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Abstract 

 

The theory of series solutions for two important classes of the general higher-

order linear homogeneous ordinary differential equation is developed ab initio, 

using an elementary complex integral expression derived and applied in previous 

papers [10, 11], based on the original work of Herrera [5]. As well as producing 

general expressions for the recurrence relations for higher-order equations with 

analytic coefficients or the general-order Fuchs’ equation, the complex integral 

method is straight-forward to apply as an algorithm on its own. ‘Benchmark’ 

examples from the general mathematic literature, are presented and a brief 

discussion of ‘logarithmic’ solutions is included. 
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1.  Introduction 
 

In this paper, we continue the project [10, 11] of developing power series and 

Frobenius series solutions of ordinary differential equations (ODE) using a 

particular complex integration procedure. As before we find that the technique 

reduces the solution of the original ODE, through the complex integral trans-

formation [5, 10, 11], to a system of simple equations for the indices of the series 

coefficients that define the series recurrence relation. In fact, as well as presenting 

further examples of the technique, we apply the complex integral methodology to 

series solutions of both the general or Nth-order linear homogeneous ODE ([6], 

chapter XV) 
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and the general or Nth-order Fuchs’ equation ([6], chapter XVI) 
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(notice the different summation order). As for the notation, in equations (1.1) and 

(1.2) the superscript numbers in brackets denote differentiation with respect to ,z   

the zeroth derivative being the function )(zf  itself, and the ,321,0)( N,,,, jzp j   

are analytic functions (coefficients) of the independent variable ,z  that is [6] 
 

                                 Njzzpzp i

i

ijj ,3,2,1,0     ,)()( 0

0

, 




                      (1.3) 

 

for given constants ,}{ 0,

iijp  with 0z  being an ordinary point of (1.1) or a regular 

singular point of (1.2).  

      In the solution process, there are, of course, two cases. First, for ODE (1.1), 

we seek a power series solution of (1.1) about the ordinary point ,0z  that is [12] 
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and, in this case, the series coefficients, ,}{ 0

mma  in (1.4) are determined via [5, 

10] 
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with 1ˆ2 i  and k  a non-negative integer. In the other case, when 0z  is a regular 

singular point of (1.2), we seek a Frobenius series solution of (1.2) about ,0z  that 

is [6, 9, 12], with r  the usual Frobenius index 
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when the series coefficients, ,}{ 0

mma  are determined via the contour integral 

[11] 
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where, following the notation of Ince [6] 
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for non-negative integers .k  Note that .1][ 0  rm  

      It is to be noted that in both (1.5) and (1.7) the contour C  is a closed contour,  

taken in the positive or anti-clockwise direction, encircling the point ,0z  but 

avoiding any (other) singularities. This is a formal approach, as the Frobenius 

procedure usually is, and we do not consider technical problems involving multi-

valued functions, Riemann sheets and cuts and so forth. Further, regardless of the 

type of ODE considered, (1.1) or (1.2), we will consider the problem (ODE) 

solved once the recurrence relation for the series coefficients, ,}{ 0

mma  has been 

obtained, though, in some cases, we may write-out the first few terms of the 

series. Finally, it is to be emphasised that the general methodology presented 

below, in sections 2, 3 and 4, whereby (1.1) and (1.2) are solved, yields not only 

the general series solutions to (1.1) or (1.2), but also ‘expresses’ itself as an 

algorithm for the solution of arbitrary ODE of the form of (1.1) or (1.2). 

      The paper is organized as follows. In section 2 we solve (1.1) for the case of  

0z  being an ordinary point and present the general series solution; the algorithm is 

then exemplified through two third-order homogeneous ODE [3, 8]. In section 3 

we solve (1.2) with 0z  being, now, a regular singular point and present the 

Frobenius series solution; the solution is then exemplified via a problem requiring 

the solution of the fourth-order Bessel-type ODE [2] and a sixth-order ODE from  
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fluid mechanics [7]. Next, in section 4, we examine the case when certain 

solutions of (1.2), with 0z  a regular singular point, form a combination of both a 

Frobenius series and a ‘logarithmic series’, instead of just a Frobenius series. 

