Digital Investigation xxx (2013) 1-13

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Approaches to the classification of high entropy file fragments

Philip Penrose, Richard Macfarlane, William J. Buchanan*

Edinburgh Napier University, Edinburgh, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 6 May 2013

Received in revised form 21 August 2013
Accepted 24 August 2013

In this paper we propose novel approaches to the problem of classifying high entropy file
fragments. Although classification of file fragments is central to the science of Digital Fo-
rensics, high entropy types have been regarded as a problem. Roussev and Garfinkel (2009)
argue that existing methods will not work on high entropy fragments because they have no
discernible patterns to exploit. We propose two methods that do not rely on such patterns.
The NIST statistical test suite is used to detect randomness in 4 KiB fragments. These test
results were analysed using an Artificial Neural Network (ANN). Optimum results were 91%
and 82% correct classification rates for encrypted and compressed fragments respectively. We
also use the compressibility of a fragment as a measure of its randomness. Correct classifi-
cation was 76% and 70% for encrypted and compressed fragments respectively. We show that
newer more efficient compression formats are more difficult to classify. We have used subsets
of the publicly available ‘GovDocs1 Million File Corpus’ so that any future research may make
valid comparisons with the results obtained here.

Keywords:

Digital forensics

File fragments
Encrpyted files

File forensics
Encryption detection

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Garfinkel (2010a), Garfinkel claims that much of the
progress made in digital forensic tools over the last decade is
becoming irrelevant. These tools were designed to help
forensic examiners to find evidence, usually from a relatively
low capacity hard disk drive, and do not scale to the capacity
of digital storage devices commonly available today.

In addition, time may be a critical factor at the initial
stage of a forensic investigation. Giordano (Giordano and
Macaig, 2002) describes the importance in military and
anti-terrorist activities for forensic examiners to get a quick
overview of the contents of seized digital media, whereas
Rogers and Goldman (2006) relate how criminal in-
vestigations may depend on the quick analysis of digital
evidence on-site.

Current digital forensic techniques and tools are not
suited to such scenarios. They are aimed mainly at ‘post
crime’ analysis of digital media. In a time critical situation a

* Corresponding author. Tel.: +44 0 1314552759.
E-mail address: w.buchanan@napier.ac.uk (WJ. Buchanan).

1742-2876/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.diin.2013.08.004

forensic investigator needs a data analysis tool that can
quickly give a summary of the storage device contents. This
will inform the decision by the investigator on whether the
media deserves prioritisation for deeper analysis or not.

Garfinkel (2010b) puts forward the hypothesis that the
content of digital media can be predicted by identifying the
content of a number of randomly chosen sectors. The hy-
pothesis is justified by randomly sampling 2000 digital
storage devices to create a ‘forensic inventory’ of each. It was
found that, in general, sampled data gave similar statistics
to the media as a whole.

Using this methodology to quickly produce a summary
of storage device contents requires that data fragments be
identified accurately. Research in the area of fragment
classification has advanced over the last few years, so that
many standard file types can be identified accurately from a
fragment. Methods of classification fall into three broad
categories: direct comparison of byte frequency distribu-
tions, statistical analysis of byte frequency distributions
and specialised approaches which rely on knowledge of
particular file formats. However none of these methods has
been successful in the classification of high entropy file
fragments such as encrypted or compressed data.

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital
Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004



mailto:w.buchanan@napier.ac.uk
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.08.004
http://dx.doi.org/10.1016/j.diin.2013.08.004

2 P. Penrose et al. / Digital Investigation xxx (2013) 1-13

1.1. Problem

Recent research has found that although classification of
file fragments of many common file types can be done with
high accuracy, the classification of high entropy file frag-
ments is difficult and to date accuracy has been poor
(Fitzgerald et al., 2012; Li et al,, 2010). Indeed Roussev
(Roussev and Garfinkel, 2009) suggests that it is not
possible using the current statistical and machine learning
techniques to differentiate such fragments.

The entropy of a file fragment measures the amount of
randomness or disorder in the data within it. Compressed
and encrypted files have little pattern or order. A file is
compressed by representing any repeating patterns of
data with a shorter code. A well compressed file should
have no apparent patterns remaining in it otherwise it
could be compressed further. An encrypted file should
have no patterns otherwise it would be vulnerable to
cryptanalysis. Thus these types are classified as high
entropy.

Garfinkel (Garfinkel et al., 2010) states that the classi-
fication of high entropy file fragments is in its infancy and
needs further research and it is suggested that future works
should investigate methods to improve classification per-
formance on such fragments. To date no such investigations
have been done.

2. Literature review
2.1. Introduction

This chapter presents the current research into file
fragment classification. There is a theme running through
the research that results in classifying high entropy frag-
ment types has been universally poor. Many investigations
have simply excluded these fragment types from their
corpora. Roussev (Roussev and Garfinkel, 2009, p.11)
questions whether current machine learning or statistical
techniques applied to file fragment classification can ever
distinguish between these types since these fragments
have no discernible patterns to exploit. These findings lead
us to develop our approaches to the problem.

It can be observed that there has been a trend towards
specialised approaches for each file type. Analysis of byte
frequency distributions has often proved insufficient to
classify fragment types, and the unique characteristics of
particular file formats have increased recognition accu-
racy. It becomes apparent that in many cases neither the
digital corpora used nor the software developed is pub-
licly available. It is therefore not possible to validate the
research nor do a direct comparison against the methods
which we develop. In addition, many results have been
derived from small sample sets and thus the results may
not be universally applicable. These observations lead us
to design our investigation in a manner which will avoid
such criticisms.

2.2. File fragment identification

The idea of using examination of the byte frequency
distribution (BFD) of a file to identify a file type was

introduced by McDaniel (McDaniel and Heydari, 2003). The
BFD is simply a count of the frequency of occurrence of each
possible byte value (0-255) giving a 256 element vector.
Several of these vectors are averaged by adding corre-
sponding elements and dividing by the number of vectors to
give an average vector or centroid. For each byte-value the
correlation between byte frequency in each file is also
recorded. These vectors were taken to be characteristic of
that file type and termed the ‘fingerprint’ for that type. The
BFD of an unknown file type is subtracted from the finger-
print and the differences averaged to give a measure of
closeness. Another fingerprint was developed using a byte
frequency cross-correlation (BFC) which measured the
average difference in byte pair frequencies. This was a spe-
cialised approach which should target certain file types -
HTML files, for example, where the characters ‘<’ and ‘>’
occur in pairs regularly. We shall see that developing such
specialised approaches to identify file fragments when byte
frequencies of different types are similar is a common
occurrence through the research corpus. Average classifica-
tion accuracy is poor with BFD at around 27% and BFC at
around 46%. This result is actually poorer than it appears
since whole files were used instead of file fragments and so
the file headers which contain magic numbers were
included. When file headers were considered by themselves
they reported an accuracy of over 90% as would be expected.
The corpus consisted of 120 test files with four of each of the
30 types considered. There is no indication as to the source
of the test files and no encrypted files were included. They
noted that the ZIP file format had ‘a low assurance level’ and
that perhaps other classification methods might be needed
to improve the accuracy for this type.

Li (Li et al., 2005) extended the work of McDaniel and
Heydari (2003) and developed the methodology that had
been introduced by Wang (Wang and Stolfo, 2004) for a
payload based intrusion detection system. They used the
term n-gram to refer to a collection of n consecutive bytes
from a byte stream and based their analysis on 1-g. The
terms ‘fileprint’ and ‘centroid’ were used interchangeably to
refer to a pair of vectors. One contained byte-frequencies
averaged over a set of similar files from the sample, and,
in the other, the variance of these frequencies. In addition,
they created a multi-centroid approach by creating several
such centroids for each file type since ‘files with the same file
extension do not always have a distribution similar enough to
be represented by a single model. The metric used to
calculate the distance of an unknown sample from each
centroid was that used in Wang and Stolfo (2004). It was
proposed originally for computational efficiency in the
scenario of a high bandwidth networked environment but
this simplification meant that it was no longer suitable as a
metric. It was termed a simplified version of the Mahala-
nobis distance and given as:

d(x7y) = (0,—+a)

where

- x; and y; are the centroid and unknown sample byte
frequencies respectively.

