimal scalability/performance, range of multi-cloud deployment options, agility to respond to business/IT change.

Challenges: On-premise application is modernized in isolation; Modernization is performed primarily for technical reasons, Com-

ponent architecture is only determined bottom-up may need to be re-evaluated because of multi-cloud environment.

Migration Pattern MP10: Multi-Cloud Rebinding [see variant MP11]

Definition: A re-architected application is deployed partially on multiple cloud environments and enables the application to contin-

ue to function using secondary deployment when there is a failure with the primary platform.

Problem: Failure such as a bug or configuration error that impacts cloud services may cause a failure to a cloud platform.

Solution: Architecture for resilient systems (routes users to closest data center) used for failover: monitor services, if unavailable,

traffic is routed to healthy instances. On-premise adapter (bus or load balancer) provides integration of components

Benefits: As unhealthy services become healthy again, traffic can be delivered, returning system responsiveness to maximum.

Migration Pattern MP12: Replacement [see variants MP13, MP14]

Definition: Individual capabilities in a re-architected solution are re-provisioned rather than re-engineered.

Problem: Some existing components provided by current application are not the best alternative to meet business requirements.

Solution: Analyze and identify capabilities to be replaced by cloud services (capabilities that can be supported by re-architected

system), identify alternative cloud services with benefit over re-engineering of current capability to replace components

Benefits: The solution is improved though best-in-class cloud services, Re-engineering costs and effort are saved.

Challenges: Cloud services presume specific communication protocol that make the replacement a challenging tasks.

Migration Pattern MP15: Multi-Application Modernization

Definition: Different on-premise applications A1/A2, C1 are re-architected as a portfolio and deployed on cloud environment.

Problem: The re-architecting of on-premise applications in isolation does not remove inconsistencies in data or duplicated func-

tionalities, nor reduce the cost of their combined operation or maintenance.

Solution: Current applications are analyzed jointly to identify opportunities for consolidation/sharing. Separation of service and

solution architecture enables the identification of components (capabilities) that are shared by more than one solution.

Benefits: Consistent information / rules in shared components, Reduced operation / maintenance costs for shared components,

Challenges: Lack of business commitment to shared capabilities.

Variants for the following core patterns can be identified [11]:

 MP3 Relocation: MP4 (relocation for multi-clouds)

 MP5 Multi-Cloud Refactoring: MP6 (hybrid refactoring), MP7 (hybrid refactoring

with on-premise adaptation), MP8 (hybrid refactoring with cloud adaptation), MP9

(hybrid refactoring with hybrid adaptation)

 MP10 Multi-Cloud Rebinding: MP11 (rebinding with cloud brokerage)

 MP12 Replacement: MP13 (replacement with on-premise adaptation), MP14 (re-

placement with cloud adaptation)

Further variants can be added, but we will show the sufficient completeness of the given set

to model common PaaS migration scenarios in the use case evaluation.

5 Assembly-based Situational Architecture Migration

To enable migration planning as a tractable process, appropriate building blocks have to

be selected and combined. Migration patterns embed desirable principles for the target archi-

tectural deployment. Migration patterns represent fine-grained migration activities to be

combined into a migration plan, ensuring that combined patterns do not violate pattern prop-

erties. For example, a pattern for the replacement of an on-premise component can be com-

bined with a pattern for refactoring. This ensures that an architecture migration plan can be

created incrementally. Figure 1 shows this pattern composition process. The patterns form a

sequence of activities by which an application is gradually migrated and refined.

Figure 1. Migration Transition Graph.

A migration transition graph provides a generic migration plan based on situations and

possible migration patterns. The graph nodes are current architectural configurations and

edges are migration patterns. The directed nature of the graph shows sequencing of patterns.

Since multiple edges can enter a node, the model is able to represent many candidate plans.

There are initial and target architectures, but also intermediate application architectures.

Migration plans are triples <source config, pattern, target config> that correspond to a mi-

gration step to achieve the target configuration from a specific configuration following a

particular pattern. Note that one path from the source configuration (current on-premise ap-

plication architecture) to the target (multi-cloud application architecture) will be chosen.

Table 1 shows the patterns base as a mapping of migration patterns and concerns for

which they are suitable. These patterns can be used to form a plan (see Figure 1). This map-

ping is used to narrow down the related patterns and we can select the final pattern by com-

paring the situation through the “benefit” part in the pattern template. The selected patterns

can be integrated based on the presence/absence of overlaps between patterns. The flexibility

of this approach is restricted only by the set of available migration patterns. The patterns can

be extended over time, e.g., by integrating a new solution to new problems. For a more de-

tailed description of the assembly-based approach, see the supplementary material [11].

