

## Genomic and proteomic analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi

| Journal:                      | Environmental Microbiology and Environmental Microbiology Reports                                                                                                                            |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                | Draft                                                                                                                                                                                        |
| Manuscript Type:              | EMIR - Brief report                                                                                                                                                                          |
| Journal:                      | Environmental Microbiology Reports                                                                                                                                                           |
| Date Submitted by the Author: | n/a                                                                                                                                                                                          |
| Complete List of Authors:     | foley, sophie; Edinburgh Napier University, School of Life. Sport & Social Sciences<br>Vazquez-Boland, Jose; University of Edinburgh,                                                        |
| Keywords:                     | Rhodococcus, micolic acid containing Actinobacteria, bacteriophages, genomics/functional genomics/comparative genomics, soil-borne actinomycetes, pathogen ecology, environmental biocontrol |
|                               |                                                                                                                                                                                              |



Resubmission EMI-2012-0269

# Genomic and proteomic analysis of phage E3 infecting the soil-borne actinomycete *Rhodococcus* equi

Samson P. Salifu<sup>1‡</sup>, Ana Valero-Rello<sup>2‡</sup>, Samantha A. Campbell<sup>1</sup>, Neil F. Inglis<sup>3</sup>, Mariela Scortti<sup>2</sup>, Sophie Foley<sup>1</sup>\*, and José A. Vazquez-Boland<sup>2,4</sup>\*

- <sup>1</sup> School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
- <sup>2</sup> Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
- <sup>3</sup> Moredun Proteomics Facility, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, IEH26 0PZ, UK
- <sup>4</sup> Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24701 Leon, Spain.

Running Title: Rhodococcus bacteriophage E3

<sup>‡</sup>Contributed equally to this work.

\*For correspondence. Email <u>s.foley@napier.ac.uk</u>, Tel. +44 (0)131 455 2626; Email <u>v.boland@ed.ac.uk</u>, Tel. +44 (0)131 651 3619.

#### 1 Summary

2 We report on the characterisation and genomic analysis of bacteriophage E3 isolated from 3 soil and propagating in Rhodococcus equi strains. Phage E3 has a circular genome of 4 142,563 bp and is the first Myoviridae reported for the genus Rhodococcus and for a non-5 mycobacterial mycolic acid-containing actinomycete. Phylogenetic analyses placed E3 in a 6 distinct Myoviridae clade together with Mycobacterium phages Bxz1 and Myrna. The highly 7 syntenic genomes of this myoviridal group comprise vertically evolving core phage modules 8 flanked by hyperplastic regions specific to each phage and rich in horizontally acquired DNA. 9 The hyperplastic regions contain numerous tRNA genes in the mycobacteriophages which 10 are absent in E3, possibly reflecting bacterial host-specific translation-related phage fitness 11 constraints associated with rate-limiting tRNAs. A structural proteome analysis identified 28 12 E3 polypeptides, including 15 not previously known to be virion-associated proteins. The E3 13 genome and comparative analysis provide insight into short-term genome evolution and 14 adaptive plasticity in tailed phages from the environmental microbiome. 

15

## 1 Introduction

| 2  | The genus <i>Rhodococcus</i> is a group of ubiquitous <i>Actinobacteria</i> with more than 40 species |
|----|-------------------------------------------------------------------------------------------------------|
| 3  | widely distributed in the environment. The rhodococci are mycolata actinomycetes,                     |
| 4  | characterised by a lipid-rich cell envelope containing branched-chain mycolic acids and               |
| 5  | conferring protection to environmental agressions. Rhodococcus spp. are environmentally and           |
| 6  | biotechnologically important due to their extraordinary metabolic versatility and                     |
| 7  | biodegradative properties (Larkin et al., 2005). The genus also contains an animal pathogen,          |
| 8  | Rhodococcus equi, a soil-dwelling organism that can cause pyogranulomatous infections in              |
| 9  | different species. Young foals are especially susceptible and develop severe purulent                 |
| 10 | pneumonia associated with a high mortality (Prescott, 1991; Muscatello et al., 2007;                  |
| 11 | Vázquez-Boland et al., 2010). In humans, it is an emerging opportunistic pathogen causing             |
| 12 | life-threatening infections reminiscent to pulmonary tuberculosis (Weinstock and Brown,               |
| 13 | 2002). R. equi propagates in soil rich in herbivore manure and is common in the farm                  |
| 14 | environment worldwide. There is no effective vaccine available and the prophylactic                   |
| 15 | administration of long antibiotic courses is the current strategy to limit the occurrence of foal     |
| 16 | rhodococcosis in endemic farms (Dawson et al., 2010; Giguere et al., 2011). However, R.               |
| 17 | equi is intrinsically refractory to many antimicrobials (Letek et al., 2010) and there is risk of     |
| 18 | emergence and dissemination of acquired resistance to the currently used drugs (rifampin and          |
| 19 | macrolides/azalides) (Giguere et al., 2011).                                                          |
| 20 | Due to their lytic properties and host specificity, bacteriophages offer an alternative               |
| 21 | tool against bacterial pathogens and could be used to contain R. equi populations in the farm         |
| 22 | environment. Preliminary experiments conducted by Summer et al. (2011) using inoculated               |
| 23 | soil samples demonstrate the potential for phages in the biocontrol of R. equi. Prior to their        |
| 24 | exploitation in this way, the phages require to be extensively characterised. Furthermore,            |
| 25 | considering the contribution of phages to bacterial genome evolution and acquisition of niche-        |