Although not related to the complex integral method we consider the standard 

procedure [6, 9] for procuring further solutions and apply it, in part, to the full 

solution of the fourth-order Bessel-type equation [2] again; the problem [7] from 

fluid mechanics is mentioned in passing. The motivation for considering the full 

solution of the Bessel-type equation becomes clearer when the mechanics of the 

full solution problem is examined in detail below, in sections 3 and 4. The paper 

finishes-off, in section 5, with some general remarks and conclusions. 

 

 
2. Ordinary Points 
 

Consider again the Nth-order linear homogeneous ODE [6] 
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with the superscript numbers in brackets denoting differentiation with respect to 

,z  the zeroth derivative being the function )(zf  itself, and where the coefficients

,1320 ),(  ,N,,,jzp j   are analytic functions for all positive integers ,N  that is 
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for given constants 

0, }{ iijp  and with the series expansion taken about some fixed 

point .0z  Substituting (2.2) into (2.1), we get the more explicit form of (2.1) as 
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The problem is to find a series solution, of the form (1.4), of (2.3). Following the 

method of [10], we first divide through (2.3) by 
1

0)(  nzz  and integrate through 

the resulting expression, the integration being round a closed contour C  taken in 

the anti-clockwise direction while avoiding any singularities of ),(zf  to get 
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Next, with (1.4) in mind, we compare the denominators in (2.4) with that of (1.5), 

term by term, to get two equations for the dummy index m  in terms of the dummy 

index ,n  one for each of the values of k (the order of the derivative of )(zf ) in 

each integral ( N  and ,j  respectively). We find that (2.4) yields the two equations 
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                       ijnminjmkm  111                             (2.5b) 
 

Utilizing (1.5) again, with (1.4) and the results of (2.5) in hand, we find that our 

equation (2.4) transforms into 
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after cancellation and recalling that .00  m,a  m  Further, on changing the 

dummy variable in (2.6), ,kni   we get the simpler format of 
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and our problem is solved ‘in principle’ (recall the remarks in the introduction). 

      For our first example of solving general-order ODE with this approach, we 

consider the series solution about the origin of (Dawkins [3]) 
 

                                  0)()()( )0()1(2)3(
  zfzzfzzf                                     (2.8) 

 

which is a third-order linear homogeneous ODE. Substituting in (2.7) the fact that 

,3N  and the only nonzero coefficients, ,,ijp  are 12,1 p  and ,11,0 p  we find 

that the recurrence relation for (2.8) is, after cancellation and some algebra 
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with 10  , aa  and 2a  arbitrary. The recurrence relation (2.9) agrees with the results  

of Dawkins’ traditional series analysis [3], to which the reader is referred for the 

rest of the calculation yielding the three independent solutions of (2.8). 

      As a second example, we consider an equation from Nachbagauer [8] 
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where 00 z  and where the only nonzero coefficients, ,,ijp  are ,12,2 p 51,1 p  

and ,301 p which facts, along with ,3N  we substitute in (2.7) to find that the 

recurrence relation for (2.10) is, after cancellation and some algebra 
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                               ,3 ,2 ,1 ,0   ,0)2( 3   naan nn                                  (2.11) 
 

with 10  , aa  and 2a  arbitrary. The recurrence relation (2.11) agrees with the results 

the traditional series analysis of Nachbagauer [8], to which, again, the reader is 

referred for the rest of the calculation yielding the three independent solutions of 

(2.10). 

 

 
3. Regular Singular Points 
 

Consider again the Nth-order linear homogeneous Fuchs’ ODE [6] 
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with the superscript numbers in brackets denoting differentiation with respect to  

,z  the zeroth derivative being the function )(zf  itself, and where the coefficients  

,N,,,,jzp j 321 ),(   are analytic functions for all positive integers .N  In other  

words, we assume that 
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for given constants 

0, }{ iijp  and with the series expansion taken about some fixed 

(regular singular) point .0z  Substituting (3.2) into (3.1), we get the more explicit 

form of (3.1) as  
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In this instance, instead of a series solution of (3.1), we search for a Frobenius 

series solution of (3.1). In other words, we assume [6, 9, 12] that for 0z  a regular 

singular point of ),(zf  we have 
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where the index r  and the coefficients 

0}{ mma  are to be determined. 

