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a b s t r a c t 

In this paper, we present a novel feature extraction technique, termed Three-Dimensional Local Energy- 

Based Shape Histogram (3D-LESH), and exploit it to detect breast cancer in volumetric medical images. 

The technique is incorporated as part of an intelligent expert system that can aid medical practitioners 

making diagnostic decisions. Analysis of volumetric images, slice by slice, is cumbersome and inefficient. 

Hence, 3D-LESH is designed to compute a histogram-based feature set from a local energy map, calcu- 

lated using a phase congruency (PC) measure of volumetric Magnetic Resonance Imaging (MRI) scans in 

3D space. 3D-LESH features are invariant to contrast intensity variations within different slices of the MRI 

scan and are thus suitable for medical image analysis. 

The contribution of this article is manifold. First, we formulate a novel 3D-LESH feature extraction 

technique for 3D medical images to analyse volumetric images. Further, the proposed 3D-LESH algorith- 

mis, for the first time, applied to medical MRI images. The final contribution is the design of an intelligent 

clinical decision support system (CDSS) as a multi-stage approach, combining novel 3D-LESH feature ex- 

traction with machine learning classifiers, to detect cancer from breast MRI scans. The proposed system 

applies contrast-limited adaptive histogram equalisation (CLAHE) to the MRI images before extracting 

3D-LESH features. Furthermore, a selected subset of these features is fed into a machine-learning classi- 

fier, namely, a support vector machine (SVM), an extreme learning machine (ELM) or an echo state net- 

work (ESN) classifier, to detect abnormalities and distinguish between different stages of abnormality. We 

demonstrate the performance of the proposed technique by its application to benchmark breast cancer 

MRI images. The results indicate high-performance accuracy of the proposed system (98% ±0.0050, with 

an area under a receiver operating charactertistic curve value of 0.9900 ± 0.0050) with multiple classifiers. 

When compared with the state-of-the-art wavelet-based feature extraction technique, statistical analysis 

provides conclusive evidence of the significance of our proposed 3D-LESH algorithm. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Extraction of distinctive features is a vital task in medical im-

age analysis as it assists in the detection and diagnosis of chronic

diseases. Just as human beings are capable of deriving a story

from a picture using background information, machines can ex-

tract semantic knowledge from an image and build a computa-

tional model, by retrieving significant information that uniquely

and precisely defines the object of interest ( Kumar & Bhatia, 2014 ).

The success of accurate medical diagnosis from MRI images de-

pends on reliable and accurate methods for extracting important
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atterns from a medical image sequence (or slices). A variety of

ethods have been proposed in the literature for extracting signif-

cant features for medical diagnosis, some of these are discussed in

he related works section . A common problem with these methods

s that they lack the capability to handle an image sequence, since

 long sequence generates variations in the illumination condition.

Our proposed 3D-LESH feature extraction technique is based on

he PC model. PC is a dimensionless quantity which represents fine

etailed image patterns using a local energy map, depicting cor-

ers and edges. The resulting features are localized as they are

erceived at points where the Fourier components are maximal

nd thus, are suitable for an extended image sequence. The PC

odel has a psychophysical impact on human feature perception

 Kovesi, 2003 ). The next section outlines the choice of breast can-

er detection using MRI images as our target case study, followed
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y review of related work. This is followed by a detailed descrip-

ion of the 3D-LESH feature extraction technique and CDSS system,

nd comparative simulation results. 

.1. Background 

Despite advancements in medical science, breast cancer in

omen remains the second most fatal cause of death, accounting

or almost 29% of recently diagnosed cancer cases in the US. It is

stimated that approximately 40,290 women died from this dis-

ase in 2015, with rates increasing every year ( American Cancer

ociety, 2016; Siegel, Miller, & Jemal, 2016; Shulman, Willett, Siev-

rs, & Knaul, 2010 ). Individuals at an advanced cancer stage, with

arge tumour sizes at the time of diagnosis, have much lower lev-

ls of survival, indicating the urgency for early detection ( American

ancer Society, 2016 ). Timely and effective treatment plans can be

evised by Doctors through use of CDSS, coupled with advanced

edical imaging techniques. 

Mammography has been considered the mainstay for cancer di-

gnosis for decades, however it’s low sensitivity rate in detecting

esions from dense breast tissue results in unnecessary biopsies,

ausing emotional and economic stress for patients. Furthermore,

he requirement for breast compression can also cause discomfort

or patients ( Aminololama-Shakeri & Khatri, 2014 ) 

To overcome the aforementioned limitations of mammography,

ew breast imaging modalities have emerged, such as ultrasonog-

aphy, computed tomography (CT) and MRI. Over the past decade,

RI has evolved into a well-established breast imaging modality

ecause of its low ionising radiation and high sensitivity in de-

ecting in-situ and invasive breast cancer ( Palestrant, Comstock,

 Moy, 2014 ). It has also been found to be efficient for detect-

ng cancer staging, and for prognosis and treatment monitoring

 Palestrant et al., 2014 ). 

Multiple research trials have shown that breast MRIs provide

uperior sensitivity for breast cancer detection when compared

ith mammographic and sonographic imaging ( Menezes, Knut-

el, Stehouwer, Pijnappel, & van den Bosch, 2014 ). MRI is not only

esilient in detecting early stages of breast cancer but also effec-

ive in evaluating the size of the tumour, lymph node involvement,

etastases and response to treatment (chemo- and radiation-

herapy) ( Aminololama-Shakeri & Khatri, 2014; Ojeda-Fournier, de

uzman, & Hylton, 2013 ). In the UK, MARIBS (Magnetic Resonance

maging in Breast Screening) was conducted to evaluate the capac-

ty of MRI for screening breast cancer in premenopausal women. It

as found that MRI is more sensitive (77%) compared to mammo-

rams (40%), as it can detect lesions that are left undetected using

ammograms. 

.2. Related work 

The challenge of distinguishing between malignant and benign

esions using MRI images has been addressed by many researchers

 Seely, 2012 ). Keyvanfard et al. extracted the shape, texture and ki-

etic features from a segmented region of interest (ROI) containing

he lesions, and experimented with different classifiers, namely, a

ulti-layer perceptron (MLP), probabilistic neural network (PNN),

eneralized regression neural network (GRNN), support vector ma-

hine (SVM) and radial basis function (RBF) networks, to distin-

uish between malignant and benign MRI lesions. They combined

est results to develop a multi-classifier system that achieved

n overall accuracy of 90% ( Keyvanfard, Shoorehdeli, Teshnehlab,

ie, & Su, 2013 ). Levman et al. computed temporal features from

OIs extracted from dynamic contrast-enhanced magnetic reso-

ance images (DCE-MRI), and applied SVM networks to distin-

uish between malignant and benign cases ( Levman, Leung, Causer,

lewes, & Martel, 2008 ). Arbach, Stolpen and Reinhardt applied a
ack propagation neural network (BNN) to classify benign and ma-

ignant cases extracted from breast MRI images, and achieved an

rea-under a-receiver operating characteristic curve (AUROC) value

f 0.913 ( Arbach, Stolpen, & Reinhardt, 2004 ). 

