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Abstract  30	

Mangrove forests are among the tropical marine ecosystems most severely affected by rapid environmental change and 31	

the activities of key associated macrobenthic species contribute to their ecological resilience. Along the east coast of 32	

Africa, the amphibious sesarmid crab Neosarmatium africanum (=meinerti) plays a pivotal role in mangrove ecosystem 33	

functioning through carbon cycling and sediment bioturbation. In the face of rapid climate change, identifying the 34	

sensitivity and vulnerability to global warming of this species is of increasing importance. Based on a latitudinal 35	

comparison, we measured the thermal sensitivity of an tropical and a temperate population of N. africanum, testing 36	

specimens at the centre and southern limit of its distribution, respectively. We measured metabolic oxygen consumption 37	

and haemolymph dissolved oxygen content during air and water breathing within a temperature range that matched the 38	

natural environmental conditions. The results indicate different thermal sensitivities in the physiological responses of N. 39	

africanum from tropical and temperate populations, especially during air breathing. The differences observed in the 40	

thermal physiology between the two populations suggest that the effect of global warming on this important mangrove 41	

species may be different under different climate regimes. 42	
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Introduction 47	

Recent integrative frameworks propose that the vulnerability of species to environmental changes depends on their 48	

capacity to individually adapt their physiology and behaviour in response to the changes they effectively experience 49	

(Williams et al., 2008; Huey et al., 2012; Rezende et al., 2014). These frameworks thus suggest that the vulnerability of 50	

a species to climate change should be assessed through a mechanistic approach, based on the integration of data from its 51	

biological traits (such as behaviour, thermal physiology and metabolism) with environmental data (Gaston et al., 2009; 52	

Kearney & Porter, 2009; Sih et al., 2010; Kearney et al., 2012). Among physiological traits, respiration and respiration 53	

control provide one of the most accurate proxies of a species’ thermal sensitivity, defined as the physiological response 54	

(such as metabolic oxygen consumption and haemolymph oxygen content) to changes in its thermal environment (Sinclair 55	

et al., 2016; Verberk et al., 2016). Furthermore, it is becoming evident that the assessment of thermal sensitivity has to be 56	

determined throughout a species entire distributional range, since conspecific populations subject to different 57	

environmental conditions can respond in different ways (Eliason et al., 2011; Sunday et al., 2011; Baldanzi et al., 2015; 58	

Fusi et al., 2015). 59	

Mangrove forests are amongst the most vulnerable and endangered ecosystems in the world (Duke et al., 2007; Hoegh-60	

Guldberg & Bruno, 2010) and are heavily threatened by sea-level rise as a consequence of global warming (Gilman et al., 61	

2008; Lovelock et al., 2015). Their exposure to factors related to climate change, such as rising temperature, is, however, 62	

still debated amongst ecologists (Gilman et al., 2008) and few data are available on the relevant ecological traits of key 63	

benthic species that play a critical role in mangrove ecosystem functioning (Lee, 2008). In east African mangrove forests, 64	

the large burrowing sesarmid crab Neosarmatium africanum (namely=meinerti, Ragionieri, Fratini & Schubart, 2012), 65	

can occur at densities of over 20 individuals per square meter (Andreetta et al., 2014). N. africanum is a semi-terrestrial 66	

species and is the African representative of a complex of four sister species colonizing the Indian Ocean and East Australia 67	

regions (Ragionieri et al., 2010, 2012). It occupies the landward fringe of mangrove forests (Macnae, 1968; Hartnoll, 68	

1975), which is inundated only during spring tides and is frequently dominated by Avicennia marina trees (Forssk.) Vierh. 69	

(Tomlinson, 1986). N. africanum provides crucial ecological functions for the entire ecosystem such as burrowing 70	