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




P. Penrose et al. / Digital Investigation xxx (2013) 1-13 3

- g;is the centroid standard deviation for that byte value.
- a is a small positive value added to avoid possible di-
vision by zero.

To be classified as a metric, a function should satisfy the
following conditions for all points X, y, z in the space
(Copson, 1988, p. 21):

1. dxy)>0
2.d(xy)=0ifand only ifx =y
3. d(xy) = d(yx)

4. d(xz) = d(xy) + d(yz)

In the simplified metric we can ignore the denominator
since it is simply a scaling factor. We have:

n-1

= > (% —yil)

0

Consider the vectors X = (4,7,3) and y = (1,1,2).
Using this metric then:

dxy) = [A=D[+[7-D[+[3-2)] = 10
If z= (0, 0, 0) then:

d(x,y) = 14 and d(z,y) = 4
Hence:

dx,y)#d(x,z) +d(z,y)

Thus their ‘simplified metric’ does not meet the criteria for
being a metric. Xing (Xing et al., 2003) describes how
learning algorithms depend critically on a good metric
being chosen. We find that many of the techniques
considered below which use machine learning to create
centroids give no justification for the metrics used. Unfor-
tunately only 8 file types were considered, and no
encrypted or compressed files were used, although they
noted that all compressed files may have a similar distri-
bution. To create the test corpus 100 files of each type were
collected from the internet using a search on Google.

To create their sample set, the first 20, 200, 500 and
1000 bytes from a file were taken. As expected, since these
truncated files all contain the file header, the results were
good. The average classification accuracy was around 99%
for the truncated files with just the first 20 bytes of the file
i.e. the file header. As the file size increased, accuracy
decreased. Accuracy was worst when the whole file, rather
than a truncated segment, was used. This could be
explained by the fact that with just the first 20 bytes of a file
the method reduces to the ‘magic numbers’ solution
referred to previously. As the file size increases the influ-
ence of these first magic numbers is diluted and hence
accuracy decreases.

The method named ‘Oscar’ was introduced by Karresand
(Karresand and Shahmehri, 2006a) using the same BFD
vectors as (McDaniel and Heydari, 2003) to create cen-
troids. This was soon extended to increase the accuracy of
JPEG detection by introducing Rate of Change (RoC) of
consecutive bytes (Karresand and Shahmehri, 2006b). The

rate of change is maximum for pairs of bytes OxXFF followed
by 0x00. As explained earlier the frequency of this byte pair
is a unique marker for JPEG files.

They avoid the criticism made of Li et al. (2005) by using
a weighted Euclidian metric:

o (xi—yi)

dxy) = =579

to measure distance between an unknown sample and the
centroid. If this distance was below a certain threshold then
it was taken to be a fragment of that file type.

There is no indication as to the source of their file corpus.
57 files were first padded with zeros to ensure that the file
was a multiple of 4 kB to simulate an unfragmented hard
disc of 4 kB clusters. These 57 files were then concatenated
to form one large 72 MB file. The file was scanned for each
file type separately, and each 4 kB block was examined. For
compressed (zip) files a fragment was marked as a hit even if
it contained header information. The authors noted that
compressed types were difficult to tell apart because of the
random nature of their byte distribution.

2.2.1. Entropy

Hall (Hall and Davis, 2006) departed from the BFD
approach by suggesting that the entropy and compress-
ibility of file fragments be used as identifiers. They used the
idea of a sliding window to make n steps through the
fragment. Compressibility and entropy values calculated at
each step were saved as elements of the characteristic
vectors, although the window contents were not actually
compressed. The LZW algorithm was used and the number
of changes made to the compression dictionary used as an
indication of compressibility.

Centroids were calculated as usual by averaging element
values in a training set. Two metrics were evaluated - the
Pearson rank order correlation coefficient and a simple
difference metric similar to that used by McDaniel and
Heydari (2003):

n-1
= > (xi—yil)
0

This metric suffers from the same criticism as that of Li
et al. (2005) and results were poor. Identification of com-
pressed fragment was only 12% accurate and other results
were not given. It was noted that the method might be
better at narrowing down possible file types than actually
assigning a file type. The initial corpus was a set of files
from the authors’ personal computer.

2.2.2. Complexity and Kolmogorov complexity

Veenman (2007) combined the BFD together with the
calculated entropy and Kolmogorov complexity of the
fragment to classify the file fragment. The Kolmogorov
complexity is a measure of the information content of a
string which makes use of substring order. A large corpus of
13 different file types was used with 35,000 files in the
training set and 70,000 in the test set. HTML and JPEG
fragments had over 98% accuracy, however compressed
files had only 18% accuracy with over 80% false positives.

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




4 P. Penrose et al. / Digital Investigation xxx (2013) 1-13

Results were presented in a confusion matrix which made
them easy to interpret.

2.2.3. Statistical methods

Another statistical approach was suggested by Erbacher
(Erbacher and Mulholland, 2007). Only statistics calculated
from the BFD were used rather than the BFD itself. Their
analysis used a sliding window of 1 kB to examine each
block of a complete file rather than file fragments. By using
the sliding window, however, they could identify compo-
nent data types within the containing file e.g. a JPEG image
within a PDF file. They claimed that five calculated statistics
were sufficient to classify the seven data types in the corpus
of five files of each type but no results were presented.

This idea was developed by Moody (Moody and
Erbacher, 2008), where the corpus consisted of 25 files of
each type examined, and no compressed or encrypted files
were included. It was found that several data types could
not be classified because of the similarity of their structure.
These files were processed through a secondary pattern
matching algorithm where unique identifying characteris-
tics such as the high rate of occurrence of ‘<’ and *>’ in html
files was used for identification. Here again we see the use
of specialised functions for different file types.

2.2.4. Linear discriminant analysis

Calhoun (Calhoun and Coles, 2008) followed the
approach of Veenman (2007) by using the linear discrimi-
nant analysis for classification but used a selection of
different statistics. Linear discriminant analysis is used to
develop a linear combination of these statistics by modi-
fying the weight given to each so that the classification is
optimised. A statistic that discriminates well between
classes will be given a bigger weight than one that dis-
criminates less well. They also included a number of tests
that could be classified as specialised, such as their ASCII
test where the frequency of ASCII character codes 32-127
can be used to identify text files such as HTML or TXT. The
authors noted that the data did not conform to the re-
quirements of the Fisher linear discriminant that data
should come from a multi-variate normal distribution with
identical covariance matrices and this may explain some
‘sub-optimal’ results. Overall only four file types were
included in the corpus with 50 fragments of each type, and
no compressed or encrypted file fragments were included.
Fragments were compared in a pairwise fashion. For
example JPEG fragments were tested against BMP frag-
ments and the results of classification noted. JPEG was then
tested against PDF and so on. There was no attempt at
multi-type classification. Testing in such a way gives less
chance of misclassification and the results should be
interpreted with this in mind. Extensive tables of result for
accuracy are given but again there is no data about false
positives or true negatives. They noted that a modification
to their methodology would be required to avoid the situ-
ation where the method fails and all fragments are classi-
fied as one type but which gives high accuracy.

2.2.5. Multi-centroid model
Ahmed (Ahmed et al., 2009) developed the methods of
Li et al. (2005) but introduced some novel ideas. In creating

their multi-centroid model they clustered files with similar
BFD regardless of type. This implements their assumptions:

1. Different file types may have similar byte frequency
distributions.

2. Files of the same type may have different byte frequency
distributions.

Within each such cluster, linear discriminant analysis
was used to create a discriminant function for its fragment
types. Cosine similarity was used as a metric and was
shown to give better results than the simplified Mahala-
nobis distance. The cosine similarity is defined as the cosine
of the angle between the centroid, x, and fragment, y, BFD
vectors:

L Xy
Similarity = cos(X,y) xTTy]

Since all byte frequencies are non-negative the dot
product is positive and therefore the cosine similarity lies
in the closed interval [0, 1]. If the cosine similarity is 1 then
the angle between the vectors is 0° and they are identical
other than magnitude. As the cosine similarity approaches
0, the vectors are increasingly dissimilar.

