
BCFR: Blockchain-based Controller Against False
Flow Rule Injection in SDN

Sarra Boukria
USTHB University

Algiers, Algeria
boukriasarra94@gmail.com

Mohamed Guerroumi
USTHB University

Algiers, Algeria
mguerroumi@usthb.dz

Imed Romdhani
Edinburgh Napier University

United Kingdom, Great Britain
I.Romdhani@napier.ac.uk

Abstract—Software Defined Networking (SDN) technology in-
creases the evolution of Internet and network development.
SDN, with its logical centralization of controllers and global
network overview changes the network’s characteristics, on
term of flexibility, availability and programmability. However,
this development increased the network communication security
challenges. To enhance the SDN security, we propose the BCFR
solution to avoid false flow rules injection in SDN data layer
devices. In this solution, we use the blockchain technology to
provide the controller authentication and the integrity of the
traffic flow circulated between the controller and the other
network elements. This work is implemented using OpenStack
platform and Onos controller. The evaluation results show the
effectiveness of our proposal.

Index Terms—Software Defined Networking, SDN controller
security, Blockchain, OpenStack, Onos, injection, false flow rules.

I. INTRODUCTION

Nowadays, due to the development of the Internet, every-
thing is accessible easily, anytime, from everywhere. Then,
with the massive use of new ITs trends such as cloud comput-
ing [1], big data [2] and IoT (Internet of Things) [3] [4], which
represent large amount of data, the computer networks con-
solidation and the communications ensuring of these different
technologies become complex, expensive and very difficult for
managing. Furthermore,traditional IP networks are vertically
integrated, so they can’t ensure the efficiency, the reliability,
the flexibility and the robustness to manage the huge amount
of data circulating on the network.
In order to address these challenges, the idea of ”pro-
grammable networks” has been proposed under the concept
of SDN [5], which is an emerging networking paradigm that
aims to change the limitations of current network infrastruc-
tures. SDN breaks the vertical integration by separating the
networks control logic (the control plane) from the underlying
routers and switches that forward the traffic (the data plane).
Furthermore, with the separation of the control and data
planes, network switches become simple forwarding devices,
and the network control logic is implemented in a centralized
controller, which simplifies policy enforcement and network
reconfiguration and evolution [6]. Accordingly, the advantages
of SDN technology are attracting great attention from both
academia and industry.
The spread of SDNs characteristics, which are fundamental
for future networks created new security challenges for com-

panies and network administrators. Indeed, these challenges
present new attacks methodologies which aim to change the
architecture of this technology, for example, the communica-
tion channels between the different layers and the controller.
Hence, it is essential to secure this new network approach
before it is exploited at a large scale [7] [8].
In this work, we focus on SDN controller security. We
provide a mechanism for securing the communication between
the controller and the SDN network elements by using the
blockchain technology [9] [10] [11]. This approach insures
the security, storage and exchange of information without
centralized control. The aim is to control and secure the
communication of registration of all exchanged operations
between the controller and the rest of network components,
with accordance, reliability and efficiency. To the best of our
knowledge, this is the first work that addresses the problem
of false flow rules injection in SDN using blockchain.
The blockchain technology is infallible to attacks, due to
its architecture, that allows incremental hashing and storage
of replication data on a group of trust nodes. So, how we
can integrate it, within the framework of SDN to secure the
network?
In order to address this problem, we carried out our work in a
progressive way. The major contributions of this paper is the
implementation of a security method in SDN architecture. This
method will be provided as a service to ensure the protection
of our network communication and information between the
controller and the various integrated network devices such
as switches. The rest of the paper is structured as follows.
Section II shows the related work. In Section III, we present
the concept of our proposal. Section IV describes deployment,
implementation of our system and depicts the experiments
results. Finally, Section VI concludes the paper and presents
future works.