3

Wiley-Blackwell and Society for Applied Microbiology

Page 4 of 47

| 1  | adaptive traits (Brussow et al., 2004), characterisation of phages may complement and                                   |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 2  | enhance our basic knowledge of the host organism.                                                                       |
| 3  | Of the mycolata group of Actinobacteria, which includes the genera Corynebacterium,                                     |
| 4  | Dietzia, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Tsukamurella amongst                                        |
| 5  | others, only the phages infecting Mycobacterium spp. have received significant attention to                             |
| 6  | date. There is a paucity of genome sequences available for phages infecting the genus                                   |
| 7  | Rhodococcus, with only four recently characterised R. equi phages, all belonging to the                                 |
| 8  | Siphoviridae (Summer et al., 2011). This study reports on the extensive genomic and                                     |
| 9  | proteomic analysis of <i>R. equi</i> phage E3, isolated from soil. The E3 genome sequence is the                        |
| 10 | first to be described for a Myoviridae infecting the environmentally ubiquitous genus                                   |
| 11 | Rhodococcus.                                                                                                            |
| 12 |                                                                                                                         |
| 13 | Results and Discussion                                                                                                  |
| 14 |                                                                                                                         |
| 15 | Phage isolation and preliminary characterisation                                                                        |
| 16 | <i>R. equi</i> -infecting phages were isolated from topsoil samples using <i>R. equi</i> NCIMB 10027 as                 |
| 17 | propagating host. Phages could be detected directly (i.e. without enrichment) by spotting a                             |
| 18 | soil aqueous extract on a lawn of R. equi bacteria. Of nine soil samples tested, seven yielded                          |
| 19 | phage titres ranging from $1.2 \times 10^3$ to $6.7 \times 10^5$ pfu g <sup>-1</sup> of soil. Phage E3 was selected for |
| 20 | further analysis on the basis of its broad host range. Using a global collection of R. equi                             |
| 21 | isolates (Ocampo-Sosa et al., 2007), E3 was capable of infecting a wide variety of strains                              |
| 22 | from different sources (environmental, clinical including equine, porcine, bovine and human                             |
| 23 | isolates) and geographical origins (data not shown). No plaques were observed on non-equi                               |

24 Rhodococcus spp. (R. erythropolis, R. rhodochrous, R. ruber, R. opacus, R. fascians) and

| 1  | other related bacteria such as Gordonia spp. or Mycobacterium spp. Electron microscopy                |
|----|-------------------------------------------------------------------------------------------------------|
| 2  | revealed a member of the Myoviridae family in the order Caudovirales (Fig. 1).                        |
| 3  |                                                                                                       |
| 4  | General genome features, organisation and comparative analysis                                        |
| 5  | The phage E3 genome consists of 142,563 bp of double stranded (ds) DNA with an average                |
| 6  | GC content of 67.65%, similar to that of the host species (68.76%; Letek et al., 2010). Manual        |
| 7  | sequence gap joining by PCR yielded a circular genome, also supported by restriction analysis         |
| 8  | of E3 DNA and the failure to identify the presence of cohesive (cos)-ends. E3 has a tightly           |
| 9  | packed genome with 221 ORFs covering 92.9% of the sequence (coding density 1.59 genes                 |
| 10 | per Kb, average gene length 650 bp) (see Table S1 for complete genome annotation). The                |
| 11 | genome is transcribed in a single direction with the exception of four ORFs, three of which           |
| 12 | span a discrete 2.5 kb region that includes a putative helicase gene (locus <i>E3_1340-60</i> ) (Fig. |
| 13 | 2). No tRNA or transfer-messenger tRNA genes could be identified in the E3 genome                     |
| 14 | sequence.                                                                                             |
| 15 | BLASTp homology searches showed E3 genome products to be most similar to                              |
| 16 | proteins from mycobacterial Myoviridae of the Bxz1-like group (Bxz1 plus six nearly                   |
| 17 | identical phages: Catera, Cali, ET08, LRRHood, Rizal, ScottMcG) and Myrna, all of which               |
| 18 | also have circular genomes (Hatfull et al., 2010). Pairwise genome alignments showed that E3          |
| 19 | and the mycobacterial Bxz1 and Myrna phages are closely related. The highly syntenic                  |
| 20 | genomes share a similar modular arrangement, with identically located conserved                       |
| 21 | housekeeping regions and four interspersed sections of highly divergent DNA or                        |
| 22 | "hyperplastic regions" (HPR 1 to 4) (Fig. 2). A high degree of conservation is observed not           |
| 23 | only for the morphogenesis modules, generally similarly configured across ds-DNA tailed               |
| 24 | phages, but also the DNA replication/recombination module, which in the Myoviridae tends              |