An unknown fragment was first assigned to a cluster
using cosine similarity. If all file types in a cluster were of
the same type then the fragment would be classified as that
type. If not, then linear discriminant analysis was used to
find the closest type match in the cluster. Ten different file
types were used although compressed and encrypted types
were excluded, and 100 files of each type were included in
the training set and the test set. Whole files rather than file
fragments were used and so header information was
included, achieving 77% accuracy.

2.2.6. Support vector machine

Q. Li (Li et al., 2010) used the BFD only and took a novel
approach using a Support Vector Machine (SVM) for data
fragment classification. Only four file types - JPEG, MP3,
DLL and PDF were used. There were no compressed or
encrypted file types. The inclusion of the PDF file type may
have affected their results since it is a container type - it
can embed a variety of other formats within itself such as
JPEG, Microsoft Office or ZIP. Thus it might be difficult to
differentiate a fragment of a file labelled PDF from some of
the other types. Their training corpus was 800 of each file
type downloaded from the internet. Each file was split into
4096 byte fragments and the first and last fragment dis-
carded to ensure that header data and any possible file
padding was excluded. The test set was created by down-
loading a further 80 files of each type from the internet and
selecting 200 fragments of each type. Accuracy for classi-
fication of the four file types was 81%.

By contrast to previous researchers, Axelsson (2010)
used the publicly available data set govDocs1 (Garfinkel
et al., 2009), making it easier for others to reproduce the
results. The normalised compression distance (NCD) was
used as a metric. NCD was introduced by Cilibrasi and
Vitanyi (2004). Their idea was that two objects (not
necessarily file fragments) are ‘close’ if one can be

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




P. Penrose et al. / Digital Investigation xxx (2013) 1-13 5

compressed further by using the information from the
other. If C(x) is the compressed length of fragment x and
C(x,y) is the compressed length of fragment x concatenated
with fragment y then

_ C(xy) — min(C(x).C(y))
NED(.Y) = = nax(Cl). C)

The k-Nearest-Neighbour algorithm (KNN) was used for
classification. The kNN approach to classification is simpler
than the SVM. No classification function is computed. The
training set is plotted in n-dimensional space. An unknown
example is classified by being plotted and its k nearest
neighbouring points from the training set determined. The
unknown example will be assigned to the class which is
most common among these k nearest neighbours. The re-
sults were poor and average accuracy was 35%.

In Gopal et al. (2011), commercial ‘off-the-shelf software
was evaluated against several statistical fragment analysis
methods. SVM and kNN using the cosine similarity metric
methods were used. The test corpus was created from the
publically available RealisticDC dataset (Garfinkel et al.,
2009) and consisted over 36,000 files of 316 file types.
The file types are not listed so we do not know if any
compressed or encrypted files were included. The true file
types were taken to be those reported by Libmagic using
the Linux ‘file’ command and so no account was taken of
possible anti-forensic techniques such as file header
modification which may have resulted in bias in the results.
It was not reported if the first fragment of each file was
included. This would have contained header information.
The results reported on the performance on file fragments
was for the SVM only and it is shown that they achieved
40% accuracy measured using the Macro-F1 measure
(Ozgiir et al., 2005) with a 4096 byte fragment size. There is
no breakdown of the results by file type and so we cannot
gauge if some high accuracy file types are masking some
with very low accuracy.

2.2.7. Lempel-Ziv complexity

Sportiello (Sportiello and Zanero, 2011) tested a range of
fragment features including the BFD, entropy, Lempel-Ziv
complexity and some specialised classifiers such as the
distribution of ASCII character codes 32-127 which would
characterise text based file types, and Rate of Change which
we have seen is a good classifier for JPEG files. The corpus
consisted of nine file types downloaded from the Internet
and these were decomposed into a total of 28,000 blocks of
512 bytes for each file type. There is no indication if file
header blocks were included. No compressed or encrypted
data was included.

SVM was used but no multi-class classification was
attempted. For each file type a separate SVM model was
created to classify a fragment type against each of the other
types individually. The experiment was actually run using a
4096 byte fragment size and no indication of how these
fragments were created is given. There is no confusion
matrix of the results and there is no mention of false
negative results. The table of results is arranged by frag-
ment type, feature and feature parameter (the C and vy for
the SVM). These parameters vary by file type and it appears

that only the results for the best parameter values for in-
dividual fragment types is given. It is therefore difficult to
compare results with others.

Fitzgerald (Fitzgerald et al., 2012) used the publicly
available govDocs1 data set. They created 9000 fragments
of 512 bytes for each of 24 file types. The first and last
fragment of each file was omitted. There were an equal
number of fragments of each file type. They used an SVM
using standard parameters. Both unigram and bigram
(pairs of consecutive bytes) along with various statistical
values were used for the fileprint. They selected up to 4000
fragments for the data set and apportioned these approx-
imately in the ratio 9:1 as training and test sets respectively
for the SVM. There is no mention of whether the 24 file
types were represented equally in the selection. An overall
accuracy of 47.5% was achieved but correct compressed file
prediction averaged 21.8%. It was noted, as did Garfinkel
et al. (2010), Li et al. (2010), Conti et al. (2010) that the
classification of high entropy file fragments was
challenging.

2.2.8. Specialised approaches

It is argued by Roussev (Roussev and Garfinkel, 2009)
that using BFD or statistical methods is too simplistic. They
advocate using all tools available for file fragment
discrimination. If distinct markers are present within a
fragment then these should be used. If a byte pattern
suggests a particular file type then knowledge of that file
format can be used to check the classification. Thus they
would be using purpose-built functions for each file type.
They suggest a variety of approaches. As well as the header
recognition and characteristic byte sequences as explained
in the introductory section they use frame recognition.
Many multimedia formats use repeating frames. If the
characteristic byte pattern for a frame marker is found then
it can be checked if another frame begins at the appropriate
offset. If it does then it is likely that the fragment will be of
that media type. It should be noted that, unlike other
methods, they may require previous or subsequent file
fragments. If a fragment type cannot be classified, then they
use ‘Context Recognition’ where these adjacent fragments
are also analysed. Although the govDocs1 file corpus was
used, this was supplemented by a variety of MP3 and other
files that were specially developed. A discriminator for
Huffman coded files was developed. However it's true
positive rate was 21%. The need for further research in this
area was stressed in the paper.

2.2.9. Genetic programming

A novel approach using Genetic Programming was
tested by Kattan (Kattan et al., 2010). 120 examples of each
six file types were downloaded at random from the
Internet and no compressed or encrypted files were
included. Analysis was done on whole files rather than
fragments and so file headers may have been included.
Features were first extracted from the BFD using Principal
Component Analysis (PCA) and passed to a multi-layer
artificial neural network (ANN) to produce fileprints. PCA
removes redundancy by reducing correlated features to a
feature set of uncorrelated ‘principal components’ which
account for most of the structure in the data. This removal

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




6 P. Penrose et al. / Digital Investigation xxx (2013) 1-13

of features is generally accompanied by a loss of informa-
tion (Geiger and Kubin, 2012, p.562). PCA was used here to
reduce the number of inputs to the next stage - a multi-
layer auto-associative neural network (ANN) which cre-
ates the fileprint. It is mentioned that file headers in
themselves were not used, but would be part of the whole
file. A 3 layer ANN was used with these fileprints as a
classifier for unknown file types. Only 30 files of each type
were used for testing. Results were reported in a confusion
matrix and averaged 98% true positives. It is not clear
whether the PCA would have extracted file headers as the
most prominent component of the test data as a classifier. If
this was so then the high detection rate would be
explained.