II. RELATED WORK

SDN, is a new paradigm that enables to implement new
security concepts in comparison with traditional network.
It uses many technologies in addition to its characteristics
to insure an efficient protection of data and resources in
the network communication. Blockchain technology can be
integrated with SDN to efficiently secure the network. There
are some works, which combine these two technologies to



provide an effective security in the network.
In [12], the authors propose an OpenFlow-based approach to
secure blockchain nodes. This approach is implemented as
a module on SDN controller. It uses the SDN components
capabilities for filtering the incoming traffic attempt interacting
with the blockchain nodes. It aims to secure private and
consortium blockchain nodes against attackers and malicious
attempt from one or multiples source IP address. The authors
in [13] addressed the security of IoT networks. They propose
a distributed secure SDN architecture for IoT network. In their
scheme, the blockchain technique is used to secure the flow
rules table and the security is automatically adapted to the
threat landscape without the need of administrator.
In [14], the authors used backup controllers to detect compro-
mised SDN devices. The backup controller is used to audit
the online handling information of network update events
collected from the primary controller and its switches. The
collected information is analysed for detecting compromised
devices. A blockchain-based distributed cloud architecture for
IOT with SDN is considered in [15]. This approach provides
a secure distributed fog node architecture that uses SDN
and blockchain techniques to bring computing resources to
the edge of the IoT network. The proposed architecture was
designed to support high availability, real time data delivery,
high scalability, security, resiliency, and low latency. Three
layers are described the architecture of the proposed model,
which are device, fog, and cloud layer. The work proposed in
[16] studies the potential SDN vulnerabilities that might be
used by attackers to launch controller and switch hijacking.
This work presents mechanism for preventing misbehaving ap-
plications from hijacking controller. The work proposed in [17]
presented another hijacking controller preventing scheme.In
addition, another solution of a fault-tolerant SDN control plane
is proposed in [18]. In this solution, network-related and
application-related states are stored in a shared data store for
smooth transition. In [19] and [20], the authors focused on the
flow rules checking to detect the conflicting rules.

All the above related works didn’t consider the man in the
middle attack. Therefore, our solution comes to overcome this
problem by avoiding false rules injection and securing the
communication between the controller and the SDN data layer
network elements.

III. PROPOSED SOLUTION

In our proposed solution, we focus on the controller SDN
security. We use blockchain technology to secure the commu-
nication between the SDN controller and the other network
elements against False Flow Rule Injection (FFRI). Below,
we present the components of our system and we describe its
main concept.

A. System environment and its components

The system environment is considered as Software Defined
Network mainly represented by its three main functional
components (Fig.1). SDN Application contains various func-
tionalities, such as network management, policy implementa-

tion, and other security services. SDN Controller represents
logical centralized control software, it maintains global view
of the network, and provides hardware abstractions to SDN
applications. SDN Data layer elements component represent
the physical layer and it contains the forwarding network
devices used for forwarding traffic flows.
In this environment, SDN controller receives instructions from
the SDN Application layer and relays them to the networking
components. It may extract information about the network
from the hardware devices and sends it back to the SDN
Applications with an abstract view of the network.
The SDN Data layer elements forward and process the network
data flow according to the flow rules sent from the SDN
controller. Therefore, any false flow rule sent to the network
devices has major impact on the forwarding and processing of
the network data flow.

Fig. 1. SDN Architecture and threat model.

As shown in Fig.1, a malicious actor can realize man-in-
the-middle attack by inserting himself as relay into a commu-
nication session between SDN controller and SDN network
device. He could impersonate both parties and gains access to
information that the two parties were trying to send to each
other. This attack allows a malicious actor to secretly intercept,
send and receive flow rules without being noticed.

B. Concept of the proposed solution

In SDN network, the security of the information exchanged
between controller and the network devices of the forwarding
plane is very important. To secure SDN network against false
flow rules injection, we propose to protect the communica-
tion between SDN controller and forwarding devices using
blockchain technology. Fig.2 shows the architecture of the
proposed solution. In this architecture, a new trusted device is
used. This device communicates with the SDN controller and
the SDN network elements. Its principal role is the detection



of eventual FFRI. Our solution is divided into two parts,
blockchain communication and FFRI detection approach.