Aghaei et al. investigated the response of a tumour and its sur-

oundings to chemotherapy in MRI images. To accomplish this task,

hey first extracted 39 kinetic features and analyzed these through

eature fusion, by combining classification results generated from

he application of multiple feature sets. Next, they combined an ar-

ificial neural network (ANN) and a wrapper subset evaluator, us-

ng a leave-one-case-out validation method for classification pur-

oses and reported an AUROC value of 0.96 ± 0.03 ( Aghaei et al.,

015 ). Yang et al. (2015) devised a technique for discriminating

alignant and benign tumour cases from segmented MRI images,

y extracting kinetic and background parenchymal enhancement

BPE) features and applying SVM using a leave-one-case-out strat-

gy. They achieved a performance AUROC value of 0.919 ± 0.029, by

ombining multiple useful features. Huang extracted a morpholog-

cal, grey-level co-occurrence matrix (GLCM) and ellipsoid fitting

eatures from segmented lesions and applied a bi-serial correla-

ion coefficient to select a resilient set of features, reporting a per-

ormance accuracy of 88.42% ( Huang et al., 2013 ). Chen et al. ex-

racted four features – time-to-peak, maximum contrast enhance-

ent, washout rate of the lesion, and uptake rate – from the char-

cteristic kinetic curve of breast lesions using DCE-MRI images, and

hen applied fuzzy c-means clustering to discriminate between be-

ign and malignant cases ( Chen, Giger, Bick, & Newstead, 2006 ).

zabo et al. extracted kinetic, morphological and combined MR fea-

ures from MRI images of lesions. Application of an ANN-based

lassification model resulted in a performance as competent as

hat of an expert radiologist ( Szab, Wiberg, Bon, & Aspelin, 2004 ).

einel et al. presented a scheme to classify segmented breast

RI lesions on a scale from benign to malignant, with the help

f 42 shape, texture and enhancement kinetic features. The best

f these features were then selected and fed to a BNN. The per-

ormance was compared to that of a human observer and found

o be significantly enhanced ( Meinel, Stolpen, Berbaum, Fajardo,

 Reinhardt, 2007 ). Honda et al. applied quadratic discriminant

nalysis (QDA) on features extracted from DCE-MRI breast image

asses, namely dynamic changes in signal intensity, shape irregu-

arity, and margin smoothness. They achieved a classification accu-

acy, sensitivity and specificity of 85.6%, 87.1%, and 82.1%, respec-

ively ( Honda, Nakayama, Koyama, & Yamashita, 2016 ). Lee et al.

xperimented with spatiotemporal association features extracted 

rom time-series contrast-enhanced MRI images, with the tumours

egmented using fuzzy c-means clustering. A least-squares support

ector machine (LS-SVM) classifier was employed to differentiate

etween malignant and benign cases ( Lee et al., 2010 ). Yang et al.

xtracted global kinetic features from DCE-MRI to classify malig-

ant and benign tumours (Yang et al., 2016). 

Hassanien and Kim proposed a system to distinguish between

bnormal and normal breast MRI cases ( Hassanien et al., 2012 ).

hey first enhanced the MRI using an adapted fuzzy type-II algo-

ithm. Next, they segmented the ROI using a pulse-coupled neu-

al network (PCNN), and extracted wavelet features from the seg-

ented ROI. Finally, they applied SVM for classification, result-

ng in a classification error of 5.1% ( Hassanien et al., 2012 ). Has-

anien et al. extended this research to diagnose breast cancer from

RI images by applying ant-based clustering for ROI segmentation

 Hassanien, Moftah, Azar, & Shoman, 2014 ). Subsequently, they ex-

racted statistical features from the ROI and used a MLP neural

etwork to perform classification, reporting a mean absolute error

MAE) of 0.0339 ( Hassanien et al., 2014 ). Agliozzo et al. developed

 computer-based system to classify malignant and benign masses

n MRI images. They experimented with different f eature subsets

morphological, kinetic and spatiotemporal features) in conjunction
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with support vector regression, and reached a maximum area un-

der the AUC curve value of 0.96 ± 0.02. A genetic algorithm was

employed to select the best possible combination of these features

( Agliozzo et al., 2012 ). 

Anger et al. developed a system to distinguish between ma-

lignant and benign lesions in dynamic contrast-enhanced mag-

netic resonance imaging (DCE-MRI). Their technique applied an

expectation-maximization-driven active contours scheme for auto-

matic segmentation of breast lesions. Morphological, textural and

kinetic features were extracted and classification performed using

a SVM network. The system reached an accuracy of 83%, sensitiv-

ity of 79% and specificity of 88% ( Agner et al., 2009 ). El Nawasany,

Ali and Waheed proposed an algorithm for tumour detection from

MRI images which applied a perceptron algorithm in conjunction

with the scale-invariant feature transform (SIFT) feature extraction

technique and achieved an accuracy of 86.76% ( ElNawasany, Ali, &

Waheed, 2014 ). 

The transformation of images into feature sets aids in the clas-

sification and recognition of ROI in medical images [92]. Inten-

sive research has been undertaken to develop new techniques and

methods that can enable extraction of resilient features from med-

ical images and, in turn, enhance the CDSS diagnosis system. Some

of these state-of-the-art methods and approaches have been dis-

cussed above, where researchers have mainly experimented with

diverse types of features to assess their impact on CDSS diagnosis

performance. The relative merits and demerits of these tecniques

are summarized in Table 1 . 

It is interesting to note that, all methods explored to-date have

a rather large margin for performance enhancement, hence re-

searchers have reported comparative results by assembling differ-

ent subsets of features to enhance the diagnostic capabilities of the

overall CDSS system. 
Table 1 

An illustrative review of different feature extraction techniques for breast cancer detectio

Feature type Applied in Strength 

Shape ( Keyvanfard et al., 2013 ). Concise, robust and eas

( Meinel et al., 2007 ). 

(Honda et al., 2015) 

Kinetic ( Levman et al., 2008 ) Effective to determine 

malignant tumours 

( Agliozzo et al., 2012 ), Agner et al., 

2009 ), ( Chen et al., 2006 ) 

Morphological ( Agliozzo et al., 2012 ), ( Agner et al., 

2009 ) 

It helps to remove nois

the objects in the im

Texture Features ( Aghaei, Tan, Hollingsworth, Qian, Liu, 

and Zheng, 2015; Huang et al., 2013 ) 

Simple and easy to com

Spatiotemporal 

association features 

( Agliozzo et al., 2012 ; Lee et al., 2010 ). Effective in predicting 

Wavelet ( Hassanien et al., 2012 ). Wavelet features also t

discriminating amon

abnormalities in mam

localized in the time

Scale invariant feature 

transform (SIFT) 

( ElNawasany et al., 2014 ). Rotation and scale inva

3D-LESH Proposed algorithm Robust in discriminatin

benign ones as well 

stages. 