This work was extended by Amirani (Amirani et al.,
2013) to include detection of file fragments. The original
version using an ANN as the final stage classifier was
compared with classification using an SVM. 200 files of
each of the 6 file types were collected randomly from the
internet. Half were used as the training set and half as the
testing set. For the fragment analysis a random starting
point was selected in each file and a fragment of 1000 or
1500 bytes was taken. Results showed that the SVM clas-
sifier gave better results than the ANN for file fragments of
both 1000 and 1500 bytes with extremely good results. It is
puzzling that PDF detection gives 89% true positives with
the 1500 byte fragments. The PDF format is a container
format and might contain any of the other file types
examined - doc, gif, htm, jpg and exe - as an embedded
object. The random selection of 1500 bytes from within
such a file could be misclassified as the embedded object
type. The high detection rate for the PDF type itself means
that this must have rarely happened. Perhaps it is an
indication that the sample set of 100 files is too small, or
perhaps the file header has an undue influence on the PCA.

2.3. High entropy fragment classification

In Garfinkel et al. (2010, p. S22) it is noted that “The
technique for discriminating encrypted data from com-
pressed data is in its infancy and needs refinement”. This is
supported by our observation that, in the literature
considered so far, there has been little mention of classifi-
cation of high entropy types. Where compressed fragments
have been included in the test corpus, results have been
poor. There is no source that deals with classification of
encrypted or random fragments. This area of research has
been recognised as difficult (Garfinkel et al., 2010;
Fitzgerald et al., 2012; Li et al., 2010; Conti et al., 2010).
Most results rely on patterns within the data. However
Roussev and Garfinkel (2009) argues that compressed and
encrypted file types have no such patterns. If a compressed
file has patterns then it could be compressed further. If an
encrypted file has patterns then it would be vulnerable to
cryptanalysis. We need therefore to investigate methods of
fragment identification that do not rely on patterns within
the data.

2.3.1. Randomness
In Chang (Chang et al., 2010), the output from a number
of compression algorithms and compression programs was

tested for randomness. The NIST Statistical Test Suite
(Rukhin et al.,, 2010) was used. It was found that every
compression method failed the NIST tests. In the testing of
the candidate algorithms for AES it was expected that
encrypted files should be computationally indistinguish-
able from a true random source (Soto, 1999).

Zhao (Zhao et al., 2011) used 7 large (100 MB) test files
and compressed and encrypted them by different methods.
The whole 188 NIST tests were run against each file. At this
scale they achieved good discrimination of encrypted files.

These observations lead us to our first hypothesis - that
we can distinguish between compressed and encrypted
fragments by testing for randomness.

2.3.2. Compressibility

Ziv (1990) stated that a random sequence can only be
considered such if it cannot be compressed significantly.
Schneier (1995, Ch. 10.7) noted that “Any file that cannot be
compressed and is not already compressed is probably
ciphertext”. Mahoney (2012, Ch. 3.5.2) states that encrypted
data cannot be compressed.

By contrast, compression algorithms always have to
compromise between speed and compression (Zhao et al.,
2011, p.5). It is unlikely that a compressed fragment is
optimally compressed and therefore can be compressed
further.

Our second hypothesis, therefore, is that we can differ-
entiate between compressed and encrypted fragments by
applying an efficient compression algorithm. A fragment of
a compressed file should compress more than a fragment of
an encrypted file.

3. Model design

To test our hypotheses we need to create a test corpus to
test the classification methods that we develop to distin-
guish between encrypted and compressed file fragments.
In this section we describe how we use publically available
corpora so that our experimental results are repeatable by
others. We use randomisation so that we can avoid bias. We
also describe how we devised our own methodology to test
our hypotheses.

3.1. Building the corpus

In the scientific method it is important that results be
reproducible. An independent researcher should be able to
repeat the experiment and achieve the same results. We
have seen in our review of related work that this is not
generally the case. Most research has been done with pri-
vate or irreproducible corpora generated by random
searches on the WWW. Garfinkel (Garfinkel et al., 2009)
argues that the use of standardised digital corpora not only
allows researchers to validate each other’s results, but also
to build upon them. By reproducing the work they have
shown that they have mastered the process involved and
are then better able to advance the research.

Such standardised corpora are now available. The Gov-
docs1 corpus contains a set of 1000 directories each con-
taining 1000 files. Garfinkel et al. (2009, p.S6). We selected
5 of these directories at random to create our training set

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




P. Penrose et al. / Digital Investigation xxx (2013) 1-13 7

and 10 for our testing set. We need to create file fragments
of representative compressed and encrypted types from
these subsets. We can assume that multimedia types which
use lossy compression have been classified by the tech-
niques used in our review of related work. We will there-
fore consider only lossless compression methods in the
remainder of our research.

3.1.1. Compression methods

There are a number of lossless compression methods. In
order that our initial corpus is representative of compressed
files ‘in the wild’ we shall create it using four of the most
common. Archivers and file compression programs can be
categorised as either stream based, like zip, gzip, or use pre-
dictive compressors based on prediction by partial matching
(PPM), or be block based, like bzip2, where a whole input
block is analysed at once (Cilibrasi and Vitanyi, 2004, p.7).

The commonly used Deflate compressed data format is
defined in RFC 1951. It uses the LZ77 algorithm followed by
Huffman coding. It was originally designed by Phil Katz for
the compression program PKZIP (Deutsch, 1996). It uses
LZ77 which achieves compression by replacing a repeated
string in the data by a pointer to the previous occurrence
within the data along with the length of the repeated
string. This is followed by Huffman coding which replaces
common symbols within the compressed stream by short
codes and less common symbols with longer codes.

This method is used by programs using the zip and gzip
file formats. Although zip and gzip use similar methods,
gzip is an application for compressing single files whereas
the zip format is used by archivers. An archiver can
compress multiple files into an archive and decompress
single files from within the archive. Zip is a common format
on Microsoft Windows platforms, but gzip is primarily a
Unix/Linux compressor. We will use zip and gzip as
representative of common file archivers and compressors
in the creation of our corpus.

Bzip2 is a block coding compressor which uses run
length encoding (RLE) and the Burrows-Wheeler trans-
form. The B-W transform does not itself compress. It uses a
block sort method to transform the data so that the output
has long runs of identical symbols which can be com-
pressed efficiently by RLE. The final output is again Huff-
man coded. Bzip2 is a file compressor rather than an
archiver in that it compresses single files only. We will use
bzip2 as representative of a block based Unix/Linux
Compressor.

There are also several proprietary compression imple-
mentations that are commonly used. Winrar is one such.
Its own archiving format is proprietary but it is based on
LZ and PPM. PPM is another stream based method which
uses an adaptive data compression technique using
context modelling and prediction to create probabilities
for symbols in the data stream. It uses previous bytes (bits)
in the stream to predict the next byte (bit). They are
adaptive in that they adapt the algorithm automatically
according to the data being compressed. The output is
arithmetic rather than Huffman coded. Whereas Huffman
coding is restricted to a whole number of bits, many
modern data compressors use arithmetic coding which is
not restricted by this limitation (Mahoney, 2012, Ch. 3.2).

It can work with all the compression methods above.
Winrar is used in our initial corpus as an example of
proprietary compression software.

3.1.2. Encryption methods

In Microsoft Windows operating systems AES has been
the default file and BitLocker drive encryption method
since Windows XP. Triple DES has been available as an
alternative (Microsoft, 2013). AES is also used by popular
open source encryption software such as Axcrypt and
TrueCrypt.

PGP, together with the open source GnuPG conforming
to the OpenPGP standard in RFC4880 is the most widely
used cryptographic system (Microsoft, 2013). It uses AES,
Triple DES, Twofish and Blowfish.

We will use AES, Triple DES and Twofish as represen-
tative of encryption methods while creating our corpus.