Fig. 2. Architecture of proposed System.

1) Blockchain communication: SDN controller and trusted
device form the private blockchain network. This blockchain
is opened only for these two nodes. When the controller sends
flow rule to SDN network element via Openflow protocol
[21], a copy of this flow rule is sent to the trusted node via
blockchain. We use permissioned blockchain in which SDN
controller can write new blocks into the chain and transact
on the blockchain. The second node permissions are limited
for reading the information on the blockchain. Moreover, this
node can access to any SDN Data layer element and retrieve
its flow rule table.
The block of blockchain contains the below information:

• Publishers: Identifier of SDN controller.
• Keys: The Publication identifier.
• Data: The flow rule of the transaction.
• Blocktime: The Time of the block creation.
• Txid: The Block ID.

The controller’s data flows are composed of several recorded
rules at the blockchain in a database composed as follow:

• ID: The identifier of the rule.
• TABLEID: The identifier of the flow table.
• DEVICEID: The identifier of the equipment on which the

rule will be executed.
• TYPE: The rule type: input/ output.
• OUTPORT: The Output port number.
• INPORT: The Input port number.
• PRIORITY: The priority of the rule.
• MACSRC: The source mac address of flow.
• MACDST: The destination mac address of flow.

2) Detection and prevention approaches: To secure the
communication between the controller and the network ele-
ments, we propose two approaches. The first approach detects
and reports the network threats, while the second prevents and

avoids the suspicious attacks. Fig.3 describes the main steps
of the first approach.

Fig. 3. Attack detection approach.

a) Attack detection approach: In this approach, as shown
in the Detection Algorithm (Algorithm 1), when a new packet
arrives to the VSwitch, if there is no rule corresponding to this
packet in the flow table, the SDN Data layer element sends a
request (Q) to the controller via Open Flow API, for selecting
the adequate rules to this new flow. The controller receives the
rules from network administrators, it processes the received
request(Q), sends the request rule (Rq) to the VSwitch, and
stores it in a trusted node, member of blockchain. This node
hashes the traffic (request rule) into a block and distributes
it to the other blockchain members. The request rule is a
set of flow rules permitting the SDN Data layer elements to
forward a given traffic according to these specific rules. Next,
the SDN Data layer element sends the flow rules which it
received from the controller to the trusted node (Firewall node
(VMFw)). In the other hand, the VMFw node access to the
blockchain and consults the flow rules sent by the controller
and then it performs the needed comparison. For the first time,
the flow rules should be matched in cases of similarity or
unequal rules. In case of any dissimilarity, the VMFw node
has to notify the network administrator. This approach could
detect the eventual attacks but it cannot prevent them. The
SDN Data layer elements execute the flow rule sent by the
SDN controller without any previous check. To overcome this
limit, we propose another approach to prevent the network
attacks and malicious attempts.

b) Attack prevention approach: In this approach (Fig.4),
the SDN controller sends the flow rule to the SDN Data
layer elements and creates a copy of the same flow in the
blockchain node as the previous approach. When SDN Data
layer element receives the flow rule sent by the controller and
before executing the rule, it has to wait the approval of the
VMFw node. So, the SDN Data layer element transmits the
received flow rule to the VMFw node. The VMFw access to
the blockchain, compares the two rules and replays the SDN
Data layer elements by giving him the execution agreement
of the rule in case of similarity between the rules. Else,
it notifies the administrator about the eventual attack. The
Prevention Algorithm (Algorithm 2) illustrates more details
of the proposed solution.