(Micheli et al., 1991; Berti et al., 2008) and a contribution to carbon burial and storage (Andreetta et al., 2014), among 71	

the others. By burrowing, N. africanum also contributes to modification of sediment topography and the distribution of 72	

sediment grain size (Warren & Underwood, 1986), reduces pore water salinity (Ridd, 1996; Stieglitz et al., 2000), creates 73	

microhabitats for other fauna (Bright & Hogue, 1972; Dittmann, 1996; Tack et al., 2001), contributes to secondary 74	

production (Lee, 1997) and increases nutrient levels while decreasing sulfide concentrations in the sediment (Smith et al., 75	

1991; Kristensen, 2008).  76	
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Despite such an array of multiple and critical functions, information on the sensitivity of N. africanum to environmental 77	

changes is lacking. The landward edge of the A. marina zone is a particularly harsh environment for intertidal species as 78	

it is subject to acute fluctuations in both salinity and temperature (Macnae & Kalk, 1962). Gillikin et al. (2004) showed 79	

that these crabs are highly effective hyper/hypo-osmoregulators, able to survive a range of 16–65 ppt of salinity, but no 80	

data are available concerning this species’ thermal responses. Given the accumulating evidence that allopatric conspecific 81	

populations may exhibit important differences in their metabolic responses to stress, we asked whether N. africanum 82	

individuals belonging to tropical and temperate populations may have a different thermal sensitivity. We addressed this 83	

question by examining physiological responses of N. africanum to temperature in the laboratory and coupling this result 84	

with the temperatures they experience in the field. Since a population comparison is fundamental to a reliable assessment 85	

of species sensitivity (Eliason et al., 2011; Fusi et al., 2015), we carried out these experiments on specimens at the center 86	

(Kenya) and the southern limit (South Africa) of N. africanum distribution.  87	

 88	

Materials and methods 89	

 90	

Study areas (Fig. 1) 91	

The study was performed during the hottest season at each study site, November/December in Kenya as the tropical site, 92	

January/February in South Africa as the temperate site. 93	

 94	

Tropical site: Kenya – Gazi Bay (4° 22’ S, 39° 30’ E) 95	

Gazi bay is a semi-enclosed shallow coastal system located about 40 km south of Mombasa, Kenya. The climate is 96	

typically monsoonal, with moist southeast monsoons from March to September and dry northeast monsoons from October 97	

to February; rain occurs from March to May and, to a lesser extent, during October and November (Kitheka et al., 1996) 98	

Average annual maximum temperature value is around 27-30°C throughout the year.  99	

 100	

Temperate site: South Africa – Mngazana estuary (31°42’ S, 29°25’ E) 101	

The Mngazana River is situated about 250km south-west of Durban, on the southeast coast of South Africa. The estuary 102	

measures 5.3km in length and is permanently open to the sea. There are two creeks, which support the main populations 103	

of mangroves. Rainfall occurs throughout the year but especially during summer (November– January) (Rajkaran & 104	

Adams, 2012) Temperatures vary from an average maximum values of 30-33°C in summer to 10-14°C in winter. The 105	

mangrove forest at the Mngazana estuary is one of the southerly in the world (Quisthoudt et al., 2013). 106	

 107	
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Thermal and tidal series 108	

To determine the temperature range experienced by natural populations of N. africanum, temperature was recorded in the 109	

field for approximately two months during the summer period (49 days in Kenya, 43 days in South Africa) in 2011/2012. 110	

Forty temperature loggers (Maxim integrated product, ColdChain Thermodynamics) were placed in areas inhabited by 111	

the focal species, avoiding direct exposure to the sun; 20 were positioned about 3 cm above the sediment surface and 20 112	

approximately 20 cm beneath the sediment surface close to the burrows of the animals in order to record the temperature 113	

to which the animals were directly exposed (Edney, 1961). Loggers were waterproofed using silicon cases that do not 114	

affected the accuracy of measurements (Roznik & Alford, 2012). Four additional loggers were used to measure air 115	

temperature and humidity.  These were attached to branches under the canopy, about 4 m from the ground to avoid tidal 116	

submersion, and were protected from rain with plastic covers. All loggers were set up to measure temperature (±0.1ºC) 117	

at five minute intervals for 15 days, after which data were downloaded and the loggers reset and re-deployed for a total 118	

of 4 times in Kenya, 3 in South Africa. Data were downloaded with Cold Chain Thermodynamics software (version 4.9 119	