3.1.3. Corpus creation

Hard discs store data in sectors. Since 2011, all hard disk
drive manufacturers have standardised on a 4 KiB sector
size. By emulation, these drives are backward compatible
with the older 512 byte sector drives (The Advent of
Advanced Format, 2013). In addition, regardless of sector
size, operating systems store data in clusters. The usual
cluster size is 4 KiB (Karresand and Shahmehr, 2007). We
will therefore use 4096 bytes as our fragment size.

Most file systems store files so that the beginning of a
file is physically aligned with a sector boundary (Garfinkel
et al, 2010, p.S15). To emulate randomly sampled disc
sectors we will therefore assume that each file begins on a
sector boundary and consists of 4 K blocks. The first sector
of any file will contain header information which may be
used to identify a fragment type. If the file does not fill the
last sector then this sector may contain padding or unde-
fined content. For this reason we will exclude the first and
last sector of any file from our corpus.

Each file in the training corpus was compressed indi-
vidually by each compression or archiving program. Each
file was also encrypted by each encryption method. A
fragment beginning on a 4 K boundary and excluding the
first and last fragments was randomly chosen from each
file. Files which were less than 12 KiB after compression or
encryption were excluded. It is not possible to select a
random 4 KiB fragment from such files after first and last
4 KiB fragments are excluded. This generated a total of
25,000 fragments in our training corpus. Exactly the same
procedure was used on each of the ten randomly chosen
folders in the testing corpus and this generated a total of
49,000 fragments.

3.2. Fragment analysis tools

In this section we consider methods available to test our
hypotheses:

1. We can distinguish between compressed and encrypted
fragments by testing for randomness.

2. We can differentiate between compressed and encryp-
ted fragments by applying an efficient compression

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




8 P. Penrose et al. / Digital Investigation xxx (2013) 1-13

algorithm. A compressed file should compress more
than an encrypted file.

No published work has been done in this area and so we
will devise our own methodology to test our hypotheses.

3.2.1. Testing randomness — the NIST statistical test suite

It is important that the output of an encryption algo-
rithm is random, otherwise it would be subject to crypt-
analysis. The NIST Statistical Test Suite (Rukhin et al,,
2010) was used in randomness testing of the AES candi-
date algorithms to test if their output was truly random
(Soto, 1999). However Chang et al. (2010) used the NIST
tests and found that compressed data tended to fail
randomness tests. We used this finding to create our
classifier. A compressed fragment should display poorer
randomness than an encrypted one. We modified the NIST
test suite so that it can operate on multiple files and
output the results in the correct format for our ANN
analysis.

The NIST Statistical Test Suite consists of a set of 15
tests. These tests are summarised in the table below.
Note that all tests are done on binary data and not bytes.
We use n to denote the number of bits in a sequence
(Table 1).

We did not use the binary matrix rank test, overlapping
template matching, Maurer’s Universal Statistical test,
linear complexity or the random excursions tests. Our bit
sequence was not long enough to make the results of
these tests statistically valid. However, since we were
using 4096 bytes = 32768 bits, our fragments allowed us
to use 64 binary sequences of 512 bits which satisfies the
size requirements for all other tests.

Soto (1999) suggests that the results of the tests are
first analysed in terms of the number of our sequences
passing each test. We are using 64 sequences of 512 bits.
For each sequence a P-value is calculated. Hy is accepted
if the P-value > «a. At our 0.01 level of significance it is
expected that at least 60 of our 64 binary sequences
making up the fragment will pass the test if the fragment
is truly random. Secondly, if the fragment is random
then the P-values calculated in the 64 sequence tests
should be uniformly distributed. A P-value of P-values is
calculated and if this P-value is greater than 0.0001
then the sequence of P values is taken as uniformly
distributed.

We run a total of nine statistical tests from the test suite
on each file fragment. Each test generates two values — the
number of the 64 sub-sequences of 512 bits passing the test
and a uniformity value. Two of the tests report two results
each and so we will have a total of 11 pairs of values
generated to form our characteristic vector for each frag-
ment. Thus our characteristic vector ¢ for file fragment f is
defined as the sequence vf = (ny, uy, N2, U2, ... , N1, Uq1)
where n; is the number of the 64 sequences passing test i
and u; the uniformity P-value for those 64 tests.

3.2.2. Testing compressibility

The probability that an encrypted (random) fragment
will losslessly compress even by a small amount is low.
Consider a random fragment of n bits. There are 2" possible

Table 1

The NIST statistical test suite.

Test name Description Sequence size
recommendation
Frequency Proportion of zeroes n > 100
(Monobit) and ones
Frequency Splits sequence into N M >20,M > 0.1n
within a blocks of size M and N < 100
block applies the monobit
test on each block
Runs test Checks if total number n > 100

Block runs test

Binary matrix
rank

Discrete Fourier
test

Non-
overlapping
template
matching

Overlapping
template
matching

Maurer’s
universal
statistical
test

Linear
complexity

Serial test

Approximate
entropy

Cumulative
sums

Random
excursions

Random
excursions
variant

of runs of length k,
which are sequences of
identical bits, is
consistent with random
data

Runs test on data split
into blocks of length M
Checks for linear
dependence between
fixed length substrings
Detects any periodic
features in the
sequence

Checks number of
occurrences of a target
string of length m in N
blocks of length M bits.
Skips m bits when
pattern found

As non-overlapping but
does not skip

Detects if a sequence is
significantly
compressible

Determines if the
complexity of a
sequence is such that it
can be considered
random

Checks for uniformity -
every m bit sequence
should have the same
chance of occurring
Compares the
frequency of all
overlapping patterns of
size m and m + 1. These
frequencies are
compared against what
would be expected of a
random sequence
Calculates the
maximum distance
from zero a random
walk (the cumulative
sum adjusted so 0 is
represented by —1, and
1 by 1) achieves.
Measures deviation
from that expected of a
random walk (as above)
to certain states
Calculates the number
of times a given
distance from origin is
visited in a random
walk. Detects
deviations from that
expected of random
sequence

Forn < 6272, M =8
Forn <750 K, M = 128
n > 38912

n > 1000

n>10°

n>10°

n > 387840

n>10°

m < |logy n] — 2
i.e. floor(logy n) — 2

m < |log; n] — 5

n > 100

n>10°

n>10°

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital
Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004




P. Penrose et al. / Digital Investigation xxx (2013) 1-13 9

different fragments. Let P be the probability that the frag-
ment will compress by 4 bytes (32 bits) or less.
Then:

_ Number of fragments that compress by 32 bits or less
p= Total number of possible fragments

If the fragment compresses by 32 bits or less then the
fragment of size n must map to one of the fragments of size
n — 1, n — 2, .., n — 32 There are only
2n-lyon=2 4 on=3,4 4 on-32_ sl 2msuch
fragments.

Since the compression is lossless, the decompression
must map back to a unique original fragment. Thus the
mapping must be 1-1. Thus there are only this many
fragments which will compress by 4 bytes or less.

Thus:

-1
Z:‘ pn?

p = =5y
n-1 n-31
— Zm—uzﬂl*Zm—ozm
2n

(2"-1)—(2n-%-1)
=
znfzn—iio

2!!

=1-27

The probability that a random fragment compresses by
32 bits or less is 1 — 2739 which is, for practical purposes,
indistinguishable from 1. Also the probability that a random
fragment compresses by more than four bytes is therefore
1 — P (compresses by 4 bytes or less) which is for practical
purposes equal to zero. Thus if a fragment compresses by
more than 4 bytes we can assume that it is not encrypted
with high confidence. We will use this fact to classify our
fragments.