LESH is a histogram of

maximum level at th

intensity. Accordingly

texture variations in 
In contrast, our proposed method, the 3D-LESH feature ex-

raction technique, developed as part of a multi-stage framework

ased on MRI images, offers a significant increase in performance

hen compared to state-of-the-art techniques. Our main contri-

ution in this paper is the development of 3D-LESH features and

heir application in conjunction with machine learning classifiers,

or diagnosing cancer malignancies and stages of cancer using MRI

mages. The conventional LESH (for two-dimensional images) has

een previously applied in diverse pattern recognition applications.

n particular, Sarfraz and Hellwich initially developed this tech-

ique for facial recognition systems, with different face and head

oses ( Sarfraz & Hellwich, 20 08a , b , 20 09 ). Zakir, Zafar and Ediris-

nghe applied LESH to detect and recognize different road signs

utomatically ( Zakir, Zafar, & Edirisinghe, 2011 ). Wajid and Hus-

ain applied the LESH feature extraction technique in conjunction

ith SVM, both to detect malignancy and distinguish between var-

ous types of malignancy in mammogram images ( Wajid & Hus-

ain, 2015 ). This technique was further extended through appli-

ation of an ESN classifier to mammogram images ( Wajid, Hus-

ain, & Luo, 2014 ). More recently, the LESH feature extraction tech-

ique, combined with SVM, ESN and ELM classifiers, was employed

n chest radiographs to distinguish lungs with and without nod-

les, and to make a distinction between normal and abnormal lung

odules. All these experiments demonstrated the high distinguish-

ng capability of the proposed system ( Wajid, Hussain, Huang, &

oulila, 2016 ). 

The technique proposed in this paper provides a novel con-

ribution in the form of a new 3D-LESH algorithm, which com-

utes features for MRI datasets in 3D, by convolving the image

ith a 3D gabor filter, and then calculates the 3D phase con-

ruency. This technique is applied, for the first time, on 3D MRI

mages to detect malignancies. Further applications in CT scan
n from MRI images. 

Weaknesses 

y to compute The initial locus of the beginning point may affect 

the correct shape feature approximation (M. 

Mahrooghy et al., 2013 ). 

the speculated margin of Not efficient in detecting intra-tumour 

heterogeneity, thus lacking the capability of 

tumour characterization ( M. Mahrooghy et al., 

2013 ). 

e and create an outline of 

age 

Hard to generalize in a situation where 

micro-classification as well as speculated masses 

are involved 

pute Not effective in discriminating different stages as 

well as types of malignancies. 

tumour malignancy They are not based on heterogeneity partitioning 

and do not respond to enhancement in spatial 

frequency 

urned out to be excellent in 

g different types of 

mograms. They are well 

 and frequency domain. 

Wavelets suffer from a loss of generality. 

Wavelets have efficient image representation but 

fail to represent discontinuities along curves and 

edges. 

riant Mathematically complicated and computationally 

heavy. 

g malignant cases from 

as depicting the cancer 

They are not scale and rotation invariant. 

 local energy, which is at a 

e abrupt change of image 

, it marks the significant 

the local area. 

Further extensive assessment and clinical 

validation is essential, using additional clinical 

data-sets, to validate the clinical significance of 

the proposed algorithm. 
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mages are also envisaged, to demonstrate the technique’s wide

pplicability. 

The rest of this paper is organized as follows: Section 2 in-

roduces the proposed 3D-LESH algorithme; Section 3 presents

he experimental work performed; Section 4 summarises the re-

ults and discussion; and finally Section 5 outlines conclusions and

ome future work directions. 

. Three-Dimensional local energy-based shape histogram 

3D-LESH) feature extraction 

A novel 3D-LESH technique is developed for extracting informa-

ive patterns from volumetric medical images, to assist in medi-

al diagnosis. It builds on the local energy model of Morrone and

wens (1987) , which considers image features at the maximum

hase of the Fourier components ( Kovesi, 2003 ), corresponding to

he peak of the local energy. We compute these features using a di-

ensionless measure, the PC, in three-dimensional space. The 3D-

ESH features are normalized within the range of 1 (highly signifi-

ant) to 0 (not significant features). 

The technique investigates valuable image statistics by com-

uting a histogram of the local energy pattern within the image

 Wajid et al., 2014 ). 3D-LESH features are calculated using the fol-

owing steps. 

.1. Convolution with 3D log-Gabor 

The original approach to compute the local energy of the sig-

al involves computation of a Hillbert transform (using Fourier

ransform) of the signal, before convolving it with a pair of fil-

ers in quadrature, to remove the DC component, resulting in a

and pass version of the original signal. The conventional approach

as been extended to compute the PC of two-dimensional images.

n this approach the image is convolved with filters in quadrature

ith the first Hillbert transform, producing a 90-degree phase shift

f the other image. These two resultant outputs are squared and

ummed to produce a measure of the local energy for the overall

mage ( Kovesi, 1999 ). 

However, this method has the drawback that the Fourier trans-

orm is not considered an appropriate measure for the computa-

ion of local energy, and is not capable of considering the spread

f frequencies congruent at a particular point. Considering these

efects, we adopt the log-Gabor filter-based convolution (wavelet

ransform) for obtaining local frequency information from the 3D

RI images, after computing the Fourier transform. Application

f wavelet filters for obtaining local frequency information was

riginally proposed as a Morlet wavelet in ( Kovesi, 1999 ). In this

pproach, the local energy is computed by first convolving the

ourier transform of the volumetric image I with the bank of three-

imensional wavelet-based log-Gabor filters, in quadrature with

ifferent orientations n and scales c, hence calculating the phase

nd amplitude of the image. 

The 3D log-Gabor filter is computed by multiplying the one-

imensional log-Gabor function (in the radial frequency) and the

aussian (in the angular distance with rotational symmetry in

pherical coordinates), given as follows ( Ferrari et al., 2011 ): 

 ( ω, �) = exp 

{ 

−
(
log 

(
ω 
ω i 

))2 

2 

(
log 

(
σω 

ω i 

))2 

} 

× exp 

(
−α( �) 

2 

2 σ 2 
α

)
(1) 

here �= ( θ , φ) represent the filter orientation for the sphere

f unit radius, θ is the elevation angle and φ is the azimuth an-

le. ω i corresponds to the central radial frequency of the i th filter

nd σω and σα are standard deviations controlling the filter band-

idth ( Dosil, Pardo, & Fdez-Vidal, 2005; Ferrari et al., 2011 ). The
atio ( σω 
ω i 

) is kept constant to keep the shape ratio filters persis-

ent, hence given as ( σω 
ω i 

) = − 1 
4 

√ 

log2 β within the range 0- 1, and

is in octave ( Ferrari et al., 2011 ). 

α(�) = arccos ( . ω. v 
v ) , v = ( cos φ. cos θ, cos φ. sin φ, sin θ ) and

 is a point in the frequency space in Cartesians ( Dosil et al., 2005;

errari et al., 2011 ). 