- Fairbridge Technologies) and average temperature was calculated for every hour of all recorded days. 120	

Tidal series data were retrieved by Wtide software version 3.1.7 (www.wtide.com) taking as reference points Kilindini 121	

and East London in Kenya and South Africa, respectively, corrected with the delay recorded for our study sites. The tides 122	

were therefore correlated hourly with the temperature. 123	

 124	

Crab sampling for laboratory experiments 125	

Sixteen adult male N. africanum of similar size (approximately 40mm carapace width) were collected at each site. For 126	

acclimation, they were held for two days in aquaria prior to the start of the experiments. They were kept in filtered 127	

seawater (35‰ salinity) at 27 ± 0.5°C, under a 12h/12h light/dark cycle. In Kenya, the animals were kept at the laboratory 128	

of KMFRI (Kenya Marine and Fisheries Research Institute) in Gazi, while in South Africa at the Coastal Research Group 129	

Laboratory, Rhodes University, Grahamstown. 130	

 131	

Oxygen consumption  132	

Oxygen consumption (MO2) approximating the routine metabolic rate, was measured in air and water for 8 adult males 133	

for each site using an intermittent flow respirometer equipped with eight parallel darkened Perspex chambers placed in a 134	

temperature controlled water bath. An oxygen sensor (Sensor Type PSt3 PreSens, Regensburg, Germany), glued to the 135	

inside wall of the chamber and connected to a single channel oxygen transmitter Fibox 3 (PreSens, Regensburg, Germany) 136	

through an optical sub miniature fiber, was used to measure the partial pressure of oxygen in air and water. Data were 137	

recorded using the FibSoft v.1.0 software (Loligo Systems ApS). Prior to measurements, sensors were calibrated in air-138	
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equilibrated seawater (100% oxygen saturation) and in sodium thiocyanate saturated seawater (0% oxygen). During trials, 139	

oxygen concentration was not allowed to fall below 60% in order to avoid exposing the animals to severe hypoxic 140	

conditions (Schurmann & Steffensen, 1992). The limited movements of individuals inside the experimental chambers 141	

were adequate to ensure stirring of the water and MO2 was determined by measuring the linear decline in oxygen 142	

saturation. An empty chamber was used during each trial as a control, to account for background oxygen depletion, which 143	

was less than 2% of the animals’ consumption in water and negligible in air. Prior to ramping of temperature, individuals 144	

were placed in the chambers and allowed to recover from handling stress overnight at 27 ± 0.5°C. From an initial 145	

measurement performed at 27°C, MO2 was determined at every two degrees of temperature across the increasing range 146	

27 to 37°C, raising temperature at the rate of 1°C h–1 (Terblanche et al., 2011). Differences in the variability of MO2 were 147	

not caused by differences in behaviour between the two populations (personal observation). Following each experiment, 148	

every animal was individually weighed and its volume calculated by immersing it in a graduated cylinder and measuring 149	

the water displacement. All experiments lasted less than 24 h to avoid interference with the metabolic rate by other factors 150	

such as starvation and during air respiration humidity was kept at 90% to avoid desiccation (Terblanche et al., 2011). 151	