Table 1. Cloud Migration Pattern Selection.

6 Case Study and Validation

The usability of the migration patterns shall be evaluated through a case study. We use a

sample migration project based on our work with Microsoft Azure as a PaaS cloud for illus-

tration and validation. This project acts as a representative for a range of migrations we ex-

amined (and for the latter two categories also implemented). These include several CRM

systems (e.g., larger configurations based on commercial products), online retail solutions

and services utilizing cloud storage solutions. Usability refers to the suitability of the pattern

set to provide options and facilitate staged migration plans. Thus, we need to demonstrate the

utility of all patterns, but also that the set is sufficiently complete to model a range of cases.

Context. A financial services company decides to migrate in-house applications to the

cloud. It uses Microsoft technologies, but it also has legacy systems deployed on UNIX.

Some applications have external ports, while others are exclusively for internal use. The

importance of the applications ranges from marginal to critical. A significant portion of the

IT budget is spent on maintaining applications with marginal importance.

Challenges. New applications take long for deployment, causing problems with adapting

to changes. For any application, requirements must be analyzed, procurement processes must

be initiated and networks must be configured. The infrastructure is used inefficiently. The

majority of servers are underutilized. It is difficult to deploy new applications with the re-

quired SLA to the existing hardware. Applications in a public cloud platform can take ad-

vantage of economies of scale and have automated processes for managing.

Concerns. An objective is to improve the user experience. Some applications vary in us-

age (e.g., used once every two weeks, like salary-wages, but rarely at other times). They

would benefit from the cloud-based increased responsiveness during peak times. A second

objective is to expand ways to access applications. Applications located in the public cloud

are available over the Internet, but authentication concerns exist. A third goal is portability,

Objective MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 MP11 MP12 MP13 MP14 MP15

Time to market -- -- -- -- --

New capabilities -- -- -- --

Reduce operational cost -- -- -- -- -- --

Leverage investments -- -- --

Free up on premise resources

Scalability -- -- -- -- -- -- --

Operational efficiency -- -- -- -- -- -- -- --

R
e-

h
os
t

C
lo
u
d
if
ic
a
ti
o
n

Relocation

Refactor

Rebinding
Replacement

M
o
d
er

n
iz
a
ti
on

i.e., it can be moved between a cloud and a private data center without modification to appli-

cation code or operations. Furthermore, a tractable migration plan is essential.

Application. The migration starts with the Expense application. This allows employees to

submit and process expenses and request reimbursements. Employees can tolerate occasional

hours of downtime, but prolonged unavailability is not acceptable. Most employees submit

expenses within the last days before the end of each month, causing high demand peaks. The

infrastructure for the application is scaled for average use only. The application is deployed

on-premise. It requires high volume storage because most stored receipts are scanned.

Figure 2. Application Architecture before Migration to the Cloud.

Expense is an ASP.NET application. It uses Windows authentication for security. To store

user preferences, it relies on ASP.NET profile providers. Exceptions and logs are imple-

mented with Enterprise Library's Exception Handling Application Block and Logging Appli-

cation Block. It uses Directory Service APIs to query data. It stores information on SQL

Server. Receipts are stored in a file system. The architecture is illustrated in Figure 2.

The migration plan. The existing servers, networks, and associated systems such as

power supply and cooling are managed by the company. We present a set of migration steps

and decisions made to reach a tractable migration plan by adopting the presented patterns.

Step1. Move the application to a cloud platform unchanged providing infrastructure relia-

bility and availability. Management costs for running the hosted operating system and OS

licenses must be considered, but development costs can be reduced as applications do not

need to be refactored. Migration patterns MP1, MP3, MP4 suit, of which MP1 was selected,

because only copy-as-is to the cloud without need for environmental services required.

Step2. An alternative is to adapt Expense to run as hosted on a platform by an external

partner. This would avoid costs of porting the application to a different system and reduces

management cost. There is work involved in refactoring the application to run in cloud-

hosted roles. MP5-MP11 can be selected. Since the user profiles were to be kept on-premise.

Pattern MP6 was selected because there was no need for any interface adaptation (as in

MP7-MP9) or multi-cloud deployment (as in MP10 and MP11).