In this case, DC components are removed from the image while

etaining other frequency components intact. The bank of wavelet

lters is designed so that each filter overlaps its neighbours and

he entirety of all the transfer functions provides even coverage of

he spectrum, when reconstructing the original image over a fre-

uency band, with a certain scale factor ( Kovesi, 20 0 0 ). Here, the

requency component is constructed by convolving the image with

ven and odd filter components and the scale of the filter controls

he frequency range for calculating PC ( Kovesi,1999 ). If we let G 

e v en 
cn 

nd G 

odd 
cn be the even-symmetric and odd-symmetric wavelet filters

t scale c and orientation n , the convolution results in a response

ector given as: 

 e n ( s, �) , o n ( s, �) ] = [ I(s) ∗ G ( ω, �) even 
cn , I(s) ∗ G ( ω, �) odd 

cn ] (2) 

here s indicates a location (x, y, z) in the image I . Hence, the am-

litude of the response at a given scale and orientation is com-

uted as: 

 n ( s, �) = 

√ 

( e n ( s, �) ) 
2 + ( o n ( s, �) ) 

2 (3) 

nd the sensitive phase deviation measure ( Kovesi,1999 ) is given

s: 


n ( s, �) = cos 
(
φn ( s, �) − φ̄n ( s, �) 

)
−
∣∣sin 

(
φn ( s, �) − φ̄n ( s, �) 

)∣∣ (4) 

= e n ( s, �) ̄φe ( s, �) + o n ( s, �) ̄φo ( s, �) 

−
∣∣e n ( s, �) ̄φo ( s, �) − o n ( s, �) ̄φe ( s, �) 

∣∣ (5) 

here φ̄e ( s, �) = 

∑ 

n 
e n ( s, �) /E ( s, �) , (6) 

¯
o ( s, �) = 

∑ 

n 

o n ( s, �) /E ( s, �) (7) 

Finally, the local energy is computed as: 

 ( s, �) = 

√ (∑ 

n 

e n ( s, �) 

)2 

+ 

(∑ 

n 

o n ( s, �) 

)2 

(8) 

.2. Computation of 3D phase congruency 

PC is only useful if it occurs on a wide range of frequency;

hus, it is computed as the local energy normalized by the sum

f Fourier amplitude components as: 

 C 3 D ( s, �) = 

E ( s, �) ∑ 

n A n ( s, �) + ε
(9) 

 C 3 D ( s, �) = 

∑ 

n W ( s, �) � A n ( s, �) 	
n ( s, �) − T � ∑ 

n A n ( s, �) + ε
(10) 

here the enclosed measure � •� is equal to itself, if positive, and

s zero otherwise for the spatial location s = (x, y, z) in the 3D

RI image, and �= ( θ , 
) is the filter orientation with unit ra-

ius for the sphere. T is the noise level threshold of the image en-

rgy map and ε is a small constant for avoiding division by zero

 Ferrari et al., 2011 ). 

W ( s, �) = 

1 

1+ e γ ( d−l( s, �) ) is the phase congruency weighting

unction ( Kovesi, 1999 , 20 0 0 ), where d represents the lower bound
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Table 2 

3D-LESH feature extraction algorithm. 

Algorithm: Let I be a breast MRI image with a certain pixel location given as 

s = (x, y, z) . 

Begin: 

1. Convolve the Fourier transform of the image I with a bank of 3D 

log-Gabor filter G ( ω, �) given in “(1),” with different orientations n and 

scales c . The resultant convolution response vector is given in “(2)”. 

2. Calculate the amplitude of the response using “(3)”. 

3. Calculate the sensitive phase deviation measure using “(5)”. 

4. Calculate the local energy using “(8)”. 

5. Calculate the 3D phase congruency for the image using “(10)”. 

6. Compute the 3D-LESH feature vector using “(11) & (12) ”. 

End 
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Fig. 1. Workflow of the proposed CDSS framework. 
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1

for the filter response spread (threshold). Below this, the phase

congruency value is penalized, and γ , the gain factor, controls the

sharpness of the filter response spread ( Ferrari et al., 2011 ). 

Given that l( s, �) = 

1 
N ( 

∑ 

n A n ( s, �) 
A max ( s, �)+ ε ) is the filter response spread

measure, calculated by summing the amplitudes ( A n ) and dividing

by the highest individual response ( A max ). This produces the width

of the distribution ( Ferrari et al., 2011 ). 

2.3. Design of 3D-LESH feature extraction 

The orientation label map for each voxel is computed, and each

voxel is assigned a label of the orientation which exhibits the

largest energy across all scales. 

Finally, a histogram of the local energy of each sub-region,

along each orientation of the 3D image, is generated and combined

to preserve the relationships between different regions. The resul-

tant 3D-LESH feature vector is calculated as follows: 

h r,b = 

∑ 

V r × P C 3 D ( s, �) × δLb (11)

 r = 

1 √ 

2 πσ
e [ ( x −r x 0 ) 

2 + ( y −r y 0 ) 
2 + ( z−r z0 ) 

2 
] / σ 2 

(12)

Where V r is the Gaussian weighting function of region r with stan-

dard deviation σ , centered at ( r x 0 , r y 0 , r z 0 ), in the 3D MRI image,

PC 3 D ( s , �) represents the local energy computed by “(1),” and δLb ,

represents Kronecker’s delta of the orientation label map L and

current bin b . In order to keep the spatial relation intact, a 8 bin lo-

cal histogram is computed to correspond to the 8 filter orientations

for each of the 16 sub-regions of the 3D image, hence producing a

128-dimensional feature vector. Table 2 illustrates the overall algo-

rithm for 3D-LESH feature extraction. 

2.4. Computational complexity of 3D-LESH feature extraction 

technique 

Here we analyze the computational complexity of our proposed

3D-LESH algorithm. Assuming a standard volumetric MRI image is

of size D x × D y × D z where D z represents the number of slices, and

D x × D y is a slice/image in the xy-plane. Assuming D = D x = D y = D z

(for the sake of simplicity), where D is always within a limit, the

overall algorithm will converge in all cases. In the case of seg-

mented ROI, D = 64 , where in the case of breast area analysis, de-

tecting a stage of breast cancer D would equate to 128. 

First, the Fourier transform of the image is computed. For a

one-dimensional signal of size D , the Fourier transform takes O(D

log D) operations. Hence, in the case of an image of size D 

3 , it will

take O(D 

3 log D) ( Ferrari et al., 2011 ). 

Next, the transformed image is convolved with a 3D-log Gabor

filter in the frequency domain, resulting in D 

3 operations. Thus,

O(D 

3 log D + D 

3 ) operations are performed per filter bank. As the

total number of filters is c (scale) × θ (the elevation angle) ×φ (the
zimuth), leading to O (D 

3 log D + D 

3 ) c θφ. Next, the computation of

C 3 D ( s , �) as well as h r,b requires D 

3 operations. The total times

omplexity can thus be written as: 

 ( D, c, θ, φ) = O 

(
D 

3 log D + D 

3 
)
cθφ + D 

3 + D 

3 

= O 

(
D 

3 log D 

)
cθφ = O 

(
D 

3 log D 

)
(13)

Values of scales, elevation and azimuth can be variables, but

or our work they are kept fixed and provided in the experimental

ection. 

In order to analyze the space complexity of the algorithm, we

an see that, initially, to keep the Fourier transform of the image

s well as the result of convolution of the Fourier transform with

he Gabor filter, an O(D3) space is required. Similarly, the space

equired to compute PC 3D (s, �) and h r,b is O(D3) : hence the total

pace complexity can be stimated as: 

p = O 

(
D 

3 + D 

3 + D 

3 
)

= O 

(
D 

3 
)

(14)

The next section provides details of various stages of the pro-

osed CDSS framework and their experimental evaluation. 

. Experimental work 

The workflow of the proposed CDSS framework for breast can-

er diagnosis, based on the 3D-LESH feature extraction technique,

s depicted in Fig. 1 . 