Since the Q10 coefficient is an integrated measure of biochemical reactions with physical processes in relation to increases 152	

in temperature, it provides a good proxy for thermal performance. Q10[27-37°C] were therefore calculated for each treatment 153	

following Baldanzi et al. (2015). 154	

 155	

Haemolymph dissolved oxygen content 156	

Dissolved oxygen content in arterial and venous (sensu Greenaway & Farrelly, 1984) haemolymph was measured with 157	

fiber-optic oxygen microsensors (PreSens GmbH) connected to an oxygen meter (MicrOx-TX, PreSens GmbH) with 158	

integrated signal processing software. Sensors were calibrated before each experiment using a two-point calibration in 159	

oxygen-free (addition of sodium dithionite) and air-saturated seawater. Animals were acclimated overnight at 27°C and 160	

the oxygen dissolved in haemolymph was estimated between 27°C and 38°C (accuracy ± 1°C), using the protocol 161	

described for the MO2 experiment.  162	

Arterial haemolymph was withdrawn from the pericardial sinus through a 0.2 mm hole drilled through the carapace 163	

(Frederich & Pörtner, 2000). Venous blood was withdrawn from the sinus below the arthrodial membrane, at the base of 164	

the fourth or fifth pereiopod (Greenaway & Farrelly, 1984; Giomi & Pörtner, 2013). In both cases, a small amount of 165	

haemolymph (less than 20 µl) was collected through capillary action using a manually sharpened Pasteur pipette with a 166	

pre-inserted oxygen sensor close to the tip. Because of instrumental failure the measurement of heamolymph oxygen 167	

content was only possible in Kenya. 168	

 169	
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 170	

Statistical analysis 171	

For the environmental data, a Permutational Analysis of Variance was performed with the null hypothesis of no 172	

differences for environmental temperatures and humidity across Regions (Kenya KY, South Africa ZA), and Sampled 173	

Zones (Above ground, Below ground and Air), defined as fixed and orthogonal. Further, a PERMDISP was performed to 174	

test the similarity of the variances among temperatures and humidity; whenever the variances proved heterogeneous, log-175	

transformation was applied prior to proceeding with PERMANOVA analysis. These analyses were performed using 176	

PERMANOVA+ routines for PRIMER 6 (Anderson et al., 2008). 177	

To test for statistical differences in MO2 between populations and medium of respiration, an ANCOVA was performed 178	

using a linear mixed model (lme4). MO2 was set as the continuous response variable, temperature as a continuous 179	

explanatory variable, and Region (Kenya, South Africa) and Medium (water, air) were set as fixed categorical explanatory 180	

variables. Prior to statistical tests, MO2 data were log transformed and the normality for each group of data was tested 181	

using the Shapiro-Wilk test. Levene’s test indicated homogeneity of variances in the data (d.f.=3, 69; F=2.6; p=0.5883). 182	

Since measurements across the temperature ramp were made on the same individuals, they were not independent. 183	

Consequently, we treated Individual ID is as a random factor in the mixed model to account for multiple observations 184	

(Bates, 2010). 185	

The best fitted model obtained as described above, was then used to calculate the potential daily MO2 experienced by the 186	

two populations at neap and spring tide, feeding the model with the hourly average temperatures above and below ground 187	

recorded in the field. 188	

The same analysis was performed for haemolymph dissolved oxygen content, the only difference being that the 189	

explanatory variable Region was excluded since PO2 measurements were performed only in Kenyan and we included the 190	

explanatory categorical variable Haemolymph (levels: Arterial, Venous) (Levene’s Test; d.f.=3, 38; F=3.34; p=0.649). 191	

The response Haemolymph oxygen content was previously square root transformed for normality. These statistical 192	

analyses were carried out in R (R Development Core Team, 2014).  193	

 194	

Results 195	

Tidal and thermal series 196	

The tidal range during the observation periods differed between the two study regions (Figs. 2 and 3). In Kenya, maximum 197	

tidal range was 4 m during spring tides and 2.5 m during neap tides. In South Africa, the range was 2 m during spring 198	

tides and 0.5 m during neap tides. Either in Kenya or South Africa, during almost all the duration of neap tides, sea level 199	

did not reach the area occupied by N. africanum (Fig. 6). 200	
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Thermal regimes also differed significantly between regions: Kenya experienced less variable (PERMDISP, t=5.67, 201	

p<0.01) and hotter (PERMANOVA p-hpt, t=20.39, p<0.001) temperatures than South Africa. Average temperatures in 202	