Algorithm 1 Detection Algorithm.
1: Q,Rq = request
2: Q.sends(); . VSwitch send a request q to the controller.
3: Q.processing(); . Controller processes q.
4: Rq.transmiting1(); . Controller transmits rq to SDN

Data layer elements and blockchain node.
5: logs− vsw.transmiting2(); . VSwitch transmits its

logs to a VM firewall VMFw.
6: VMFw.recuperates(rq − archiv); . VMFw

recuperates rq from blockchain.
7: VMFw.compares(rq − archiv, logs− vsw);
8: if ((rq-archiv.id !=logs-vsw.id) Or (rq-archiv.adrsrc != logs

vsw.adrsrc) Or(rq-archiv.adrdst != logs-vsw.adrdst)) then
9: Threat.signaling(); . signaling a threat to

administrator.
10: end if

Fig. 4. Attack prevention approach.

IV. DEPLOYMENT AND TEST PERFORMANCE

A. Deployment environment

In order to test the performance of our solution, we deploy
the environment presented in Fig.5. We use OpenStack [22] as
a private Cloud. It provides a rapid deployment of cloud infras-
tructure with possibility of incorporating the SDN controller.
We use Mininet emulator [23] to create a realistic virtual
network. Mininet runs many hosts and Switches on a single
OS kernel, its Switches support OpenFlow for highly flexible
custom routing and SDN. We manage the SDN network by
ONOS [24] controller. ONOS is Open Network Operating
System which has been implemented for managing network
operations following an SDN approach. We use Multichain
platform [25] to construct the network blockchain, and we
add a virtual machine which plays the role of the VMFw node.
This machine checks the integrity of the flows. We create after
the other components and we configure the needed service
function chain that will be applied by the SDN controller.
In this work, we evaluate the performance of the attack
detection approach only. The second approach will be tested
in upcoming work. Table 1 resumes network components of
our environment.

Algorithm 2 Prevention Algorithm
1: Rq,Q = request;Rp = received− packet;
2: Rq.sends();
3: Rq.processing();
4: Rq.transmiting1();
5: vsw.block(Rp); . VSwitch wait the approval and blocks

the received packet from the controller.
6: logs− vsw.transmiting2(); . vsw transmits its logs to

a VM firewall VMFw.
7: VMFw.retrieves(rq −BC); . VMFw recuperates rq

from blockchain.
8: VMFw.compares(rq −BC, rq − vsw);
9: if ((rq-BC.id !=rq-vsw.id) Or (rq-BC.adrsrc != rq-

vsw.adrsrc) Or(rq-BC.adrdst != rq-vsw.adrdst)) then
10: replay(Reject); . reject the packet and signaling a

threat to the administrator.
11: else
12: replay(rq.accept); . request accepted.
13: end if
14: if (Vsw.respons = Rq.Reject) then
15: vsw.block(Rq);
16: else
17: vsw.authorize(Rq);
18: end if

Fig. 5. The architecture components of the proposed system.

B. Implementation

In order to deploy our approach, we developed
algorithms as shown in Fig.5 (Recording(), GetlogSwitch(),
Getrulescontroller(), and comparison()). We use python
language and Linux Ubuntu virtual machine.

• The program Recording() : Intercepts the flow rules sent
from the ONOS controller to the VSwitch and records it
on the blockchain. In order to access to the blockchain
and create the needed blocks, the write authorization is
assigned to this program by updating the configuration
file multichain.conf. In this file, we can modify the
parameters (blockchain name, port number, user name,



TABLE I
NETWORK COMPONENTS.

Network element Description
Open stack Ubuntu Server 64 bits
SDN Controller ONOS, under Ubuntu virtual machine
Trusted node Ubuntu virtual machine (Firewall)
Blockchain ONOS, Firewall
MiniNet network infrastructure consisting of

Switches and hosts

password and IP address). Access to the blockchain is
done by calling the remote RPC procedure using an open
source library called Savoir using the following com-
mands (Fig.6). Then, we record the controllers instruc-
tions by creating new block in the blockchain containing
the rules sent from controller to VSwitch.