      Following reference [11], to find a Frobenius series solution of (3.3) we 

divided through (3.3) by 
1

0)(  rnzz  and integrate through the resulting express-  
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ion, the integration being round a closed contour C  taken in the anti-clockwise 

direction and containing 0z while avoiding any other singularities of ),(zf  to get 
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Next, with (3.4) in mind, we compare the denominators in (3.5) with that of (1.7), 

term by term, to get two equations for the dummy index m  in terms of the dummy 

index ,n  one for each of the values of k (the order of the derivative of )(zf ) in 

each integral, ( N  and ,jN   respectively).  So, we find that (3.5) and (1.7) yield 

the two equations 
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Utilizing (1.7) again, with (3.4) and the results of (3.6) in hand, we see that 

equation (3.5) transforms, term by term, into  
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after cancellation and recalling that .00  , mam  Introducing the new dummy 

variable ink   into (3.7) and collecting like terms in ,na  we can rewrite (3.7) as 
 

,,,,naprkaprnrn
N

j

k

n

k

knjjNn

N

j

jjNN 3210     ,0][ )][ ]([
1

 

1

0

,

1

0,   












                                                                                                              ---------- (3.8) 
 

Now, setting 0n  in (3.8) we get the indicial equation for (3.1), that is, if 0na  
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With (3.8) and (3.9) our Frobenius problem is solved ‘in principle’.  

      As a first example of this solution process, we consider the fourth-order 

Bessel-type equation (Das et al [2]), which is an example with ,00 z that is 
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with M and   constants. From (3.8), we get the recurrence relation, which, with  
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the other sp ij ',  in (3.10) vanishing, is 
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or, with some simplification and with the dependence on r  shown explicitly 
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      From (3.11b), we see that, (3.10) has indicial equation )0 ,0( 0  an  
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with solutions 2 ,2 ,0  rrr  and .4r  Following Das et al [2], we find a 

strictly Frobenius series, associated with ,00 a  is determined by the root .4r  

Correspondingly, from (3.11b), the recurrence relation for ,4r  is 
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from which we find that all the odd-suffixed coefficients are identically zero while 

the first few terms of this Frobenius series solution to (3.10), with ,10 a  are 
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in agreement with Das et al [2]. 

      In fact, there is a second strictly Frobenius series, associated with ,00 a  and 

determined by the root ,0r  with, from (3.11b), recurrence relation 
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from which the odd-suffixed coefficients are zero as before, while the first few 

terms of this second strictly Frobenius series solution to (3.10), with ,10 a  are 
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When solving (3.15) to get (3.16), we find that 0a  and 2a  are arbitrary while 
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On setting 04 a  in (3.17), we get 2a  in terms of 0a  and the rest of the series 

(3.16) follows. Series (3.16) appears to form the basis of the logarithmic solution 

quoted for )(2 zf  by Das et al [2]. In fact both series (3.14) and (3.16) can be 

obtained from at least one of the other two roots, but only if the strict Frobenius 

restriction 00 a  is lifted. This situation is quite common when indicial roots 

differ by an integer [9]. Indeed, the solution (3.14) can be obtained from root 

,0r  if we take 00 2 aa  and leave 4a  arbitrary, as is easily checked; this 

proves important when we construct further solutions to (3.10) in section 4 below. 

      As a second example with ,00 z  we consider the problem set and solved by 

Littlefield and Desai [7], that is, with m  and Ra  constants, the sixth-order ODE 
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 which, from (3.8) and inspection of (3.18), gives rise to the recurrence relation 
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or, with the dependence on r  shown explicitly 
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From (3.19b) we see that the indicial equation for (3.19) is )0 ,0( 0  an  
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The recurrence relation (3.19b) corresponds to equation(s) (5.1) of Littlefield and  

Desai [7], while the indicial equation (3.20) is Littlefield and Desai’s (2.22) [7]. 

      As in the previous example, taken from Das et al [2], we find that all four 

roots of the indicial equation (3.20) are able, with judicious choice of values of  

arbitrary constants, to ‘share’ the same solution to (3.18). However, only three of  

the roots can accommodate the restriction ,00 a  the double roots 2r  and 4r   

and the single root .6r  We find, from (3.19b), that for all three roots, 2r  and  
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4r  and ,6r  all coefficients with odd-numbered indices are identically zero.  