- 25 to appear in different locations disseminated along the genome. Considering the generally

1 extensive structural genetic divergence and mosaicism among phage genomes (Pedulla et al.,

2 2003; Casjens and Thuman-Commike, 2011), these observations suggest that E3, Bxz1 and

3 Myrna have recently diverged from a common ancestor.

4

### 5 *Phylogenetic analysis*

6 Phylogenetic trees were constructed based on the terminase large subunit (TerL), prohead 7 protease and DNA polymerase proteins from E3 (E3 0050/gp5, E3 0770/gp77 and 8 E3 1540/gp154, respectively) and representative *Caudovirales*, with the reference phage for 9 each accepted genus and a selection of phages infecting Actinobacteria, including those 10 recently described for R. equi (Figs. 3 and S1). The genes encoding these three proteins are 11 within the 20 most widely distributed orthologues in phage genomes (Liu et al., 2006) and 12 have been previously used in phage phylogenetic studies (Monier, 2008; Hatfull et al., 2010). 13 E3 grouped in all cases with the *Mycobacterium smegmatis* Bxz1-like and Myrna phages in a 14 robust monophyletic cluster, at short distance with respect to their most recent common 15 ancestor. A new myovirus genus has recently been proposed for the mycobacterial Bxz1 and 16 Myrna (Lavigne *et al.*, 2009) and our data support this proposal and the inclusion of E3 within 17 this group. Indeed, the global nucleotide similarity between the three phages, 50.1 to 50.6%, 18 is consistent with the typical values for phages belonging to a same genus (39.6 to 69.4%). 19 median 50.9%). Moreover, members of a specific phage genus tend to infect phylogenetically 20 related bacteria (Glazko et al., 2007), as is the case for the E3/Bxz1/Myrna cluster (hosts are 21 all mycolata within suborder Corynebacterineae of the Actinomycetales). 22 23 Proteomic analysis

24 A detailed proteomic characterisation of virion particles by SDS-PAGE and liquid

chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS)

identified 28 E3-encoded products (Table S2). These included 15 polypeptides initially
annotated as hypothetical/uncharacterised proteins, for which we can now establish they are
virion-associated proteins. Of the 28 proteins identified, 24 were encoded in one discrete
region of the genome encompassing 54.4 kb, which corresponds to the conserved
morphogenesis module (Fig. 2).

## 7 Core modules

8 *Morphogenesis.* This module is highly conserved in the E3/Bxz1/Myrna myoviruses and is 9 interrupted by a horizontally acquired HPR (HPR-2, see below), which in E3 encodes a 10 number of structural proteins of unknown function and two tail fibre proteins. It begins with a 11 head assembly unit. Based on secondary structure similarities and synteny with the well-12 characterised enterobacteriophage HK97 (Juhala et al., 2000), we identified gp72, gp77 and 13 gp79 as the putative portal, prohead protease and major capsid proteins, respectively. Except 14 for several gene insertions/deletions, the syntemy is perfectly maintained with Bxz1 and 15 Myrna (Fig. S2).

16 The tail morphogenesis unit lies immediately downstream and encompass E3 1100 to 17 E3 1160 encoding a minor tail protein (gp110), as suggested by synteny and similarity in the 18 structural fold with the tail terminating protein (TrP) gpU of phage  $\lambda$ ; a tail sheath protein 19 (gp111); a tail tube protein (gp112); and several hypothetical proteins (gp113 to 116). In 20 many tailed phages, folding of the tail proteins is mediated by a chaperonin produced by a 21 programmed translational frameshift of two overlapping ORFs, G and T genes in the case of 22 bacteriophage  $\lambda$  (Xu *et al.*, 2004). These ORFs, typically located downstream of the major tail 23 ORFs, share an overlapping region containing a slippery sequence. In phage E3, ORFs 24 E3 1140 and E3 1150 encode a potential "G/T – like" fusion protein (gp114/115) with 25 ribosomal slippage at 5' GGGAAAA 3' near the 3' end of E3 1140 conserving the protein