.1. Breast MRI dataset 

For the evaluation of our proposed system, we collected 137

reast cancer MRI scans from the cancer atlas for breast cancer,

pecifically the TCGA-BRCA data set, provided by The Cancer Imag-

ng Archive (TCIA) of the Frederick National Laboratory for Can-

er Research ( Clark et al., 2013 ). TCGA-BRCA is the largest publicly

vailable data set of breast MRIs. Each MRI scan is accompanied

y clinical and pathological data, giving histopathological informa-

ion about the cancer’s location and its stage, as diagnosed by the

adiologist. These stages are related to the lesion size, its growth

nd the area of spread. Once the stage is clear, it helps the doc-

or decide which treatment is the most appropriate to enhance the

atient’s prognosis and promote a faster recovery. The TCGA-BRCA

ata set contains MRI image samples for stages I–III. Figs. 2 –4

show sample MRI images for stages I, II and III, respectively. Of

he abnormal cases identified in the MRI data set, the majority be-

ong to stage II ( Clark et al., 2013 ). 

The selected MRI images are in standardized digital (DICOM)

ormat, obtained using a standard double breast coil on a 1.5T GE

hole-body MRI system (GE Medical Systems) ( Li et al., 2016 ). The

ata set consists of T1-weighted, T2-weighted, pre-contrast and

ost-contrast images ( Clark et al., 2013 ). Geir Torham et al. sug-

est a T2-weighted image modality for detecting abnormalities in

reast parenchyma; hence only T2-weighted images are used for

his study, with spacing between slices ranging from 2 to 3 mm.

ost of them are size 512 × 512 or 256 × 256 with an average of

00 slices ( Ali & Ray, 2013 ). 
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Fig. 2. Sample T2-weighted MRI displaying Stage I from the TCGA-BRCA data set, (a) axial view, (b) sagittal view, and (c) coronal view. 

Fig. 3. Sample T2-weighted MRI displaying Stage II from the TCGA-BRCA data set, (a) axial view, (b) sagittal view, and (c) coronal view. 

Fig. 4. Sample T2-weighted MRI displaying Stage III from the TCGA-BRCA data set, (a) axial view, (b) sagittal view and, (c) coronal view. 
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.2. Image enhancement 

To improve the diagnosis capability, the MRI images were first

nhanced by the application of the CLAHE technique on a slice-by-

lice basis. 

CLAHE first partitions a slice/image into contextual sub-regions

nd calculates their respective histogram equalization (HE) using

 specific number of bins, by applying an experimentally deter-

ined threshold. Lastly, each region’s intensity values are mapped

ith respect to the new histogram results. The final CLAHE im-

ge is then reconstructed by interpolating the grey-level mapping

 Sundaram, Ramar, Arumugam, & Prabin, 2011 ). The calculation of

E is described below. 

.2.1. Histogram equalization (HE) 

HE is a conventional technique to adjust image intensities

hich applies non-linear, monotonic mapping of intensity values

f the pixels so that the transformed image has a uniform distri-

ution of intensity values. Let I be the image with pixel intensity

alues ranging from 0 to L-1 , where L is 256, then the probability

f occurrence of intensity value r k can be written as ( Gonzalez &

oods, 2002 ): 

p r ( r k ) = 

number of pixels with intensity k 

total number of pixels in the image 
k : 0 to L − 1 

(15) 
The cumulative distribution function corresponding to p r is

iven as: 

d f ( k ) = 

k ∑ 

i =0 

p r ( r k ) (16) 

Thus, the histogram equalization acts as an image transforma-

ion method so that the transformed image is obtained by mapping

ach pixel with intensity r k , to the corresponding level s k given as:

 k = ( L − 1 ) ∗cdf ( k ) (17) 

This transformation is termed histogram equalization. 

.3. Image segmentation 

The regions of interest (ROI) were manually segmented from

he surrounding parenchyma by sketching a boundary around the

esion, in three-dimensional space (using axial, sagittal and coronal

iews) identified by the radiologist, as provided in the correspond-

ng pathology report. All the ROIs were resized as 64 × 64 × 64. We

xtracted 193 (110 abnormal and 93 normal) ROIs from TCGA-BRCA

RI cases using the ITK-SNAP tool version 3.2.0 ( Yushkevich et al.,

006 ). These ROIs were used to test the performance of the CDSS

or distinguishing between normal and abnormal cases. 

We extended our experiment further to identify cancer stages

y analyzing the breast parenchyma as a whole, since stages are

ecognized by analyzing the size and the location spread of the

esion singly as well as multi-focally. The segmented breast region

as resized to 128 × 128 × 128. The statistics of the abnormal MRIs

omprised 22 stage I, 70 stage II and 18 stage III cases. 
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Fig. 5. Sample T2-weighted MRI image, its local energy map and 3D-LESH feature vector plot, (a) Sample T2-weighted MRI image in sagittal view, (b) Its local energy map, 

and (c) 3D-LESH feature vector. 
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Reservoir

J input units

Fig. 6. Basic ESN architecture (Dotted lines are optional connections) ( Jaeger, 2001 ). 
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3.4. Feature extraction 

We applied the 3D-LESH feature extraction technique to ROIs

extracted from the MRI images. For 3D-LESH computation, the Ga-

bor filter was designed to control all the filters in the equator of

the sphere, while orientations were integrated into the xy-plane.

This set-up is appropriate for analyzing MRI images as their in-

slice resolution is less significant than slice thickness ( Ferrari et al.,

2011 ). 

We experimentally determined an appropriate spectrum cover-

age of the filters for the number of wavelet scales c as 5 , and the

number of filter orientations n as 8. The wavelength of the minimal

scale filter was set to 3 , and the scaling factor between successive

filters was 2.1 . The ratio factor ( σω 
ω i 

) was taken as 0.55 and θ (the

elevation) and φ (the azimuth) were each set to 1.2. 

The noise standard deviation was set to 2.0 , with a threshold of

0.5 , below which the phase congruency values are penalized. Fig. 5

shows a sample MRI image, the local energy map and its associ-

ated 3D-LESH feature plot. 

The proposed technique was implemented in MATLAB R2010a

and executed multiple times on a system that had an Intel Pentium

i7- running at 2.3 GHz and 16GB RAM. Computation of 3D-LESH for

a segmented breast region (size 128 × 128 × 128) took 30.23 CPU

time on average whereas in the case of segmented ROI of size

64 × 64 × 64, it took 4.031 CPU time on average. The results are

given in detail in Section 4 . 

3.5. Feature selection 

We selected a subset of the N largest 3D-LESH coefficients, say

h N from 3D-LESH feature vectors, ( h r,b ), for classification purposes.
hese selected feature coefficients were fed to a machine learning

lassifier to distinguish between the different stages and discrimi-

ate among normal and abnormal cancer cases. 

.6. Classification with selected machine learning classifiers 

Classification is an integral part of CDSSs for the prediction and

iagnosis of a specific disease. It assigns a class/label (from pre-

efined classes) to new cases in a data set, on the basis of the

nformation incorporated into their respective feature sets. 

The selected 3D-LESH features h N were fed to three widely used

lassifiers, namely SVM, ESN and ELM, and their comparative per-

ormance evaluated. A short description of each classifier is given

elow. 

.6.1. Support vector machine (SVM) 

SVM, proposed by Vapnik (20 0 0 ), is a supervised learning clas-

ification technique with a high generalization capability. Given a

et of feature vectors of the training set in h N , the SVM classi-

er draws a hyperplane which separates them into two distinct

lasses: abnormal (class label 1) and normal (class label 0). The

yperplane is given as below: 

 ( h N ) = w 

T h N + w 0 = 0 (18)

here, w represents a vector normal to the hyperplane. The train-

ng of SVM produces a model which is used for testing the model

apability to assign a specific class to a new unknown feature vec-

or. If features are not linearly separable, they are transformed to a

igher dimensional space using some kernel methods. We experi-

ented with linear, polynomial and RBF kernels for this purpose,

s described below. 