Further, if we set the arbitrary coefficient ,10 a  then we get, from (3.19b), the 

first few terms of the three strictly Frobenius series as 
 

                              10
8

8
6

2
2

737280

3

9216
)( z

m
z

m
zzf                               (3.21) 

 

for 2r   
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for 4r  and 
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for .6r  

      We move-on, now, to consider the rest of the solutions to our two problems. 

 

 
4. Frobenius Series: Other Independent Particular Solutions 

 

Given the basic Frobenius series solution(s), all (!) that is necessary to find further 

independent particular solutions to an ODE, when required, is for us to re-express 

the formalism of the previous section in such a manner that we bring it into line 

with the standard formalism presented in textbooks, in particular references [6] 

and [9]; but see also reference [12]. In principle, then, should be able to quote the 

required results or techniques and apply them to our examples. First, we define, as 

usual [6, 9], the linear operator L  via 
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However, the left-hand-side of the recurrence relation (3.8) is just the coefficient 

of rnzz  )( 0 in the infinite Frobenius series, so that we may write (4.1) as  
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on extracting the 0n  term and with the dependence of ),( rzf  on r  made  

explicit, that is   
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for arbitrary .r  Whenever r  is taken as a solution of the indicial equation (3.9), 

then ),( rzf  is a solution of the basic equation, that is .0)],([ rzfL  

      Now, in the standard discussion of the required other solutions [6, 9], we 

choose in (4.2), as before, for any r  and 1n    
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leaving (4.2) as 
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If we assume that the indicial polynomial 
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can be factorized (which, of course, it always can be) then, after we have found all 

basic Frobenius series solutions to (3.1), we can find any other required solutions 

to (3.1) by standard constructions; see, for example, the textbooks [6] and [9] for 

further details (reference [6] produces a general formula for the general solution 

of (3.1) involving powers of zln ). 

      As our first example of this general process, we consider again the fourth-

order Bessel equation (3.10) with recurrence relation (3.11b) and indicial equation  

(3.12), with roots 2 ,2 ,0  rrr  and ,4r  so that in this case (4.5) becomes 
 

                           rzzarrrrrzfL )()4)(2)(2()],([ 00                            (4.7) 
 

In section 3, we developed two independent series solutions to (3.10); series 

(3.14), corresponding to the root ,4r and series (3.16), corresponding to the root 

.0r  The other roots, 2r  and ,2r  did not give rise to any new independent  

series. So, we require two further independent particular solutions of (3.10) from 

which we may form its general solution. To obtain two further independent 

solutions to (3.10), we apply the following standard argument [6, 9].  
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      First, we note that there are no repeated roots in (4.7), this makes a difference 

to the procedure [9]; see the next example below for a treatment of a repeated 

roots case. Next, we take the )(ran  as functions of an assumed variable ,r  with 

)(0 ra  a given function of r (see below) and the rest of the )(ran  determined by the 

recurrence relation (4.4). Finally, we differentiate (4.7) with respect to the now 

variable ,r  when we expect [6, 9] the limits  
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will provide us with two further independent solutions of (3.10). With (3.14) and 

(3.16) providing us with two independent solutions of (3.10) already, and (4.8) 

providing, in principle, a further two solutions of (3.10), we can construct the 

general solution of (3.10) via a linear superposition of these four independent 

particular solutions.  

      To pursue this course of action, it is apparent, from (4.8), that to construct 

further independent solutions of (3.10), we require a recurrence relation for the  

derivatives ).(ran  Differentiating the recurrence relation (3.11b)  
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with respect to ,r  gives, after a bit of algebra 
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for ,1n  with (4.9) and (4.10) starting, respectively, from the given )(0 ra  and so 

).(0 ra  With (4.8), (4.9) and (4.10) in place, we can now continue with our current  

analysis. We will restrict ourselves to a consideration of the root 0r  only; the 

other solution, corresponding to the root ,4r  follows in a similar manner. 
 

      Suppose we consider the ‘logarithmic series’ part of (4.8) first. We solve (4.9) 

with rara  00 )(   and taking the limit as ,0r  when we get a ‘logarithmic series’ 

with the first few terms  
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Note that the series multiplying ,ln z  and associated with ,0r  is series  (3.14) 

instead of (3.16), and with ;48/4 a   as before, there are no odd powers in this 

series.  