Page 8 of 47

| 1                                                                                                                                              | sequence. This heptanucleotide sequence is also found in gp114/115 homologues amongst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                              | Bxz1 (gp127/128) and Myrna (gp126/127) mycobacteriophages. Downstream of the genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                                                                                                                              | expressed via a programmed translational frameshift usually lies a phage tail tape measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4                                                                                                                                              | protein (TMP) gene (Xu et al., 2004). Although the annotation of Bxz1 and Myrna locates the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5                                                                                                                                              | TMP gene within the head morphogenesis unit, our analyses indeed predict TMP to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6                                                                                                                                              | encoded by $E3_{1160}$ downstream from the putative fusion protein $E3_{1140/1150}$ . This is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7                                                                                                                                              | supported by the gene size (2,550 bp) and other typical features of TMPs, such as a high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                                                                                                                                              | alanine-glycine content, absence of cysteine residues, an N-terminus containing $\alpha$ -helices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                                              | immediately followed by a region of random coils, and similarity to a conserved core region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                                                                                                             | of the TMP of the Siphoviridae phage TP901 family (Hatfull, 2006, Pedersen et al., 2000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11                                                                                                                                             | The tail morphogenesis unit ends with a baseplate assembly region <i>E3_1190</i> to <i>_1250</i> , also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12                                                                                                                                             | conserved in Bxz1 and Myrna (Fig. 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13                                                                                                                                             | DNA processing and packaging. A 24.6 kb region from E3_1360 to E3_1640 is largely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13<br>14                                                                                                                                       | <i>DNA processing and packaging.</i> A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13<br>14<br>15                                                                                                                                 | <i>DNA processing and packaging.</i> A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and Myrna identifies two sections: variable on the left, which begins with the divergently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> </ol>                                                                                     | <i>DNA processing and packaging.</i> A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and Myrna identifies two sections: variable on the left, which begins with the divergently transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> </ol>                                                                         | DNA processing and packaging. A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and Myrna identifies two sections: variable on the left, which begins with the divergently transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3, see below) and is identified as HGT DNA; and conserved on the right, encoding putative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> </ol>                                                             | DNA processing and packaging. A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely<br>devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and<br>Myrna identifies two sections: variable on the left, which begins with the divergently<br>transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3,<br>see below) and is identified as HGT DNA; and conserved on the right, encoding putative<br>helicase loader DnaC, ATP-dependent helicase DnaB, DNA primase DnaG, chaperonin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> </ol>                                                 | DNA processing and packaging. A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely<br>devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and<br>Myrna identifies two sections: variable on the left, which begins with the divergently<br>transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3,<br>see below) and is identified as HGT DNA; and conserved on the right, encoding putative<br>helicase loader DnaC, ATP-dependent helicase DnaB, DNA primase DnaG, chaperonin<br>protein DnaJ, and DNA polymerase IIIα subunit, plus two putative Holliday resolvases gp156                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> </ol>                                     | <i>DNA processing and packaging.</i> A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and Myrna identifies two sections: variable on the left, which begins with the divergently transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3, see below) and is identified as HGT DNA; and conserved on the right, encoding putative helicase loader DnaC, ATP-dependent helicase DnaB, DNA primase DnaG, chaperonin protein DnaJ, and DNA polymerase IIIα subunit, plus two putative Holliday resolvases gp156 ( <i>E3_1560</i> ) and gp158 ( <i>E3_1580</i> ). Interestingly, in contrast to gp156, gp158 shows no                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> </ol>                         | DNA processing and packaging. A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely<br>devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and<br>Myrna identifies two sections: variable on the left, which begins with the divergently<br>transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3,<br>see below) and is identified as HGT DNA; and conserved on the right, encoding putative<br>helicase loader DnaC, ATP-dependent helicase DnaB, DNA primase DnaG, chaperonin<br>protein DnaJ, and DNA polymerase IIIα subunit, plus two putative Holliday resolvases gp156<br>( <i>E3_1560</i> ) and gp158 ( <i>E3_1580</i> ). Interestingly, in contrast to gp156, gp158 shows no<br>homology to <i>Myoviridae</i> products but is closely related to <i>Siphoviridae</i> proteins ( <i>R. equi</i>                                                                                                                                                                                                 |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> </ol>             | <i>DNA processing and packaging.</i> A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely<br>devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bxz1 and<br>Myrna identifies two sections: variable on the left, which begins with the divergently<br>transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3,<br>see below) and is identified as HGT DNA; and conserved on the right, encoding putative<br>helicase loader DnaC, ATP-dependent helicase DnaB, DNA primase DnaG, chaperonin<br>protein DnaJ, and DNA polymerase IIIα subunit, plus two putative Holliday resolvases gp156<br>( <i>E3_1560</i> ) and gp158 ( <i>E3_1580</i> ). Interestingly, in contrast to gp156, gp158 shows no<br>homology to <i>Myoviridae</i> products but is closely related to <i>Siphoviridae</i> proteins ( <i>R. equi</i><br>ReqiPine5 gp08, <i>Tsukamurella</i> phage TPA2 gp15 and <i>Nocardia</i> phage NBR1 gp65). Apart                                                                                       |
| <ol> <li>13</li> <li>14</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> </ol> | <i>DNA processing and packaging</i> . A 24.6 kb region from <i>E3_1360</i> to <i>E3_1640</i> is largely<br>devoted to DNA replication, repair and recombination (Fig. 2). Comparison with Bx21 and<br>Myrna identifies two sections: variable on the left, which begins with the divergently<br>transcribed helicase gene <i>E3_1360</i> (conserved in the three phages), is part of an HPR (HPR-3,<br>see below) and is identified as HGT DNA; and conserved on the right, encoding putative<br>helicase loader DnaC, ATP-dependent helicase DnaB, DNA primase DnaG, chaperonin<br>protein DnaJ, and DNA polymerase IIIα subunit, plus two putative Holliday resolvases gp156<br>( <i>E3_1560</i> ) and gp158 ( <i>E3_1580</i> ). Interestingly, in contrast to gp156, gp158 shows no<br>homology to <i>Myoviridae</i> products but is closely related to <i>Siphoviridae</i> proteins ( <i>R. equi</i><br>ReqiPine5 gp08, <i>Tsukamurella</i> phage TPA2 gp15 and <i>Nocardia</i> phage NBR1 gp65). Apart<br>from the homology to Bx21 and Myrna, the closest homologues of the DNA processing |