Fig. 6. Blockchain access procedure.

• the programs GetlogSwitch(), Getrulescontroller() and
Comparison(): are executed by virtual machine VMFw,
to detect attacks and malicious attempts.

- textbfGetlogSwitch () accesses to Mininet via SSH con-
nection and gets Vswitch logs. The retrieved data are
inserted in a data dictionary for the comparison process.

- Getrulescontroller() recuperates the content of the last
bloc of the blockchain and insert it in a data dictionary.
This block contains the rules sent from controller to
VSwitch.

- The Comparison() function compares the two data dictio-
naries (log SDN Data layer elements and controller rules).
We compare the identifier, the identifier of table, the
priority, the source and the destination MAC address of
source and of destination, in addition to the type (Fig.7).

Fig. 7. Implementation of the comparison function.

At the end of the Comparison, in case of dissimilarity a
notification message will be sent to the network administrator.

C. Experiments and results

In this part, we present the results of our experimentation.
We carried out different experiments to evaluate the accuracy,
and efficiency of our solution.

1) System sizing: In this experiment, we evaluate the impact
of the network size on the network performance. We increase
the number of SDN Data layer elements from 10 to 100 and
we measure the blockchain creation time, SDN Data layer
elements logs recuperation time, blockchain log recuperation
time, processing time and total execution time. Fig.8 shows
the results of this experiment.

Fig. 8. Execution time according to Network size.

We note that the total execution time increases in parallel
with the increasing of the number of VSwitches due to the SSH
connection and SDN Data layer elements log recuperation
from each VSwitch. The connection time between the SDN
Data layer elements (VSwitch) and VMFw node could be
enhanced according to the network connection type. In the
other hand, we notice that the time required for creating the
blockchain, the processing time, and the time of the recovery
of flows through the blockchain are very low and are still
stable. Then, we deduce that our program will not be able to
manage very large infrastructure, due to the data recovery time
of more than 30 seconds, in addition to the blockchain update
time that causes errors in our program due to the recovery
of outdated data. This problem could be resolved by using
multi-controllers in SDN network.

2) Detection of attacks (False rules injection): In this
experiment, we evaluate the ability of our program to detect
number of false rules injected into our platform. For test
reasons, we disconnect the controller in order to be able to
send false rules to the VSwitch.

Fig. 9. Total execution time according to the number of injected instructions
rules.



Fig. 10. False injected rules according to the detection rate.

The Fig.9 illustrates the total execution time according to
the number of false injected rules. We observe that the total
execution time increases in parallel with the increase of false
injected rules. The VMFw node needs to check and compare
each rule. This task takes a few processing time, and this time
increases when the number of the checked rules increases.
Fig.10 shows the impact of the number of false injected rules
on the detection rate. We notice that the detection mechanism
detects all the false injected rules. In this mechanism, the
VMFw compares the flow rule sent by malicious node to the
SDN Data layer elements with the same flow rule stored in
the blockchain. An attack can be detected when the VMFw
finds a difference between the blockchain flow rules and the
SDN data layer elements flow rules. So, the malicious node
cannot access to the blockchain and injects false flow rules.
For this reason all the attacks have been detected.

V. CONCLUSION

We have proposed a new security solution for protecting
SDN network using blockchain technology. The proposed
solution integrates the quality of the blockchain to secure the
SDN southbound communication. In this solution, we have
proposed two approaches. The first approach detects false rules
sent from the controller to the SDN Data layer elements after
its execution by the VSwitch. The second approach verifies the
integrity of the flow rules before its execution. In this paper,
we have evaluated the first approach. The experiment results
show that the proposed approach gives a good performance
in term of attack detection and acceptable execution time. As
extended future work, we plan to evaluate the second approach
and enhance the execution time by proposing other extension
features.