      This leaves the ‘pure series’ part of (4.8) to be determined, from (4.9) and  

(4.10). Once more, with ,)( 00 rara   no odd powers appear in the series and if we 

set ,0)(4  ra  the leading terms of the ‘pure series’ part of (4.8), when ,2r  are 
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With a fourth particular solution for (3.10) following for the root 4r  in a similar 

manner to that of the root ,0r we now have a choice of another two independent  

solutions to (3.10) and we may form the general solution to (3.10).  

      Our second example of this general process, we consider in outline only. We 

return to the solution of equation (3.18) with recurrence relation (3.19b) and  

indicial equation (3.20), with roots ,0r 2r  (twice), 4r  (twice) and ,6r  so 

that in this case (4.5) becomes 
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and we can obtain further independent solutions, again by standard arguments [6,  

9]. In section 3, we developed three independent solutions, out of six, for equation  

(3.18), that is, (3.21), (3.22) and (3.23), for 4 ,2r  and ,6  respectively. Now, with

),( rzf  given by (4.3) and the )(ran  obtained this time from (3.19b), for arbitrary 

r  and 0a  constant, then [6, 9] via (4.13) 
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give two further independent solutions to (3.18). To obtain the sixth, and final, 

independent solution to (3.18), we take ),( rzf  as given by (4.3), with the )(ran  

obtained (still) from (3.19b) with arbitrary ,r  replace 0a  with ),6()( 00  rara   

in (4.3) and (4.13), when the limit [6, 9] 
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provides us with the final independent solution of (3.18), along the lines of the 

previous example. With the six independent solutions, (3.21), (3.22), (3.23) and 

(implicitly), (4.14) and (4.15), we can construct the general solution of (3.18). 

 

 

5. General Remarks and Conclusions 

 

We begin this section with a few general remarks on the current method and 

follow this up with a brief discussion of the results of sections 2,3 and 4 in the 

light of the wok of previous authors on these problems. The section is rounded-off 

with a summary of the overall approach or general methodology and specific 

results developed throughout the paper.   

      Our first remark concerns the particular importance, in applications, of the 

case of second-order homogeneous ODE. The recurrence relations for these cases 

follow directly from the general formulae (2.7) for series about an ordinary point 

and (3.8) for series about a regular singular point, as we now show. First, setting 

2N  in (2.7), we find that 
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for ,3210 ,,,,n   which is the usual formula for the recurrence relation for a  

series about an ordinary point (see Simmons [12]). Next, setting 2N  in (3.8), 

we find that 
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for ,3210 ,,,,n   which is the usual formula for the recurrence relation for a 

series about a regular singular point (again, see Simmons [12]). 

      Next, we note that the complex integral methodology can be extended to 

systems of equations, for example, by applying the complex integral method 

directly to the system itself, as Herrera did in his original paper [5]. For the 

application of the Frobenius method to general linear systems of ODE, the 

interested reader is referred to Barkatou et al [1]. 

      A third general point, we recall from the introduction, is that the complex 

integral method, based, of course, on Herrera’s  original conception [5], can be 

used as an algorithm without the general formulae of sections 2 and 3. We take 

the equation in its original (standard [6]) form, (3.1) say, and apply the complex 

integral methodology, with (3.2) in mind, to (3.1) directly; the rest is just basic  
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arithmetic and elementary algebra. The series manipulations are encapsulated in 

the complex integral formula (1.7), or its special case (when dealing with ordinary 

points) (1.5). In comparison, the usual Frobenius methodology, which is based on 

the use of the ‘Euler operator’ [6]     
  

                                                   
dz

d
x                                                           (5.3) 

 

involves rewriting the basic equation (3.1), with (3.2) in mind, in terms of   and 

then substituting the assumed Frobenius series solution, (3.4), into the resulting 

format; this is followed by the usual series manipulations until a recurrence  

equation (and so the indicial equation) is determined.  

      We now move-on to discuss, briefly, the results of sections 2, 3 and 4 in the 

light of the wok of previous authors on these problems. With Dawkins’ [3] and 

Nachbagauer’s [8] equations, dealt with in section 2, there is not much more to be 

said other than that the complex integral method simplifies the solution process in 

the usual manner [5, 10, 11]. The mechanics of producing the actual series 

solutions from the recurrence relations for Dawkins’ [3] and Nachbagauer’s [8] 

equations we have left to a consultation, by the reader, of the original calculations 

[3, 8]. 