DNA packaging is predicted to be mediated by gp5/TerL, a member of the terminase 1 family (PF03354) similar to the T4 large terminase, gp17 (Sun *et al.*, 2008), and distantly related to the putative large terminase of *R. equi* phage ReqiDocB7 (Summer *et al.*, 2011). Large terminases are characterised by the presence of an ATP-binding Walker A motif, for which a putative deviant motif (GRRASKG) (Mitchell and Rao, 2004) was identified in gp5 and its mycobacteriophage homologues.

7

8 Lysis

9 Tailed ds-DNA phages typically possess a lysis cassette encoding holin and endolysin, which 10 together are responsible for degrading the host cell wall during the lytic infection cycle. 11 Although not identified for Bxz1 and Myrna, a putative holin gene (E3\_0020) was found 12 close to *terL (E3 0050)*. With no similarity to any *R. equi* phage protein reported to date, its 13 closest homologue is the Lactococcus phage r1t holin (Sanders et al., 1997). Structural 14 analysis revealed that E3 gp2 is related to the class 3 holins, which includes the S gene 15 product of phage  $\lambda$ . The putative E3 endolysin gene (E3 0980), with again no homologue in 16 Bxz1 and Myrna, is located 56.4 kb downstream of the holin gene in HPR-2. Gp98 shares 17 similarity to LysA of mycolata *Siphoviridae* including the mycobacteriophages ms6 and Ch8 18 (Garcia et al., 2002; Payne et al., 2009), R. equi phage ReqiDocB7 (Summer et al., 2011) and 19 Tsukamurella phage TPA2 (Petrovski et al., 2011a). Significantly, no phage E3 LysA 20 homologues were found in other Myoviridae. Gp98 possesses two domains: an N-terminal 21 amidase domain (PF01510) and a C-terminal LGFP (Leu, Gly, Phe and Pro) repeat domain 22 (PF08310) reported in cell wall-associated proteins of the mycolata and believed to play a role 23 in protein anchoring thereby maintaining cell wall integrity (Adindla et al., 2003). 24 Interestingly, lytic domains were also predicted for the E3 putative baseplate hub 25 protein gp119, including a soluble lytic transglycosylase (SLT) domain (PF01464) and a g-

Page 10 of 47

| 1  | D,L-glutamate-specific amidohydrolase NLPC/P60 domain (PF00877). Although related to           |
|----|------------------------------------------------------------------------------------------------|
| 2  | the key baseplate central protein gp44 of Mu and gp27 of T4, phage Mu gp44 does not            |
| 3  | possess tail lysozyme activity, while the T4 gp27 interacts with a lysozyme encoding protein   |
| 4  | (Kanamaru et al., 2002; Kondou et al., 2005). Interestingly, the baseplate protein for E. coli |
| 5  | O157:H7 phage CBA120 possesses an NLPC/P60 domain flanked by sequences with                    |
| 6  | homology to regions of T4 gp5 responsible for T4 gp5/gp27 interaction (Kutter et al., 2011).   |
| 7  | The lytic domains in the baseplate protein may constitute a "punching device" to aid           |
| 8  | penetration of the peptidoglycan layer during the infection process (Kanamaru et al., 2002).   |
| 9  | The gp119 homologues in the myoviridal mycobacteriophages lack the SLT domain and thus         |
| 10 | the E3 multidomain gp119 represents a novel arrangement for baseplate proteins.                |
| 11 | Phages infecting mycobacteria, which possess lipid-rich cell envelopes, encode                 |
| 12 | auxiliary lysins with lipolytic activity generically designated LysB. Three such LysB enzymes  |
| 13 | are potentially encoded by E3, all in HPRs: gp84, a putative SGNH lipolytic protein of the     |
| 14 | serine hydrolase family; gp85 cutinase, homologous to LysB of Mycobacterium phages D12         |
| 15 | and Ms6, for which lipolytic activity has been experimentally determined (Gil et al., 2008;    |
| 16 | Payne et al., 2009); and gp167 with structural similarity to mycobacteriophage D29 LysB. E3    |
| 17 | appears thus to be particularly well endowed in lipolytic proteins, being the first phage      |
| 18 | reported with three putative LysB proteins.                                                    |
| 19 |                                                                                                |
| 20 | Hyperplastic regions                                                                           |
| 21 | The four HPRs in E3, Bxz1 and Myrna mostly encode hypothetical proteins with no                |
| 22 | significant similarity to products of the corresponding region in the three phages (or indeed  |
| 23 | any other phage in protein sequence databases). The HPR genes are typically smaller in size    |
|    |                                                                                                |