Kenya ranged between 23-39°C above the sediment surface, 25-34°C below the surface and air temperatures were 22-203	

39°C. These values were significantly different from those for South Africa: 16-37°C above ground, 23-30°C below 204	

ground and 15-36°C for air (PERMANOVA p-hpt, t=7.74, p<0.001 in each case) 205	

Humidity measurements were not significantly different between regions (PERMDISP, t=1.79, p=0.16; PERMANOVA 206	

p-hpt, t=1.56, p=0.15) with values in both localities ranging between 50% and almost 100%. 207	

 208	

MO2 209	

The interaction among temperature, medium and region was highly significant (Fig. 4; F4,170=	 57.266, p<0.0001; 210	

ANCOVA), indicating that MO2 differed significantly between the two respiratory media (i.e. air and water) for both 211	

populations. In both cases, metabolic rate was higher in air than in water, but the difference was markedly greater for 212	

Kenya than South Africa. The best significant model that described the MO2 of N. africanum was represented by an 213	

exponential relationship between temperature and oxygen consumption. For the Kenyan population, the best fitted model 214	

during air respiration was y = 0.018e0.06294κ with a Q10 of 1.8, while for respiration in water it was 0.00513e0.06916κ	with a 215	

Q10 of 1.9. For the South African population, the best models were y = 0.0102e0.04358κ with a Q10 of 1.2 for air and y = 216	

0.000856e0.11070κ with a Q10 of 1.9 for water. 217	

 218	

Haemolymph dissolved oxygen content 219	

The oxygen content of venous and arterial haemolymph differed significantly between air and water along the temperature 220	

ramp (Fig. 5; significant interaction among temperature, medium, haemolymph ANCOVA, F4, 139=99.648; p < 0.001). In 221	

both media, N. africanum showed a low ability to saturate arterial haemolymph. With increasing temperatures, oxygen 222	

saturation was significantly more affected in water than in air, dropping to almost 0 kPa at 33°C. During air respiration, 223	

haemolymph was saturated until 34°C, dropping to 0 kPa around 37°C. Similar patterns were observed for venous 224	

haemolymph, though with lower saturation levels than for arterial haemolymph. 225	

 226	

Discussion 227	

The thermal environment experienced by the two populations of Neosarmatium africanum differed significantly between 228	

the two sites, with wider above ground temperature fluctuations in South Africa than in Kenya. This difference was less 229	

marked for below ground temperatures, presumably because soil buffers temperature variation. Although the natural 230	

thermal environment was monitored for a relatively short time, a consistent difference in temperature between latitudes 231	
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reflects different thermal niches across the distributional range of N. africanum. Above ground temperature variability 232	

suggest that burrows can play a fundamental role as stable thermal refugia from the heat (Edney, 1961) that crabs of both 233	

populations experience when active above ground (Sunday et al. 2014). Regardless of local differences in tidal regime, 234	

both populations experience prolonged periods of emersion during neap tides, during which they are exposed to 235	

fluctuations of air temperature for extended periods. Conversely, at spring tide, when the inhabited zones are flooded, 236	

animals experience more stable temperature in both regions. Despite a higher variable regime of pronounced temperature 237	

fluctuation, the South African population of N. africanum revealed a limited capability for sustaining high metabolic costs 238	

under increasing temperatures. Similarly, when submerged, the crabs from the Kenyan population showed no 239	

compensatory capacity for the temperature-induced increase of metabolic costs. On the contrary, while breathing in air, 240	

the Kenyan crabs showed the potential to adjust their metabolism during temperature rise. It should be noted that natural 241	