.6.1.1. Linear kernel. It is the most suitable choice if a feature set

s linearly separable. 

 ( h N , h N ′ ) = h N 
T 

h N ′ + C (19)

here C is the optimal constant ( Wajid & Hussain, 2015 ). 

.6.1.2. Polynomial kernel. The polynomial kernel with degree d

an be written as: 

 ( h N , h N ′ ) = 

(
γ h N 

T 
h N ′ + C 

)d 
(20)

here γ and C are adjustable constants and d is the degree of the

olynomial ( Wajid & Hussain, 2015 ). 

.6.1.3. Gaussian, radial basis function (RBF) kernel. 

 ( h N , h N ′ ) = exp 
(
−γ ‖ 

h N − h N ′ ‖ 

2 
)

γ > 0 (21)

here γ is a positive parameter to control the radius ( Wajid &

ussain, 2015 ). 
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Fig. 7. A typical extreme learning machine structure with input nodes h N , hidden 

nodes g(h N ) and output nodes y ( Huang, 2015 ). 
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.6.2. Echo State Network (ESN) 

We demonstrate here the capability of ESN to classify abnor-

al/normal cases and to distinguish between different stages of

ancer (for the case of binary as well as multiclass classifiers). 

Given an ESN with J input network units (feature vectors)

 N ( m ) = ( h N 1 ( m ), h N 2 ( m )… h N J ( m )) T , a large, fixed-size ( K ) reservoir

f recurrent neural networks (RNN), also termed internal units

 ( m ) = ( x 1 ( m ), x 2 ( m ),…, x K ( m )) T , are generated from input signals.

urther, J output signals y ( m ) = ( y 1 ( m ), y 2 ( m ),…, y J ( m )) T are pro-

uced as a linear combination of these response signals from the

eservoir ( Jaeger H., 2001; Løkse S. et al., 2017; Zhong et al., 2017 ).

he overall basic ESN structure with activation of the units at time

tep m is depicted in Fig. 6 . 

The internal units of the network are updated as: 

 ( m + 1 ) = f 
(
W 

in hN ( m + 1 ) + W 

t x ( m ) + W 

back y ( m ) 
)

(22) 

here f = (f 1 ……..f k ) is the internal unit output function {mostly a

igmoid function tanh} at time step m . Further, the output is cal-

ulated as: 

 ( m + 1 ) = f out 
(
W 

out ( hN ( m + 1 ) , x ( m + 1 ) , y ( m ) ) 
)

(23) 

here these units within ESN are connected through real-valued

onnection weights as: W 

in for the connection between input and

nternal units, W 

t for the weights for the reservoir, W 

out for the

onnection between the internal reservoir and outer units, and

 

back for the weights for back propagation. 

f out = ( f out 
1 

. . . . . . . . . f out 
L 

) are output functions applied to combi-

ations of the input, internal and previous output vectors at time

tep m ( Jaeger H., 2001 ). 

We conducted experiments using the ESN code produced by

aeger (2001 ). Once ESN is trained, testing is performed and re-

ults are evaluated using performance measures described in the

ext section. For extending ESN to a multiclass problem (classifica-

ion of multiple stages of cancer), the one-vs-all scheme is applied.

.6.3. Extreme learning machine (ELM) 

Huang (2015) presented ELM as a novel learning paradigm for a

ingle-hidden-layer feed-forward neural network (SLFN), in which

eature mapping between input and hidden layers is random and

nly weights between hidden and output layers are trained. Given J

raining samples ( h N i , y i ) 
J 
i =1 

∈ R N × R 1 , the output of an ELM, with

˜ 
 hidden nodes, can be written as follows ( Huang, 2015 ): 

 i = 

∑ ˜ N 

j=1 
β j g j ( h N i ) = 

∑ ˜ N 

j=1 
β j g 

(
h N i ; a j , b j 

)
(24) 

here a j = [ a 1 , a 2 ….., a N ] 
T and b j are learning parameters for the

 th hidden neuron and β j = [ β1 , . . . . . . , β ˜ N ] 
T is the weight vector

etween the hidden and output layers; g ( h N i ; a j , b j ) is the acti-

ation function, which can be a non-linear piecewise continuous

unction, e.g. sigmoid, Fourier, hard-limit, Gaussian. The ELM struc-

ure is depicted in Fig. 7 . A number of ELM variants have been re-

orted in the literature to-date ( Liu Y. et al., 2017; Guo T. et al.,

017 ). 

. Results and discussion 

Experiments were conducted with the TCGA-BRCA data set to

istinguish abnormal and normal cases and to diagnose the stage

f abnormality. We report results using a classification accuracy

easure which accounts for the number of correct predictions

ade from overall predictions. We also employ a receiver oper-

ting characteristic (ROC) curve to measure the significance of the

esults generated. The ROC is plotted as the true positive rate (TPR)

gainst the false positive rate (FPR). The area under the curve

AUC) A z lies within the range 0 to 1 (1 being the highest perfor-

ance), and is the probability of how effective a classifier can rank
 randomly selected positive instance higher than a randomly cho-

en negative one (assuming ‘positive’ ranks higher than ‘negative’)

 Fawcett, 2006 ). 

We applied a grid search with ten-fold cross-validation to de-

ermine suitable parameters for SVM classifiers. In the case of SVM

ith RBF kernel, the slope parameter γ and the penalty parame-

er C were tuned, while in the case of SVM with the linear kernel,

nly C was tuned and the polynomial kernel of degree two was

elected for experimentation. All results were averaged using ten-

old cross-validation and are presented in Tables 3 and 4 . 

The results indicate that 3D-LESH features combined with SVM

lassifiers provide an efficient classification performance ( Table 3 ).

he most significant performance was achieved by the SVM lin-

ar classifier, which had a classification accuracy of 99.47 ± 0.47%,

hen 100 or all 3D-LESH features were selected ( Table 3 ), and an

 z value of 0.9956 ± 0.0044 ( Table 3 ) for classification of normal

nd abnormal cases. Similarly, SVM with the RBF kernel also per-

ormed well, attaining an accuracy of 98.95 ± 0.052 (Table 3) and

n A z value of 0.9909 ± 0.056 ( Table 3 ). 

As can be seen in Table 3 , ELM resulted in a high classification

ccuracy of 99.47 ± 1.03% and A z value of 0.9856 ± 0.0033 overall.

inally, the SVM with polynomial kernel had a maximum perfor-

ance of 98.48% and A z value of 0.9909, when 100 3D-LESH fea-

ures were selected. The ESN similarly showed a maximum perfor-

ance of 91.52% and A z value of 0.9226 for 100 selected 3D-LESH

eatures. 

It is further evident from comparative results in Table 4 that

D-LESH is a good choice for detecting the various cancer stages. In

his case, ELM outperformed every other classifier by distinguish-

ng the different stages with a classification accuracy of 95.45% for

tage I, 98.18% for stage II and 98.18% for stage III, when all features

ere selected. The SVM linear classifier was found to be capable of

istinguishing between the different stages of breast cancer with a

aximum accuracy of 96.09% for stage I, 86.36% for stage II and

1.09% for stage III ( Table 4 ). The rest of the classifiers showed a

ower overall performance. 