REFERENCES

[1] Y. Jadeja and K. Modi, “Cloud computing-concepts, architecture and
challenges,” in International Conference on Computing, Electronics and
Electrical Technologies (ICCEET). IEEE, 2012, pp. 877–880.

[2] D. W. Al Naimi, “Big data: A revolution that will transform how we
live, work, and think,” pp. 1143–1144, 2014.

[3] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International Journal of Communication Systems, vol. 25, no. 9, pp.
1101–1102, 2012.

[4] F. Wortmann and K. Flüchter, “Internet of things,” Business & Informa-
tion Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.

[5] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[6] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[7] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-
defined networking security: pros and cons,” IEEE Communications
Magazine, vol. 53, no. 6, pp. 73–79, 2015.

[8] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in soft-
ware defined networks: A survey,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

[9] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[10] M. Swan, Blockchain Thinking: The Brain as a Decentralized Au-
tonomous Corporation[Commentary]. IEEE, 2015, vol. 34, no. 4.

[11] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das,
“Everything you wanted to know about the blockchain: Its promise,
components, processes, and problems,” IEEE Consumer Electronics
Magazine, vol. 7, no. 4, pp. 6–14, 2018.

[12] M. Steichen, S. Hommes, and R. State, “Chainguarda firewall for
blockchain applications using sdn with openflow,” in 2017 Principles,
Systems and Applications of IP Telecommunications (IPTComm). IEEE,
2017, pp. 1–8.

[13] P. K. Sharma, S. Singh, Y.-S. Jeong, and J. H. Park, “Distblocknet: a
distributed blockchains-based secure sdn architecture for iot networks,”
IEEE Communications Magazine, vol. 55, no. 9, pp. 78–85, 2017.

[14] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng,
“SDN-RDCD: A real-time and reliable method for detecting compro-
mised SDN devices,” IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2048–
2061, 2018.

[15] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
vol. 6, pp. 115–124, 2018.

[16] D. Kreutz, F. M. V. Ramos, and P. Verı́ssimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working, HotSDN 2013, The Chinese University of Hong Kong, Hong
Kong, China, Friday, August 16, 2013, 2013, pp. 55–60.

[17] C. Qi, J. Wu, H. Hu, G. Cheng, W. Liu, J. Ai, and C. Yang, “An intensive
security architecture with multi-controller for SDN,” in IEEE Conference
on Computer Communications Workshops, INFOCOM Workshops 2016,
San Francisco, CA, USA, April 10-14, 2016, 2016, pp. 401–402.

[18] F. A. Botelho, A. N. Bessani, F. M. V. Ramos, and P. Ferreira, “On the
design of practical fault-tolerant SDN controllers,” in Third European
Workshop on Software Defined Networks, EWSDN 2014, Budapest,
Hungary, September 1-3, 2014, 2014, pp. 73–78.

[19] E. Al-Shaer and S. Al-Haj, “Flowchecker: configuration analysis and
verification of federated openflow infrastructures,” in 3rd ACM Workshop
on Assurable and Usable Security Configuration, SafeConfig 2010,
Chicago, IL, USA, October 4, 2010, 2010, pp. 37–44.

[20] S. Son, S. Shin, V. Yegneswaran, P. A. Porras, and G. Gu, “Model
checking invariant security properties in openflow,” in Proceedings of
IEEE International Conference on Communications, ICC 2013, Bu-
dapest, Hungary, June 9-13, 2013, 2013, pp. 1974–1979.

[21] R. Sherwood, M. Chan, G. A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman,
D. Underhill, T. Yabe, K. Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller,
R. Johari, N. McKeown, and G. M. Parulkar, “Carving research slices out
of your production networks with openflow,” Computer Communication
Review, vol. 40, no. 1, pp. 129–130, 2010.

[22] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[23] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM). IEEE, 2014, pp. 1–6.

[24] “Onos,” http ://onosproject.org, accessed: 2019-01-03.
[25] “Multichain,” http ://www.multichain.com, accessed: 2019-01-03.