Step3. Abandon the own payment application and rent a typically more generic cloud ser-

vice, which needs to be evaluated regarding security, performance, and usability. MP12,

MP13, MP14 suit, but a need to integrate Expense with a Payment service, favors MP13.

Step4. For an external hosting decision, data storage facilities offered by cloud platforms

are required. Expense requires a relational database system and NoSQL storage to store re-

ceipt images. MP12 was selected as Azure SQL and Storage offerings meet requirements.

Step5. Remote applications need to be integrated with other cloud services and on-

premise for data access and monitoring. A systems operation or authentication tool could be

used for monitoring, requiring remote services to be integrated. MP7, MP8, MP9, MP12,

MP13, MP14 can be selected. Due to a need for some adaptations, MP14 was selected.

Step6. Although only employees use Expense, the payment sub-system also used by other

applications must always be available. MP10, MP11 can be selected, but if the development

of failover rebinding is to be avoided, a broker as in MP11 is utilized (e.g., to deploy the

payment system on Amazon and keep a mirror on Azure to route requests in case of failure).

Step7. Value-added services from the cloud such as caching can maximize performance

when retrieving data or can cache output, session state and profile information. Further fea-

tures include authentication and delivering non-authenticated content. MP3 was selected to

accommodate these environmental services of the cloud provider.

Figure 3. Application Architecture after Migration to the Cloud.

Migration path. One possible migration path is presented below. The result is the de-

ployment architecture in Figure 3. The migration steps are illustratively represented in [11].

Depending on the concerns of an organization, different combinations of hosting, data store

and cloud services are possible. For example, MP1 step 1 follows a more gradual migration

by adopting the hosting approach, but uses SQL Server hosted in a VM before moving to an

Azure SQL Database. Using MP3 instead would take advantage of storage capabilities (ta-

ble/blob storage) and caching instead of relational databases to improve performance early

rather than late.

Migration Step Requirement Chosen Patterns

1 Minimal code changes to application and familiarity with platform MP1

2 Granular control of resource usage and opportunity for auto-scaling MP6

3 Lower cost although some limitations on feature availability MP13

4 Replacing on-premise storage with cloud offerings MP12

5 Integration with cloud utility services MP14

6 Highly available service replacement MP11

7 Better user experience, improved efficiency, and load leveling MP3

Discussion. For the migration plan, we had different requirements, but were able to find a

satisfactory patterns solution. Thus, the requirement satisfaction in this case is achieved and

met by the proposed patterns [8]. Technically, we can only conclude that the migration pat-

terns are complete and useful for all situations arising from the use case. However, we have

analyzed and considered other migration, e.g., different IaaS/PaaS/SaaS migration processes

[5]. The storage refactoring options relating to relational, table and blob storage, particularly

addressed by patterns MP1 and MP3, are specifically addressed in [12]. This paper high-

lights the re-architecting options that advanced PaaS clouds offer, but also shows that while

in this paper quality concerns such as scalability or availability are covered, their quantifica-

tion and a trade-off analysis with cost aspects is not covered. Often, which specific paths are

chosen is driven by more in-depth quality concerns. Our solution focuses on functional ar-

chitecture aspects and only includes quality and cost concerns qualitatively.

7 Related Work

We conducted a review in [1] with the objective to identify, taxonomically classify, and

systematically compare the existing research focused on planning, executing, and validating

migration of legacy systems towards cloud-based software. We found a lack of repeatable

and verifiable practices as one of the key reasons that cloud migration is not a fully mature

domain. In the context of the Cloud-RMM migration framework [1], our work here can be

categorized as a contribution to migration planning.

Cloud migration approaches range from decision making to enabling legacy software mi-

gration with approaches reporting best practice, experience and lessons learned in between.

Decision making for cloud adoption (e.g., [13][14]) is inherently complex and influenced by

multiple factors such as cost and benefits through migration [15]. In contrast, some ap-

proaches enable the actual migration of legacy software in terms of procedures and model

transformation (e.g., [16]). Some other work reports on lessons learned and best practices

[17] – providing empirical evidence for migration research.

A number of migration strategies and best practices have been suggested in terms of pat-

terns in [18][19][20]. These are rather informal and do not consider a multi-cloud setting.