- compared to genes in the conserved modules (~390 vs 1074 bp). The presence of clusters of
- 25 small ORFs, with an average of 100 codons, is relatively common within bacteriophages and

| 1  | tend to be associated with regions subjected to greater genetic flux (Hatfull et al., 2010). The |
|----|--------------------------------------------------------------------------------------------------|
| 2  | HPRs in the three phages are rich in horizontally acquired (HGT) DNA, indicating that they       |
| 3  | mainly evolve through lateral exchange, while HGT DNA is generally absent from the               |
| 4  | conserved gene modules (Fig. 2), consistent with a vertical evolutionary pattern. Some of the    |
| 5  | E3 HPR products are similar to bacterial or eukaryotic proteins with no (or exceptional) phage   |
| 6  | homologues, suggesting the possibility of a non-viral origin (see Supplementary text). Many      |
| 7  | of the HPR products are secreted or transmembrane proteins possibly related to host              |
| 8  | adaptation/virulence functions. Specific features of two of the E3 HPRs are discussed below.     |
| 9  | HPR-2: recent acquisition of structural and infectivity traits. HPR-2 interrupts the             |
| 10 | conserved morphogenesis module between the head and tail assembly units of E3, Bxz1 and          |
| 11 | Myrna. In E3 it is significantly larger, with a mosaic of HGT genes encoding hypothetical        |
| 12 | proteins, the putative amidase/LysA endolysin (gp98), two LysB lipolytic enzymes (gp84,          |
| 13 | 85), and structural proteins including two putative tail fibre proteins (gp86, gp88). Seven      |
| 14 | additional HPR-2 products were identified as structural proteins by LC-ESI-MS/MS (gp87,          |
| 15 | gp89, gp99, gp100, gp106 to 108) (Table S2). These features suggest this HPR may encode          |
| 16 | products relevant to head/tail assembly and also phage infectivity. Except for the putative tail |
| 17 | fibre gene <i>E3_0880</i> (gp88), none of the HPR-2 genes have homologues in Bxz1 or Myrna.      |
| 18 | Interestingly, a second HPR-2-encoded E3 tail fibre protein, gp86 (E3_0860), is highly           |
| 19 | similar to proteins of <i>R. equi</i> phages, ReqiPoco6 and ReqiPepy6 of the Siphoviridae family |
| 20 | (Summer et al., 2011). A phylogenetic analysis confirmed that gp88 is evolutionarily related     |
| 21 | to its Bxz1/Myrna homologues whereas gp86 shares a common origin with tail fibre proteins        |
| 22 | from <i>R. equi</i> siphoviruses (Fig. S3). An additional putative tail fibre protein (gp204),   |
| 23 | possessing a phage-related tail fibre domain (COG5301), is phylogenetically related to           |
| 24 | Bxz1/Myrna products (Fig. S3) and encoded by syntenically conserved genes in a cassette          |
| 25 | immediately downstream of HPR-4 (Fig. 2). Since tail fibre proteins are involved in the          |

Wiley-Blackwell and Society for Applied Microbiology

Page 12 of 47

binding of the phage to the surface of the host bacterium, the horizontal acquisition of *E3\_0860* by E3 may have been critical to gain tropism towards *R. equi*. The evolutionary
pattern of E3 putative tail fibre genes, combining vertical evolution and genetic exchanges
with distantly related phages, provides clues about the shaping of host adaptation in the *Caudovirales*.

HPR-3: adaptation to the host genome? In E3, Bxz1 and Myrna, HPR-3 includes the 6 7 divergently transcribed "helicase" locus, comprising three (E3 and Myrna) to four (Bxz1) 8 genes, all different in the three phages except for the conserved helicase gene (Fig. 2). In the 9 mycobacteriophages, this locus is interrupted by a cluster of 23 (Bxz1) to 32 (Myrna) tRNA 10 genes, which is completely absent in E3. There are two additional small tRNA clusters in the 11 Bxz1 and Myrna genomes, which are also absent in E3 (Fig. 2). While some phage genomes 12 lack or have few tRNA genes, others have as many as the host bacteria, with the number of 13 tRNAs being generally positively associated with phage genome size (Bailly-Bechet et al., 14 2007). The total absence of tRNAs in E3 and the overabundance in the similarly sized and 15 genomically and evolutionarily closely related mycobacterial myoviruses is therefore 16 intriguing. tRNAs are typical integration sites for mobile DNA elements and it has been 17 suggested they are continually recruited during the course of multiple integration events, with 18 accumulation in the phage genome if providing a selective advantage that counteracts the 19 natural deletion bias of non-essential DNA (Williams, 2002). tRNAs may be important for 20 translation-associated phage fitness by compensating differences in codon usage with the host bacterium, becoming positively selected if the corresponding codons are highly used by the 21 22 phage and rare in the host genome (Bailly-Bechet et al., 2007). While the bacterial hosts for 23 E3 and the Bxz1 and Myrna mycobacteriophages do not appreciably differ in composition of 24 the corresponding genomic tRNA pools, they do differ significantly in genome size (5.0 Mbp 25 for R. equi vs  $\approx$ 7 Mbp for M. smegmatis). If tRNA gene expression is rate-limiting, the larger