temperature fluctuations are more rapid and abrupt than those experimentally simulated in our protocol, and that these 242	

even more severe thermal regimes may further exacerbate the different metabolic responses of the two populations. The 243	

ability for such metabolic adjustment can be explained by the fact that the thermal responses are deeply influenced by the 244	

biogeographic effects (Pörtner, 2001; Gaitán-Espitia et al., 2014; Baldanzi et al., 2015) that involve different thermal 245	

histories for conspecific populations (Giomi et al., 2016).  The tropical Kenyan population is subject to more constant, if 246	

higher, temperatures than the South African population, which experiences a wider temperature range and notably low 247	

temperatures during winter (Quisthoudt et al., 2013). Q10 values were similar for tropical specimens in air and water and 248	

South African specimens in water (Q10[27-37°C] = 1.8, 1.9 and 1.8 respectively), but markedly lower for South African 249	

specimens in air (Q10[27-37°C] = 1.2). While a Q10 around 2 is relatively common in marine ectotherms (Clarke & Fraser, 250	

2004) and reflects a fairly normal response to increasing temperature, a Q10 of 1.2 indicates reduced thermal sensitivity. 251	

We propose two opposing explanations for these results. The first is that, during air respiration, the  animals from the 252	

South African population are able to moderate its metabolic response to warming as observed in the in tropical high shore 253	

snail, Echinolittorina malaccana (Philippi, 1847) (Marshall & McQuaid, 2011). Alternatively, we can interpret these data 254	

as a sign that the South Africa population is unable to endure such acute thermal stress (Verberk et al., 2015), exhibiting 255	

an inefficient metabolic response to increased temperature. This second interpretation would indicate that the temperate 256	

population is more vulnerable to global warming and to heat events, in agreement with similar finding for the closely 257	

related species Perisesarma gutattum (A. Milne Edwards, 1869) (Fusi et al., 2015). 258	

The analyses of haemolymph dissolved oxygen content for the Kenyan population showed an overall decrease in oxygen 259	

levels as temperature increases, with a markedly lower level of oxygen during respiration in air than water. This pattern 260	

may indicate that animals from this population adjust the metabolic rate  to endure increased temperatures in air 261	

(Hochachka, 1991). 262	
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By integrating the results for temperature-dependent routine metabolic rates with the thermal data series recorded in the 291	

field and the tidal regimes, we developed a diagram that predicts the daily metabolic requirements of the two study 292	

populations (Fig. 6). The temperature recorded by loggers was used as body temperature of animals when above and 293	

below ground during neap and spring tides and the graph shows MO2 calculated for those temperatures. The results 294	

indicate that, theoretically, Kenyan individuals are able to mobilise a wider thermal response than South African 295	

conspecifics (Fig. 6). Importantly, the figure highlights the fact that, although individuals from Kenya exhibit a 296	

pronounced increase of metabolic rate in air, they can rely on the cooler environment of their burrows (recorded as below 297	

ground temperature), especially during spring tides, enabling them to buffer the heat load accumulated during above 298	

ground activity (Edney, 1961). N. africanum is fully active only when its habitat within the mangrove forest is uncovered 299	

by water at spring and neap tide (Micheli et al., 1991; Fratini et al., 2011). Diurnal low tides, especially during neap tides, 300	

often correspond to the hottest hours of the day, maximizing the risk of thermal stress and desiccation (Porter & Gates, 301	