The objective there was mainly classification of existing best practice into migration strate-

gies. The key advantage and novelty of our work, more than a set of patterns, is the notion of

assembly-based situational migration at the architecture level, specifically towards pattern-

based migration planning for multi-cloud deployment. It enhances the state-of-the-art by a

tractable planning approach based on composable patterns.

8 Conclusion and Outlook

We identified cloud migration patterns, which in combination allow planning the migra-

tion of applications for multiple cloud platform deployment. The introduction of migration

patterns complements existing migration practices and allows for an engineering approach

towards constructing and evaluating the migration plan. The migration patterns are reusable

and composable architectural change patterns that we see as building blocks of an overall

migration process, reflected through a migration plan as a sequence of pattern applications.

Future work will include the development of a migration pattern repository as a tool that

facilitates migration planning as well as application of the patterns to new domains and mi-

gration cases. To demonstrate the usability and completeness of the patterns beyond busi-

ness-oriented SaaS and standard PaaS-level services such as storage, currently we are in the

process of evaluating others for migration planning in three cases with our industry partners.

We also plan to formally represent the relations between migration patterns in order to form

a pattern map and work toward a pattern language for migration practices.

Acknowledgments. The research work described in this paper was supported by the Irish Centre for Cloud Compu-

ting and Commerce (an Irish national Technology Centre funded by Enterprise Ireland and the Irish Industrial

Development Authority) and the Royal Irish Academy/Royal Society International Cost Share Grant IE131105.

9 References

[1] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud Migration Research: A Systematic Review,” IEEE

Trans. Cloud Comput., vol. 1, no. 2, pp. 142–157, 2013.

[2] M. Armbrust, “Above the clouds: A Berkeley view of cloud computing,” 2009.

[3] R. Khadka, A. Saeidi, and A. Idu, “Legacy to SOA Evolution: A Systematic Literature Review,”

in Migrating Legacy Applications, 2012.

[4] B. Wilder, Cloud Architecture Patterns. Oreilly, 2012.

[5] C. Pahl, H. Xiong, and R. Walshe, “A Comparison of On-premise to Cloud Migration

Approaches,” European Conference on Service and Cloud Computing ESOCC'13, 2013.

[6] C. Fehling, et al., Cloud Computing Patterns. Vienna: Springer Vienna, 2014.

[7] V. Tran, J. Keung, A. Liu, and A. Fekete, “Application migration to cloud,” SECLOUD ’11.

[8] M. F. Gholami, M. Sharifi, and P. Jamshidi, “Enhancing the OPEN Process Framework with

service-oriented method fragments,” Softw. Syst. Model., 2011.

[9] I. Mirbel and J. Ralyté, “Situational method engineering: combining assembly-based and

roadmap-driven approaches,” Requir. Eng., 2006.

[10] N. Grozev and R. Buyya, “Inter-Cloud architectures and application brokering: taxonomy and

survey,” Softw. Pract. Exp., vol. 44, no. 3, pp. 369–390, Mar. 2014.

[11] P. Jamshidi and C. Pahl, “Cloud Migration Patterns - Supplementary Materials,” 2014. [Online].

Available: http://www.computing.dcu.ie/~pjamshidi/Materials/CMP.html.

[12] E. Gamma, et al., Design patterns: elements of reusable object-oriented software. 1994.

[13] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic optimization for deployment and

reconfiguration of software in the cloud,” ICSE, 2013.

[14] S. Frey, W. Hasselbring, and B. Schnoor, “Automatic conformance checking for migrating

software systems to cloud infrastructures and platforms,” J. Softw. Evol. Process, 2013.

[15] S. C. Misra, “Identification of a company’s suitability for the adoption of cloud computing and

modelling its corresponding return on investment,” Math. Comput. Model., 2011.

[16] S. Frey and W. Hasselbring, “The cloudmig approach: Model-based migration of software

systems to cloud-optimized applications,” Int. J. Adv. Softw., 2011.

[17] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt applications for the

Cloud environment,” Computing, vol. 95, no. 6, pp. 493–535, Dec. 2012.

[18] L. Wilkes, “Application Migration Patterns for the Service Oriented Cloud,” 2011. [Online].

Available: http://everware-cbdi.com/ampsoc.

[19] N. C. Mendonca, “Architectural Options for Cloud Migration,” Computer, 2014.

[20] C. Fehling, et al., “Service Migration Patterns -- Decision Support and Best Practices for the

Migration of Existing Service-Based Applications to Cloud Environments,” ICSOC, 2013.