- host genome for Bxz1 and Myrna may necessitate additional tRNAs to support efficient
   multiplication of the parasitic phage.
- 3

## 4 Concluding remarks

5 This study reports the first *Myoviridae* infecting a non-mycobacterial actinomycete and the 6 first myoviridal phage hosted by a member of the genus *Rhodococcus*. There is a paucity of 7 *Myoviridae* isolated to date infecting the mycolata, a group of *Actinobacteria* comprising a 8 number of genera of environmental, industrial and medical relevance. In addition, the 9 distribution of available phage sequences within this bacterial group is clearly skewed 10 towards mycobacteriophages, limiting the significance of comparative genomics and phage 11 evolutionary studies. Our findings therefore contribute to fill an existing gap in the diversity 12 of genome sequences available for Actinobacteria phages, in particular those infecting 13 mycolic acid-containing actinomycetes.

14 In a recent study by Lavigne *et al.* (2009) a classification was proposed for all 15 *Myoviridae* into three sub-families and eight independent genera, one of which is the 16 proposed 'Bxz1-like' or 'I3-like' genus consisting of the myoviridal mycobacteriophages. 17 Our findings support a case for redefinition of this bacteriophage genus or grouping as 18 'mycolata-infecting *Myoviridae*', with possibly E3 as the reference member since it now 19 represents the best-characterised example of these phages. The comprehensive bioinformatic 20 and proteomic analysis of *R. equi* phage E3 has contributed to the refinement of the 21 annotation of the related mycobacterial myoviruses. 22 The genomes within the mycolata-infecting Myoviridae group have a modular 23 conserved backbone, encoding the essential machinery for phage life cycle, with interspersed

24 laterally acquired hypervariable regions (HPR) that form the basis for the genetic diversity

and specialisation. While unique to each phage, these HPRs are syntenically located,

| 1  | indicating they are conserved hot spots for lateral exchange and genome mosaicism. HPRs                |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | would appear to encode important infectivity and host tropism traits including enzymatic               |
| 3  | activities required for phage penetration and release during the infection cycle. In E3, the           |
| 4  | endolysins LysA targeting the bacterial peptidoglycan and the three predicted LysB proteins,           |
| 5  | targeted at the lipid-rich bacterial cell envelopes, are encoded by ORFs located within the            |
| 6  | HPRs. These gene products are amongst the few of phage E3 bearing significant similarity to            |
| 7  | proteins from other <i>R. equi</i> phages, suggesting lateral acquisition of host-specific infectivity |
| 8  | traits via lateral exchanges with other <i>Rhodococcus</i> phages. Another example is the tail fibre   |
| 9  | genes identified in HPR-2, one of which is syntenically conserved in the mycobacteriophages            |
| 10 | while the other encodes a product homologous to tail fibre proteins of <i>R. equi Siphoviridae</i> .   |
| 11 | The most important limitation for comparative genomic studies of mycolata phages                       |
| 12 | lies in the fact that complete sequence data within this group are currently limited, with only        |
| 13 | seven Siphoviridae and one Myoviridae genome sequences available for the genera                        |
| 14 | Rhodococcus, Tsukamurella and Corynebacterium, compared to in excess of 230                            |
| 15 | Siphoviridae and 23 Myoviridae for Mycobacterium. Our study highlights the importance of               |
| 16 | isolating and comparatively analysing the genomes of Myoviridae infecting other mycolic                |
| 17 | acid-containing actinomycetes to gain further insight into the evolutionary history of the             |
| 18 | mycolata phages and their relationship within the Caudovirales. Given the extraordinarily fast         |
| 19 | evolutionary dynamics and mosaicism of phage genomes, our data with phylogenetically and               |
| 20 | genomically closely related phages infecting different bacteria provide clues to understand            |
| 21 | short-term phage genome evolution in connection to host adaptation.                                    |
| 22 |                                                                                                        |
|    |                                                                                                        |