      As to the analysis of sections 3 and 4 on the series solution of (3.10), the 

equation analysed by Das et al [2], there are two main points of interest. First, we 

have presented, in section 3, two non-logarithmic strict ( 00 a ) Frobenius series, 

while Das et al quote, explicitly, one series only (our equation (3.14)).  

Two such series are known to exist, in the form of (almost) Bessel functions (see 

equation (1.4) of reference [2].) Secondly, from the analysis of the 0r  case at 

the end of section 4, it appears that the method for procuring a further solution 

from a given root of the indicial equation may pick-up an alternative solution (if 

one exists) in the ‘logarithm term’, other than the strict ( 00 a ) Frobenius series. 

In our case, on applying the standard argument [9] to obtain a further solution 

with the root ,0r  in section 4, we discovered (3.14) as the Frobenius series to 

go along with the ‘logarithm term’ in (4.8) instead of (3.16), which was the strict 

Frobenius series determined for 0r  in section 3. (Possibly this occurred when 

the algorithm Das et al applied [2] worked-out that, in their equation (3.4), the 

2r  logarithmic solution automatically goes along with what is probably our 

(3.16).) However, as the series in the ‘logarithmic term’ is only required to be a  
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(Frobenius) series associated with ,0r we could choose the series (3.16) to 

partner the logarithm in (4.8) and evaluate the terms in the other series, if this 

were required, accordingly. 

      In fact, an elementary ODE for the non-logarithmic ‘other series’ could be 

developed and solved by substituting (effectively) (4.8) into (3.18) since, as both 

(3.14) and (3.16) are particular solutions of (3.18), the logarithmic terms vanish 

identically [11]. This fact holds true for logarithmic ‘other solutions’ in general, as  

is easy to verify through the substitution of (4.8) into the generic equation (3.1). 

      Similar remarks, as those we have made about the work of Das et al [2], could 

be made about the work of Littlefield and Desai [7] and the solution, in sections 3 

and 4, of equation (3.18). Littlefield and Desai [7] derive the recurrence relation, 

(3.19b) as their (5.1); naturally, this leads to the same indicial equations, our 

(3.20) and their (2.22) [7]. However, Littlefield and Desai do not write-out 

explicit solutions for their (5.1) (with their (2.22) in mind) but develop, instead 

their own method [7] for getting further solutions from a given Frobenius solution, 

when solving, for example, equation (3.18); however, these solutions are left 

implicit as their equations (5.1) to (5.6). In fact, Littlefield and Desai also solve 

(3.18) by factorizing the left hand side of (3.18) into a product of three Bessel 

operators, which yield six particular solutions to (3.18) as required for the general 

solution of (3.18) (see equation (6.9) of reference [7]). In our analysis, we have, 

corresponding to these Bessel function solutions, equations (3.21), (3.22) and 

(3.23), along with the potential logarithmic solutions from section 4, from which a 

general solution to (3.18) may be constructed; although, to match-up with relation 

(6.9) of reference [7] a division by z  is required at some point in the calculation). 

And, on this point, we finish our general discussion.  

      In conclusion, we have developed, based, on Herrera’s work [5], a complex 

integral technique [10, 11] for integrating general-order linear homogeneous ODE 

‘in series’ for higher-order equations with analytic coefficients or the general-

order Fuchs’ equation. The method reduces the solution of general-order linear 

homogeneous ODE to the solution, instead, of a set of uncoupled simple linear 

equations (which have here mostly been implied rather than given explicitly) and 

whose solution determines the (subscripts of) the usual recurrence relations. 

General formulae for the recurrence relations for series solutions about both 

ordinary points and regular singular points were presented and applied to four 

standard examples. (The solution of recurrence relations is a major topic in itself 

and we have avoided it here; for a brief discussion of this matter, see reference 

[9].) A short discussion of the problems inherent in finding solutions other than  

the ‘strict’ Frobenius solution ( 00 a ) has been given.  
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      As our procedure has been essentially formal, we have not discussed the 

convergence of the solutions. This is covered, for example in reference [6]. Also 

we have not touched, here, on such concepts as ‘the point at infinity’; again, the 

reader is referred, for example, to reference [9] for a discussion of this topic.  

As a post script, we note that further examples of higher-order ODE, to which the 

present method may be applied, are given, for example, in the review article of  

Everitt [4]. 
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