In all cases, multiclass classification was performed on the

asis of the ‘one-vs-all’ scheme to distinguish between different

tages of abnormalities. The application of the proposed feature

et in conjunction with machine learning classifiers affirmed the

esilience of 3D-LESH features. 

In summary, the results reported in Tables 3 and 4 emphasize

he superiority of 3D-LESH features for distinguishing between dif-

erent stages of cancer, as well as for detecting the existence of

ancer in the medical images. Furthermore, it is evident that se-

ecting a subset of all available features does not deteriorate the

lassification performance. The ROC curve for different classifiers,

epicted in Fig. 8 , provides a comparison of the overall perfor-

ance of classifiers. 
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Table 3 

3D-LESH-based classification accuracy % (Abnormal/Normal) for MRI data set. 

Features Selected SVM with RBF SVM with Linear SVM with Polynomial ESN ELM 

Accuracy Az Accuracy Az Accuracy Az Accuracy Az Accuracy Az 

50 98.95% 0.9909 98.94% 0.9954 98.44% 0.9859 90.65% 0.8946 97.89% 0.9758 

100 99.47% 0.9954 99.47% 0.9954 98.42% 0.9909 91.52% 0.9226 98.92% 0.9894 

All 98.43% 0.9843 99.48% 1.0 0 0 0 98.45% 0.9864 85.83% 0.8990 99.47% 0.9861 

Table 4 

Selected 3D-LESH features (50, 100 & All) with multiclass (One-vs-All) SVM. Results show classifier performance accuracy % for the MRI data set. 

Stage SVM with Linear SVM with RBF SVM with Polynomial ESN ELM 

50 100 All 50 100 All 50 100 All 50 100 All 50 100 All 

I 88.09 71.72 96.09 72.72 85.37 89.36 60.90 83.86 93.09 86.87 80.89 89.99 97.27 95.45 95.45 

II 73.45 72.72 86.36 77.27 53.63 84.46 67.27 77.72 81.81 73.63 81.78 86.79 97.27 95.45 98.18 

III 78.18 70.91 91.09 77.73 68.18 86.54 81.18 83.36 83.36 87.90 84.45 92.34 96.36 95.45 98.18 

Fig. 8. ROC curve for classification of abnormal/normal cases in the MRI data set 

(linear SVM and RBF SVM curves are seen to be overlapping, whereas the polyno- 

mial SVM curve is partially overlapping, with part of it invisible). It can be seen that 

the performance of linear SVM and ELM is higher than other classifiers whereas 

ESN shows notably inferior performance. 
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3  
4.1. Comparative analysis of 3D-LESH and wavelet-based feature 

extraction for classification performance 

We compared the performance of 3D-LESH with a benchmark

wavelet feature extraction technique ( Ferreira & Borges, 2003;

Mousa, Munib, & Moussa, 2005 ). Ferreira and Borges (2003) ap-

plied the Daubechies wavelet transform ( Daubechies, 1992 ) to

two-dimensional mammograms by first decomposing the image

into four levels, as demonstrated by Mallat (1989) . Subsequently,

only low-level frequency coefficients were selected as features, as

they demonstrated the capability to enhance classification accuracy

among multiple abnormality types, and to detect abnormal cases

in mammograms. 

In this paper, we extended the wavelet technique ( Ferreira &

Borges, 2003 ) to 3D MRI images by selecting 100 largest wavelet

coefficients, which were experimentally determined to be the

most appropriate choice for reducing the effect of curse of di-

mensionality, without compromising performance. Ferreira and

Borges (2003) also experimented with different numbers of se-

lected, high-degree wavelet coefficients and applied SVM to clas-

sify these. They found 100 largest selected features to be the most

appropriate choice, which concurred with our findings. 

The results for 3-D LESH and wavelet-based feature extraction

techniques are reported in Tables 3, 4 and 5 respectively. The com-

parative results confirm the superior performance of 3D-LESH fea-

tures in both binary and multiclass classification cases. 
.2. Statistical analysis of results using the t -test 

We compared performance of the 3D-LESH feature extraction

echnique with the benchmark wavelet texture feature extraction

echnique, using the t-test at a significance level of 0.05. For this

xperiment, we selected the ELM classifier since it resulted in a

omparatively higher performance in cases of binary as well as

ulticlass classifications. Other classifiers’ performance may also

e evaluated, which is proposed for future study. Let μL and μW 

e mean performance accuracies for 3D-LESH and wavelet-based

ethods respectively (with the mean calculated from ten-fold

ross-validation results). We tested the following hypothesis: 

 0 : μL − μw 

= 0 

( LESH per f or ms like wa v elets ) against 
(25)

 0 : μL − μw 

= 0 

( LESH per f or ms better than wa v elets ) 
(26)

The results are reported in Table 6 . In both binary and multi-

tage cases, the p-value is seen to be higher than the 0.05 con-

dence level, which suggests the difference in the classification

ccuracy is significant. Thus, it can be stated that our proposed

D-LESH feature extraction technique performs significantly better

han the wavelet-based approach. In future, other state-of-the-art

eature extraction methods may also be compared with our tech-

ique. 

The t -test results ( Table 7 ) testify to the significance of our pro-

osed algorithm since, regardless of the choice of classifier, the

D-LESH outperforms wavelet feature descriptors. This is due to

he fact that the wavelets fail to represent discontinuities along

urves and edges. The wavelet feature descriptors primarily focus

n a specific type of abnormality and try to detect its malignancy,

hereas the 3D-LESH-based methodology has the advantage of de-

ecting the malignancy of any type of abnormality and can differ-

ntiate among different stages of malignancy with considerable ef-

ciency. 

Our proposed 3D-LESH feature descriptors are computed as a

istogram of local energy; the highest degree 3D-LESH feature co-

fficients thus represent the most prominent set of features in the

ocal area within an image. We experimented with different sub-

ets of 3D-LESH features and observed their effect on the overall

ystem performance ( Tables 3 & 4 ). Our experiments showed that

 subset of these features can be selected with minimal compro-

ise on classification accuracy, thus reducing dimensionality. 

.3. Visual evaluation of the 3D-LESH technique 

For further evaluation of our proposed technique, we visualized

D-LESH features for the MRI dataset with different classification
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Table 5 

Wavelet (Daubechies)- based feature extraction classification results for binary classification of normal 

and abnormal cases for the MRI data set. 

Measure SVM with RBF SVM with Linear SVM with Polynomial ESN ELM 

Accuracy % 71.36 72.42 73.47 50.50 93.28 

A z 0.7460 0.7568 0.7659 0.5443 0.9249 

Table 6 

Wavelet-based feature extraction for multiclass (One-vs-All) classification performance accuracy % for 

the MRI data set. 

Abnormality type SVM with RBF SVM with linear SVM with polynomial ESN ELM 

Stage I 70.90 66.36 68.18 66.67 85.45 

Stage II 57.27 83.63 55.45 49.80 84.54 

Stage III 88.18 93.63 93.63 75.00 85.98 

Table 7 

The results of the t -test at level of significance = 0.05 for binary classification. 