We need to use a compression algorithm which will
meet several requirements. Firstly we need an algorithm
which will compress more optimally than standard algo-
rithms such as ‘deflate’. Secondly, ‘deflate’ uses <length,
distance> pairs and literals which are then Huffman coded.
There is a chance that literal bytes will align on a byte
boundary and so a bytewise compressor might see them.
However in Huffman coding the data is packed as bits and
the three bit header will throw out this alignment. Also
literals are likely to become rare further into the stream.
The situation is worse with dynamic Huffman coding as
codes can be nearly any length. A bitwise compression al-
gorithm, however, is not constrained by lack of byte
alignment. It will be able to see repeating literals or
<length, distance> pairs (Kumar et al., 2010). For these
reasons we are going to use zpaq as our for compressing
our file fragments. In addition to being a suitable bitwise
compression program it uses bit prediction. It maintains a
set of context models which independently create proba-
bilities for the next bit. The probabilities are combined to
make the prediction. We would expect that, by definition, it

would not be possible to predict the next bit in a random
fragment. In a fragment which has not been optimally
compressed, however, there must be some remaining

pattern and hence predictability otherwise it would be
optimally compressed. Zpaq should be able to detect this
and give a more optimal compression. Our classifier in this
instance will be simply the compressed size of the frag-
ment. Using the archive program ZPaq to compress our
fragments of course leads to the archive file structure and
metadata being added to the compressed data. However to
mitigate the possibly confounding the results we use a
constant fixed size of filename for the fragments and also
the fragment length is fixed.

4. Implementation and results
4.1. Classification by statistical analysis of randomness

The NIST test suite was run against our training and our
testing corpora separately. RapidMiner (RapidMiner Data
Mining Software, 2012) was used to create an artificial
neural network (ANN) using 10-fold cross validation with
default parameters using the training corpus. The model
was then used to classify our test data. Rather than treat the
49,000 files as a block we retained them in their original
folders of approximately 5000 fragments each in order to
test if our method was performing consistently on all sets.
The results are shown in Table 2.

Table 2
Classification results from 4 KiB fragments.

GovDocs1 folder Predicted type

Actual type Encrypted Compressed Accuracy

027 Encrypted 2270 207 92%
Compressed 722 1600 69%
050 Encrypted 2231 220 91%
Compressed 718 1635 69%
158 Encrypted 2012 192 91%
Compressed 727 1355 65%
220 Encrypted 2140 191 92%
Compressed 814 1473 64%
374 Encrypted 2253 201 92%
Compressed 741 1677 69%
410 Encrypted 2212 197 92%
Compressed 740 1457 66%
679 Encrypted 2423 235 91%
Compressed 875 1848 68%
869 Encrypted 2251 203 92%
Compressed 862 1551 64%
891 Encrypted 2266 214 91%
Compressed 951 1582 62%
922 Encrypted 2411 201 92%
Compressed 833 2018 71%

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




10 P. Penrose et al. / Digital Investigation xxx (2013) 1-13

Encrypted file fragments have been identified with good
accuracy. Type I errors are low. However it is obvious from
the Type II errors that approximately 35% of compressed
files are being identified as encrypted.

4.1.1. 8 KiB fragments

We retrained the ANN with 8 KiB fragments and ran the
same tests but used an 8 KiB fragment size to see if there
would be any improvement in classification accuracy
(Table 3).

It can be seen that there is a marked improvement over
the 4 KiB fragment size. The most notable is that com-
pressed fragment detection has risen from an average of
67% to 82%.

4.2. Effect of corpus compression method

The compressed fragments in our initial corpora consist
of fragments of files compressed by popular compression
and archiving programs using default settings. A new
corpus was created using both default and maximum
compression using both popular and efficient programs.
The formats created were bzip2, zip and 7zip. To ascertain if
the degree of compression affected results we created the
compressed fragments in both default and maximum
compression modes for each compressor. The encrypted
fragments were AES, 3DES and TwoFish as before. The ANN
was retrained using a training corpus of 30,000 fragments
of these new types. The testing corpus contained a total of
over 17,000 fragments. The results are shown in Table 4.

It can be seen that although fragments of encrypted files
are still detected with good accuracy, the misclassification
of fragments of compressed files has risen considerably. In
order to clarify the reason for this increase in misclassifi-
cation we did an analysis of the classification of the frag-
ments of compressed files by their original file compression
method. The results are given in Table 5.

The average compression ratio achieved on the corpus
by each method is included. It can be seen that there is a
correlation between the degree of compression and the
accuracy of the classification. There is a trend for misclas-
sification to increase as the degree of compression rises.
Fragments of highly compressed files account for most of

Table 3
ANN results with 8 KiB fragment size.

Table 5
Analysis of compressed fragment classification (m = maximum
compression).

Actual type Predicted type

Compression ratio Compressed Encrypted Accuracy

zip 1.91 1199 502 70%
mzip 1.91 1198 493 71%
bz2 1.96 1031 639 62%
mbz2 1.97 1080 584 65%
7z 213 171 1472 10%
m7z 2.14 189 1452 12%

the increase in misclassification. Whether the standard or
maximum compression option is chosen with the various
compressors seems to make no significant difference to
compression ratio and hence the classification.

4.3. Fragment size

To determine if increased fragment size would improve
classification, corpora of 8 KiB and 16 KiB fragments were
created including fragments of zip, bzip and 7z at both
default and maximum compression settings and the ANN
retrained on these fragment sizes.

4.3.1. 8 KiB fragment size

The results are given in Table 6.

It can be seen that overall accuracy increases over the
4 KiB fragment size but misclassification of fragments of
compressed files is still high. An analysis of the classifica-
tion of 8 KiB fragments of compressed fragments by their
original file compression method is given in Table 7.

Since these fragments were extracted from the same
compressed corpus as the 4 KiB fragments the compression
ratios are as in Table 7. Although the accuracy of prediction
of zip and bz2 fragment types has increased with the
increased fragment size, it is anomalous that the accuracy
of prediction of 7z fragments has decreased.

4.3.2. 16 KiB fragment size

The corpus for 16 KiB fragments is slightly smaller since
some files were not large enough to produce a 16 KiB
fragment. The overall accuracy has increased over the 8 KiB
fragments as shown in Table 8.

The classification of fragments of compressed files was
again analysed by their original compression method. The
compression ratios are as before. The results are given in
Table 9.

The accuracy of prediction of zip and bz2 fragments has
increased with the increased fragment size as would be
expected. However we see again that the accuracy of

Actual type Predicted type
Encrypted Compressed Accuracy
Encrypted 2108 197 91%
Compressed 320 1432 82%
Table 4
4 KiB fragments.
Actual type Predicted type
Encrypted Compressed Accuracy
Encrypted 6366 766 89%
Compressed 5145 4869 49%

Table 6
8 KiB fragment classification.
Actual type Predicted type
Encrypted Compressed Accuracy
Encrypted 5984 471 93%
Compressed 3808 4657 55%

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




P. Penrose et al. / Digital Investigation xxx (2013) 1-13 1

prediction of 7z fragments has decreased markedly with
increasing sample size. This anomalous decrease in accu-
racy with increasing fragment size is worthy of investiga-
tion in future work.

4.4. Classification by compression of fragments

Analysis of the results of compressing the fragments in
the corpus was simpler. We have one figure produced for
each fragment - the size of the fragment after it is com-
pressed. Our hypothesis was that a fragment that was
originally compressed will compress more than an
encrypted fragment. We classified the fragments by their
compressed file size. If it was bigger than a given size then
we classified it as encrypted, otherwise it was classified as
compressed. The confusion matrix below shows results for
classifying our original 4 KiB test corpus fragments using
compression. The classification of compressed files is better
than the NIST statistical tests. As shown in Table 10, the
overall correct detection rate is over 70%.

4.4.1. Effect of corpus compression method

The 8 KiB and 16 KiB fragment corpora including the
maximally compressed fragments were now analysed to
test the effect of the degree of compression on the classi-
fication. The results are given in the tables below.

4.4.1.1. Analysis of 8 KiB fragments. Tables 11 and 12 show
the effect of increasing the fragment size to 8 KiB.

The detection of encrypted fragments has increased in
accuracy but the introduction of the more highly com-
pressed types has reduced the overall accuracy of classifi-
cation of the fragments of compressed files. An analysis of
the fragments of compressed files by the original
compression method is given in Table 12.