1969; Kearney et al., 2012; Sunday et al., 2014). In contrast, the South African population has a weaker thermal response, 302	

exhibiting similar oxygen consumption above and below ground.  303	

We interpret the results of this study as an indication that the thermal sensitivities of the two populations differ and that 304	

the temperate population in South Africa is likely to be more vulnerable to heat events, suggesting a weak capacity to 305	

tolerate climate warming. In contrast, the tropical, Kenyan  population shows the ability to endure heat stress by increasing 306	

its respiratory rate to meet heat-induced increases in oxygen demand (Verberk et al., 2015). Indeed, tropical and tropical 307	

thermal specialists may maximise their fitness within a narrow thermal niche and minimize maintenance costs, showing 308	

a residual capacity for phenotypic plasticity and acclimation responses (Verberk et al., 2015). Other studies have 309	

confirmed that environmental temperatures can shape thermal physiology, and that higher temperature variability 310	

increases the thermal sensitivity of species (e.g. Paaijmans et al. 2013). This may be one reason why the Kenyan 311	

population has evolved a more variable thermal response with a marked ability to endure higher temperatures in air than 312	

the South African population. Further studies that involve other proxies such as Heat Shock Protein production, 313	

behavioural assays and lactate/succinate production could confirm this (i.e. Marshall et al., 2011, 2013). 314	

 315	

Conclusion 316	

Our results indicate that the findings of earlier studies that tropical species are more vulnerable to climate warming than 317	

temperate species is an oversimplification when considering species that span a wide range of latitudes (Deutsch et al., 318	

2008; Sunday et al., 2012) and display bimodal breathing strategy (Fusi et al., 2016). The vulnerability of species is more 319	

complex and goes beyond explanations derived from general temperature envelope models based on latitudinal gradients 320	
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and climate, especially when species’ ranges are broad so that different populations are exposed to a wide range of climatic 321	

conditions. Our data show that some tropical ectotherms can show adaptation of their physiology that makes them more 322	

resilient to global warming than temperate ones. This study adds data on the thermal sensitivity of intertidal tropical and 323	

temperate species (Poloczanska et al. 2013) which are still largely overlooked in the estimation of the community 324	

temperature index (CTI, Stuart-Smith et al. 2015), a recent and potentially powerful instrument to assess ecosystem 325	

thermal vulnerability. Resilience to either heat events or chronic heating can also be highly modified by behaviour. In the 326	

case of N. africanum this includes modulating its activity below and above ground, balancing its foraging time and burrow 327	

occupancy (Sih et al., 2010; Nemeth et al., 2013) to buffer thermal stress. 328	

  329	
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Figures 505	

 506	

Fig. 1. Study sites along the east coast of Africa.  The tropical one at Gazi, Kenya, and temperate one, Mngazana, South 507	

Africa. 508	

 509	

  510	
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Fig. 2. Environmental temperatures and humidity of the area colonized by Neosarmatium africanum in Kenya during the 511	

period 31 October to 19 December 2011. The dashed line is the daily average of the variable described in each graph, 512	

while the solid line is the hourly average. 513	

  514	
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Fig. 3. Environmental temperature and humidity of the area colonized by Neosarmatium africanum in South Africa during 515	

the period 16 January to 5 March 2012. The dashed line is the daily average of the variable described in each graph, while 516	

the solid line is the hourly average. 517	

  518	
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Fig. 4. MO2 of Neosarmatium africanum from Kenya in air (a) and water (c) and from South Africa in air (b) and water 519	

(d). The significant best fitted models (see results section for the equations) are represented with continuous black lines 520	

for each population and medium. 521	

  522	
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Fig. 5. Haemolymph dissolved oxygen content of Kenyan Neosarmatium africanum during water (A) and air (B) 523	

respiration; open circles arterial haemolymph, black circles venous haemolymph. Significant regressions are plotted: 524	

arterial (y = 96.016e -0.129κ for water and 176.49e -0.0185κ for air respiration) shown in dotted-grey line, while venous (y = 525	

10.516e -0.076 κ for water and 6058.2e -0.0332κ for air respiration) shown in solid-black line. 526	

 527	

  528	
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Fig. 6. Hourly MO2 predicted for Neosarmatium africanum during Neap Tide (A) and Spring Tide (B) on the basis of 529	

temperatures measured above ground and below ground (see the legend in the graph). Shaded bars indicate the hours 530	

flooded at both sites during spring tides. 531	
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