Method Alternate Hypothesis Ha P-value T-value Null Hypothesis H 0 

SVM (Linear) μL −μw > 0 0.0 0 0 04 9.39 Reject 

SVM (Polynomial) μL −μw > 0 0.0 0 0 019 7.45 Reject 

SVM (RBF) μL −μw > 0 0.0 0 0 0 02 9.43 Reject 

ESN μL −μw > 0 0.0 0 0 0 04 8.94 Reject 

ELM μL −μw > 0 0.038 2.002 Reject 
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Fig. 9. Abnormal and normal cases plotted in three principal component space ac- 

count for 85% of total variance in 3D-LESH feature vectors (comprising the 100 

largest 3D-LESH coefficients). 

Fig. 10. Abnormal and normal cases plotted in two principal component spaces 

account for 64% of total variance in 3D-LESH feature vectors (comprising the 100 

largest 3D-LESH coefficients). The decision boundary lines are shown for: Lin- 

ear kernel SVM (black), RBF kernel-based SVM (blue) and Polynomial kernel SVM 

(pink). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
echniques, using the method suggested by Levman et al. (2008) .

he latter is based on computation of principal component anal-

sis (PCA) for dimensionality reduction of the feature vectors.

ther popular methods found in the literature include self-

rganizing maps for feature set visualization of lesions in MRI

ata ( Nattkemper & Wismüller, 2005 ), an SVM-based method

 Komura, Nakamura, Tsutsumi, Aburatani, & Ihara, 2004 ) and a rel-

tive distance map approach ( Somorjai et al., 2004 ). 

In our case, 3D-LESH feature vectors are of 128 length and

ence challenging to visualize. We performed PCA to reduce their

imensionality. PCA is a powerful tool to measure variation in ob-

ervations while discovering a useful relationship between them.

t rotates the feature vectors in such a way that the resultant

rthogonal axes are aligned to the maximum variance in them

 Levman et al., 2008 ). Hence to visualize the capability of our 3D-

ESH features to discriminate normal and abnormal cases, we pro-

ected the 3D-LESH space to two and three dimensional spaces

y application of PCA, plotting only two or three PCA compo-

ents, since they preserve the highest Eigen values. Fig. 9 shows

he 3D-LESH features (100 largest selected coefficients) in a three-

imensional PCA component space. We can see that these features

xhibit the potential to help discriminate abnormal cases from nor-

al ones. Fig. 10 depicts a visual representation of the feature vec-

ors in a two-dimensional PCA component space (for PCA compo-

ents one and two) for the three selected classifiers. It is clear that

he discriminating power of 3D-LESH enhances the classification

erformance. 

.4. Clinical significance of the proposed CDSS 

Research in clinical decision support systems for health care is

ontinuously evolving, leading to the emergence of novel scientific

hallenges at the intersection of medical science, patient care and

nformation technology. 

MRI is known to be the most sensitive modality for breast can-

er detection, one that efficiently highlights abnormalities in the

reast region, and is thus recommended for women at risk of

reast cancer. 

Patient survival is proportionate to the stage of the cancer at

iagnosis. According to Nover et al, “It is 98% for a10-year sur-

ival rate for patients with stages 0 and I of the disease whereas
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it is 65% for a10-year survival rate for patients with stage III dis-

ease” ( Nover et al., 2009 ). It is thus vital to identify the disease

at an early stage. Cancer stages in MRI images are labelled using

TNM representation by the American Joint Committee on Cancers

(AJCC), where T(tumour) corresponds to the size and location of

the tumour, N(node) corresponds to where the cancer has spread

in the lymph node and M(Metastasis) corresponds to whether it

has reached other parts of the body ( Nover et al., 2009 ). 

By diagnosing cancer, as well as its stage, physicians can plan

appropriate treatments, namely, the type of surgery, chemotherapy

or radiation therapy, in addition to better predicting the chance

of recovery and the likely recurrence of cancer ( Edge & Comp-

ton, 2010 ). 

Our proposed 3D-LESH-based CDSS is capable of providing en-

hanced patient care through early diagnosis of breast cancer in

women via MRI analysis. It can also offer a more accurate progno-

sis of the disease, enabling appropriate laboratory tests to be per-

formed and suitable therapy and drug dosage to be determined. 

5. Conclusions and future work 

Intelligent CDSS or expert systems for diagnosing chronic dis-

eases are vital. As highlighted in in this paper, research carried out

in this area has mainly involved diverse experiments using bench-

mark medical datasets, to improve the chances of early diagno-

sis and greater survival rates. For example, in other related work,

Yang and Chen suggested the application of data-mining tech-

niques, such as decision tree classification and rule-based meth-

ods, for detecting lung cancer stages, using patient data extracted

from pathological reports accessed from the TCGA website ( Yang

& Chen, 2015 ). Neves et al. proposed another system, combining

multi-scale linearity with SVM and polynomial classification tech-

niques to detect prostate cancer. They reported encouraging classi-

fication performance with an AUC value of 0.906 ( Neves & Nasci-

mento, 2009 ). Lee and Phoebe suggested a cloud computing frame-

work to analyse medical images for detection of diverse kinds of

cancer, namely, breast, skin, prostate and lung cancers ( Lee and

Phoebe, 2015 ). 

This article is another contribution to the growing field of CDSS

applications. It provides an effective hybrid framework for assess-

ing breast cancer based on an analysis of volumetric medical im-

ages. The analysis is carried out by applying novel image process-

ing and machine-learning techniques in multiple stages, as part of

our proposed CDSS framework, to identify the existence of poten-

tially cancerous cells and various cancer stages. This can enable

greater accuracy in cancer prognosis leading to timely interven-

tions and treatments. 

Comparative experimental results reported in this paper

demonstrate that, when 3D-LESH features are combined with SVM,

ESN and ELM machine learning classifiers, the overall accuracy

attained by our proposed feature extraction technique is higher,

compared to many of the techniques found in literature. 

It is also evident from the results that a subset of these fea-

tures can be selected without compromising classification accu-

racy, hence reducing the dimensionality. We experimented with

different numbers of highest degree 3D-LESH coefficients and

found that N = 100 is most appropriate for improving the classifica-

tion accuracy, while reducing the effect of curse of dimensionality

( Wajid & Hussain, 2015 ). 

In the future, more extensive evaluation and clinical validation

will be performed with additional 3D clinical data sets in con-

junction with recently reported feature selection and classification

methods. We also intend to employ a new type of a hybrid ap-

proach to optimize an ensemble feature set adaptively, on the ba-

sis of a combination of 3D-LESH and other state-of-the-art feature

extraction techniques, while selecting the most significant features
o optimise classification performance. Furthermore, an intensive

tudy of the clinical significance of 3D-LESH features when applied

o a real clinical data set may lead to potentially useful clinical in-

ights. 

Finally, we plan to experiment with both deep and re-

nforcement learning algorithms ( Mahmud et al., 2018; Zhong

. et al., 2018 ) as well as SVM variants such as the arbitrary

orm SVM ( Huang et al., 2010 ), the sparsely connected SVM

 Huang, Zheng, King, & Lyu, 2009 ) and the multi-layered ESN

 Malik, Hussain, & Wu, 2017 ), to further enhance and optimise

lassification of volumetric medical images. We will also exploit

ensitivity analysis (SA) to identify 3D-LESH features that have

inimal effect on classification results. SA can faciltate the rank-

ng of features according to their effect on the model output,

elping reduce imperfections related to dimensionality reduction

 Boulila, Bouatay, & Farah, 2014; Ferchichi, Boulila, & Farah, 2015a,

nd 2015b ). 
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