The correlation between the degree of compression and
classification accuracy is more marked than with the sta-
tistical analysis. This could be expected since a fragment
that was originally highly compressed will compress less

Table 7
8 KiB compressed fragment classification by type (m =
compression).

maximum

Actual type Predicted type

Compression ratio Compressed Encrypted Accuracy

Table 9
16 KiB compressed fragment classification by type (m = maximum
compression).

Actual type Predicted type

Compression ratio Compressed Encrypted Accuracy

zip 1.91 1223 113 92%
mzip 191 1208 118 91%
bz2 1.96 925 386 71%
mbz2 1.97 935 367 72%
7z 2.13 40 1243 3%
m7z 2.14 34 1244 3%

and so be more difficult to differentiate from an encrypted
fragment by compressed size. For the same reason the
fragments maximally compressed by each method are also
less accurately classified than those with the default
compression setting which was not generally the case with
the statistical analysis. Although the classification accuracy
of the more highly compressed files (7zip) is poor, it is
markedly better than the classification of these fragment
types by statistical analysis.

4.4.1.2. Analysis of 16 KiB fragments. Table 13 shows the
analysis of the results for 16 KiB fragments.

Again the encrypted fragment classification accuracy
has increased with increasing fragment length. However
the overall accuracy of classification of fragments of files
that were originally compressed has not improved. An
analysis of the fragments of compressed files by the original
compression method is given in Table 14.

Although the accuracy of classification has improved for
most compression methods it is noticeable that again the
classification of the 7zip type is poorer with the larger
fragment size. This mirrors the anomalous behaviour of
these fragment types when subjected to statistical analysis.
There is no obvious reason as to why these fragments of
highly compressed files should be less accurately classified
as fragment size increases and the anomaly is worthy of
further investigation.

5. Conclusions and future work

The aim of this work was to advance the research in the
area of file fragment classification. We focussed on frag-
ments of high entropy file types, specifically fragments of
compressed and encrypted files. We make the following

zip 1.91 1235 199 86% . ibuti )
mzip 191 1227 201 86% main contributions:
bz2 1.96 972 448 68%
mbz2 1.97 1006 404 71% e We critically reviewed the literature in this research
7z 213 104 1278 8% : : :
72 512 112 1274 o area and categorised methods of detection and analysis.
Table 8 Table 10
16 KiB fragment classification. Analysis of fragment compression classification by category.
Actual type Predicted type Actual type Predicted type
Encrypted Compressed Accuracy Encrypted Compressed Accuracy
Encrypted 5817 189 97% Encrypted 18643 5887 76%
Compressed 3473 4365 56% Compressed 7254 16925 70%

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital




12 P. Penrose et al. / Digital Investigation xxx (2013) 1-13

Table 11
8 KiB fragment classification.
Actual type Predicted type
Encrypted Compressed Accuracy
Encrypted 5286 1506 78%
Compressed 14611 18513 56%
Table 12

8 KiB compressed fragment classification by type (m = maximum
compression).

Actual type Predicted type

Compression ratio Compressed Encrypted Accuracy

zip 1.91 4504 1113 80%
mzip 1.91 3734 1845 67%
bz2 1.96 3414 2136 62%
mbz2 1.97 2689 2844 49%
7z 213 2667 2758 49%
m7z 2.14 1502 3918 27%

This led us to propose two approaches to the classifi-
cation of high entropy file fragments.

e By using a subset of the NIST statistical tests for
randomness we created a classifier that achieved 91%
correct classification of encrypted and 82% correct
classification of compressed fragments. The classifier
used an Artificial Neural Network to analyse the results
of the statistical tests.

e We achieved 76% correct classification of encrypted and
70% correct classification of compressed fragments by
using the size of a fragment once it was (re)compressed.

e By compressing the corpus with compression methods
which achieved higher compression ratios we showed
that there is a clear correlation between the degree of
compression and misclassification of fragments.

e Using different fragment sizes we showed that classifi-
cation accuracy generally improved with fragment size
but noted that there is an anomaly in that the fragments
that were originally more highly compressed appear to
decrease in classification accuracy as fragment size
increased.

Future work will include improved compression of
fragments. It was noted that during the statistical analysis
we already have an accurate frequency count of byte values
within the fragment. Using an accurate frequency count
together with arithmetic coding will deliver near optimal
compression of each fragment (Howard and Vitter, 1994)
and so should provide more discrimination of the small
differences in compressed size that we are analysing. It also
avoids the overheads of using an archiver to compress a

Table 13
16 KiB fragment classification.
Actual type Predicted type
Encrypted Compressed Accuracy
Encrypted 4941 1151 81%
Compressed 12976 16543 56%

Table 14
16 KiB compressed fragment classification by type (m = maximum
compression).

Actual type Predicted type

Compression ratio Compressed Encrypted Accuracy

zip 1.91 4257 749 85%
mzip 1.91 3944 1033 79%
bz2 1.96 2906 2027 59%
mbz2 1.97 2662 2265 54%
7z 213 1726 3115 36%
m7z 2.14 1050 3785 22%

fragment. In a production environment this analysis would
be done on the byte array in memory which would be read
directly from the storage device.

If the anomalous behaviour of our tests on file fragments
from files that have been highly compressed proves to be
consistent across further corpora then this needs to be
investigated. It may be that the reasons for this anomalous
behaviour might inform a methodology for classification of
such fragments.

References

Ahmed I, Lhee K, Shin H, Hong M. On improving the accuracy and per-
formance of content-based file type identification; 2009. p. 44-59.

Amirani M, Toorani M, Mihandoost S. Feature-based type identification of
file fragments. Security and Communication Networks 2013;6(April
2012):115-28.

Axelsson S. The normalised compression distance as a file fragment
classifier. Digital Investigation Aug. 2010;7:524-31.

Calhoun WC, Coles D. Predicting the types of file fragments. Digital
Investigation Sep. 2008;5:514-20.

Chang W, Fang B, Yun X, Wang S, Yu X, Ethodology M. Randomness
testing of compressed data. Journal of Computing 2010;2(1):44-52.

Cilibrasi R, Vitanyi P. Clustering by compression. IEEE Transactions on
Information Theory 2004;51(4):1-28.

Conti G, Bratus S, Shubina A, Sangster B, Ragsdale R, Supan M, et al.
Automated mapping of large binary objects using primitive fragment
type classification. Digital Investigation Aug. 2010;7:S3-12.

Copson ET. Metric spaces, paperback. Cambridge, England: Cambridge
University Press; 1988.

Deutsch P. RFC 1951-DEFLATE compressed data format specification
version 1. 3 IESG. IETF 1996;RFC 1951:1-15.

Erbacher RF, Mulholland ]. Identification and localization of data types
within large-scale file systems. In: Second international workshop on
systematic approaches to digital forensic engineering SADFEQ7 2007.
p. 55-70.

Fitzgerald S, Mathews G, Morris C, Zhulyn O. Using NLP techniques for file
fragment classification. Digital Investigation Aug. 2012;9:544-9.
Garfinkel SL. Random sampling with sector identification. In: Naval

postgraduate school presentation 2010.

Garfinkel S. Digital forensics research: the next 10 years. Digital Investi-
gation Aug. 2010;7:564-73.

Garfinkel SL, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. Digital
Investigation Aug. 2010;7:5S13-23.

Garfinkel S, Farrell P, Roussev V, Dinolt G. Bringing science to digital fo-
rensics with standardized forensic corpora. Digital Investigation Sep.
2009;6:52-11.

Geiger BC, Kubin G. Relative information loss in the PCA. In: Proceedings
IEEE information theory workshop 2012. p. 562-6.

Giordano J, Macaig C. Cyber forensics: a military operations perspective.
International Journal of Digital Evidence 2002;1(2):1-13.

Gopal S, Yang Y, Salomatin K, Carbonell J. Statistical learning for file-type
identification. In: 2011 10th international conference on machine
learning and applications and workshops Dec. 2011. p. 68-73 no.
DiiD.

Hall G, Davis WP. Sliding window measurement for file type identifica-
tion. In: IEEE information assurance workshop 2006.

Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital



http://refhub.elsevier.com/S1742-2876(13)00090-X/sref1
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref1
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref2
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref2
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref2
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref3
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref3
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref5
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref5
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref6
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref6
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref7
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref7
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref9
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref9
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref10
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref10
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref13
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref13
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref13
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref13
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref14
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref14
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref15
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref15
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref16
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref16
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref17
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref17
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref17
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref18
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref18
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref18
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref19
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref19
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref20
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref20
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref21
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref21
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref21
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref21
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref22
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref22

P. Penrose et al. / Digital Investigation xxx (2013) 1-13 13

Howard PG, Vitter JS. Arithmetic coding for data compression. Pro-
ceedings of the IEEE June 1994;82(6):857.

Karresand M, Shahmehr N. Oscar—using byte pairs to find file type and
camera make of data fragments. EC2ND 2006; 2007.

Karresand M, Shahmehri N. Oscar - file type identification of binary data
in disk clusters and RAM pages. In: Proceedings of the 2006 IEEE
workshop on information assurance, vol. 201; 2006. p. 140-7.

Karresand M, Shahmebhri N. File type identification of data fragments by
their binary structure. In: Information assurance workshop 2006.
p. 140-7.

Kattan A, Galvan-Lépez E, Poli R, O'Neill M. GP-fileprints: file types detec-
tion using genetic programming. Genetic Programming 2010:134-45.

Kumar D, Kashyap D, Mishra KK, Misra AK. Security vs cost: an issue of
multi-objective optimization for choosing PGP algorithms. In: 2010
International conference on computer and communication technol-
ogy (ICCCT), vol. 1; Sep. 2010. p. 532-5.

Li W, Wang K, Stolfo S, Herzog B. Fileprints: Identifying file types by n-
gram analysis. In: Proceedings of the 2005 IEEE workshop on infor-
mation assurance and security 2005. p. 64-71.

Li Q Ong A, Suganthan P, Thing V. A novel support vector machine
approach to high entropy data fragment classification. In: Proceedings
of the South African information security multi-conference 2010.

Mahoney M. Data compression explained. Data Compression Explained -
Dell Inc.; 2012 [Online]. Available: http://mattmahoney.net/dc/dce.
html [accessed 14.07.12].

McDaniel M, Heydari M. Content based file type detection algorithms. In:
Proceedings of the 36th annual Hawaii international conference on
system sciences 2003.

Microsoft. Cryptography, Crypto API and CAPICOM. Windows Dev Centre;
2013 [Online]. Available: http://msdn.microsoft.com/en-us/library/
windows/desktop/aa380251(v=vs.85).aspx.

Moody SJ, Erbacher RE. SADI - statistical analysis for data type identifi-
cation. In: 2008 Third international workshop on systematic ap-
proaches to digital forensic engineering May 2008. p. 41-54.

Ozgiir A, Ozgiir L, Giingdr T. Text categorization with class-based and
corpus-based keyword selection. In: Proceedings of the

20thInternational conference on computer and information sciences
2005. p. 606-15.

RapidMiner Data Mining Software [Online]. Open Source - Available:
http://rapid-i.com/content/view/181/190/; 2012 [Accessed. 05.08.12].

Rogers M, Goldman ]. Computer forensics field triage process model.
Digital Forensics 2006:27-40.

Roussev V, Garfinkel SL. File fragment classification-the case for
specialized approaches. In: 2009 Fourth international IEEE work-
shop on systematic approaches to digital forensic engineering May
2009. p. 3-14.

Rukhin A, Soto ], Nechvatal J. A statistical test suite for random and
pseudorandom number generators for cryptographic applications.
NIST Special Publication 2010;22(April, 2010).

Schneier B. Applied cryptography: protocols, algorithms, and source code
in C. 2nd ed. New York: John Wiley & Sons. Inc.; 1995. p. 784.

Soto J. Randomness testing of the AES candidate algorithms. NIST; 1999.
p. 14. Available via csrc. nist. gov.

Sportiello L, Zanero S. File block classification by support vector machine.
In: 2011 Sixth international conference on availability, reliability and
security Aug. 2011. p. 307-12.

The Advent of advanced format. International Disk Drive Equipment and
Materials Association; 2013 [Online]. Available: http://www.idema.
org/?page_id=2369 [accessed 27.08.13].

Veenman (J. Statistical disk cluster classification for file carving. In: Third
international symposium on information assurance and security Aug.
2007. p. 393-8.

Wang K, Stolfo SJ. Anomalous payload-based network intrusion detection.
Recent Advances in Intrusion Detection 2004;3224:203-22.

Xing EP, Ng AY, Jordan MI, Russell S. Distance metric learning, with
application to clustering with side-information. Learning 2003;15(2):
505-12.

Zhao B, Liu Q, Liu X. Evaluation of encrypted data identification methods
based on randomness test. In: 2011 IEEE/ACM international confer-
ence on green computing and communications Aug. 2011. p. 200-5.

Ziv ]. Compression, tests for randomness and estimating the statistical
model of an individual sequence. Sequences; 1990.

Please cite this article in press as: Penrose P, et al., Approaches to the classification of high entropy file fragments, Digital
Investigation (2013), http://dx.doi.org/10.1016/j.diin.2013.08.004



http://refhub.elsevier.com/S1742-2876(13)00090-X/sref23
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref23
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref24
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref24
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref24
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref25
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref25
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref25
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref26
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref26
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref26
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref27
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref27
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref28
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref28
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref28
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref28
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref29
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref29
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref29
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref30
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref30
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref30
http://mattmahoney.net/dc/dce.html
http://mattmahoney.net/dc/dce.html
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref33
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref33
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref33
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380251(v%3dvs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380251(v%3dvs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380251(v%3dvs.85).aspx
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref35
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref35
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref35
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref37
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref37
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref37
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref37
http://rapid-i.com/content/view/181/190/
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref39
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref39
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref40
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref40
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref40
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref40
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref41
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref41
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref41
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref42
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref42
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref43
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref43
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref44
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref44
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref44
http://www.idema.org/%3fpage_id%3d2369
http://www.idema.org/%3fpage_id%3d2369
http://www.idema.org/%3fpage_id%3d2369
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref46
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref46
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref46
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref47
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref47
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref48
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref48
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref48
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref49
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref49
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref49
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref50
http://refhub.elsevier.com/S1742-2876(13)00090-X/sref50

	Approaches to the classification of high entropy file fragments
	1 Introduction
	1.1 Problem

	2 Literature review
	2.1 Introduction
	2.2 File fragment identification
	2.2.1 Entropy
	2.2.2 Complexity and Kolmogorov complexity
	2.2.3 Statistical methods
	2.2.4 Linear discriminant analysis
	2.2.5 Multi-centroid model
	2.2.6 Support vector machine
	2.2.7 Lempel–Ziv complexity
	2.2.8 Specialised approaches
	2.2.9 Genetic programming

	2.3 High entropy fragment classification
	2.3.1 Randomness
	2.3.2 Compressibility


	3 Model design
	3.1 Building the corpus
	3.1.1 Compression methods
	3.1.2 Encryption methods
	3.1.3 Corpus creation

	3.2 Fragment analysis tools
	3.2.1 Testing randomness – the NIST statistical test suite
	3.2.2 Testing compressibility


	4 Implementation and results
	4.1 Classification by statistical analysis of randomness
	4.1.1 8 KiB fragments

	4.2 Effect of corpus compression method
	4.3 Fragment size
	4.3.1 8 KiB fragment size
	4.3.2 16 KiB fragment size

	4.4 Classification by compression of fragments
	4.4.1 Effect of corpus compression method
	4.4.1.1 Analysis of 8 KiB fragments
	4.4.1.2 Analysis of 16 KiB fragments



	5 Conclusions and future work
	References