## 23 Experimental procedures

24 Phage isolation and microscopy

| 1  | Soil samples were screened for the presence of phages following the method described by                  |
|----|----------------------------------------------------------------------------------------------------------|
| 2  | Dabbs (1998) using R. equi NCIMB 10027. Following three rounds of plaque purification,                   |
| 3  | host range was analysed using a spot assay technique. Strain details are provided in Table S3.           |
| 4  | Caesium chloride-purified phages were observed by transmission electron microscopy (Zeiss                |
| 5  | 912 energy filtering transmission electron microscope) following dialysis against phage buffer           |
| 6  | (40 mM Tris-HCl, 100 mM NaCl and 10 mM MgSO <sub>4</sub> , pH 7.4) and methylamine vanadate              |
| 7  | staining on S Formvar/Carbon-coated 200 mesh copper grids operating at 120kV.                            |
| 8  |                                                                                                          |
| 9  | Genome sequencing and annotation                                                                         |
| 10 | Phages were concentrated and purified according to Sambrook et al. (1989) with the                       |
| 11 | following modifications: phage lysate was incubated with 0.5M NaCl for 1 h at 4°C, prior to              |
| 12 | centrifugation at 5,000g for 10 min at 4°C, and the pellet resuspended in phage buffer prior to          |
| 13 | loading on CsCl step gradient. DNase I and RNase A were added to the purified phage                      |
| 14 | particles solution at 1 mg ml <sup>-1</sup> final concentration prior to addition of EDTA and proteinase |
| 15 | K, and finally DNA precipitation using isopropanol. Shotgun E3 genome sequencing was                     |
| 16 | carried out using 454 pyrosequencing (Roche). Gaps between contigs of an ~24-fold coverage               |
| 17 | shotgun assembly were closed manually by PCR. The software and databases used for                        |
| 18 | genome analysis and annotation are shown in Table S4. The complete E3 DNA sequence and                   |
| 19 | genome annotation has been deposited in GenBank under accession no. HM114277.                            |
| 20 |                                                                                                          |
| 21 | Phylogenetic analyses                                                                                    |
| 22 | Protein sequences were aligned using ClustalX v2.0 (Larkin et al., 2007) under default                   |
| 23 | parameters and Maximum-Likelihood and Neighbor-Joining phylogenetic trees constructed                    |
| 24 | with PhyML v2.4.5 (Guindon and Gascuel, 2003) and MEGA v5.0 (Tamura et al., 2011),                       |
| 25 | respectively. The latter programme was used for tree visualization and edition.                          |

Page 16 of 47

| т. |
|----|
|    |
|    |
|    |

#### 2 Phage proteomics

Approx. 5 µg of double CsCl purified phages were subjected to SDS-PAGE (12% tris/glycine 3 4 mini-gel, Invitrogen). Protein bands were visualised using SimplyBlue Safe Stain<sup>™</sup> 5 (Invitrogen), sliced and subjected to standard in-gel trypsinisation (Shevchenko et al., 1996). 6 LC-ESI-MS/MS analysis was performed as described by Batycka et al. (2006) using a 7 monolithic reversed phase column (200 mm ID; Dionex-LC Packings). Deconvoluted MS/MS 8 data was submitted to an in-house MASCOT server, searched against a cognate R. equi E3 9 phage genomic database and analysed in accordance with published guidelines (Taylor and 10 Goodlett, 2005). 11 12 Acknowledgements 13 We thank the Genepool facility, University of Edinburgh, for DNA sequencing, L. Tetley of the 14 Integrated Microscopy Facility, University of Glasgow, for electron microscopy, and M. Letek for his

input during the initial stages of the project. This work received financial support from the Horserace

16 Betting Levy Board (grant Prj-753 to JV-B). AV-R was supported by an EU FP7 Marie-Curie intra-

17 European fellowship.

18

15

## 1 References

| 2  | Abascal, F., Zardoya, R., and Posada, D. (2005) ProtTest: selection of best-fit models of protein      |
|----|--------------------------------------------------------------------------------------------------------|
| 3  | evolution. Bioinformatics 21: 2104-2105.                                                               |
| 4  | Adindla, S., Inampuldi, K.K., Guruprasad, K., and Guruprasad, L. (2003) Identification and analysis    |
| 5  | of novel tandem repeats in the cell surface proteins of archaeal and bacterial genomes using           |
| 6  | computational tools. Comp Funct Genomics 5: 2-16.                                                      |
| 7  | Bailly-Bechet, M., Vergassola, M., and Rocha, E. (2007) Causes for the intriguing presence of tRNAs    |
| 8  | in phages. Genome Res 17: 1486-1495.                                                                   |
| 9  | Batycka, M., Inglis, N.F., Cook, K., Adam, A., Fraser-Pitt, D., Smith, D.G.E. et al. (2006) Ultra-fast |
| 10 | tandem mass spectrometry scanning combined with monolithic column liquid chromatography                |
| 11 | increases throughput in proteomic analysis. Rapid Com Mass Spect 20: 2074-2080.                        |
| 12 | Brüssow, H., Canchaya, C., and Hardt, WD. (2004) Phages and the evolution of bacterial pathogens:      |
| 13 | from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68: 560-602.               |
| 14 | Casjens, S.R., and Thuman-Commike, P.A. (2011) Evolution of mosaically related tailed                  |
| 15 | bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411: 393-           |
| 16 | 415.                                                                                                   |
| 17 | Dabbs, E.R. (1998) Cloning of genes that have environmental and clinical importance from               |
| 18 | rhodococci and related bacteria. Antonie van Leeuwenhoek 74: 155-168.                                  |
| 19 | Dawson, T.R., Horohov, D.W., Meijer, W.G., and Muscatello G. (2010) Current understanding of the       |
| 20 | equine immune response to Rhodococcus equi. An immunological review of R. equi                         |
| 21 | pneumonia. Vet Immunol Immunopathol 135: 1-11.                                                         |
| 22 | Garcia, M., Pimentel, M., and Moniz-Pereira, J. (2002) Expression of mycobacteriophage Ms6 lysis       |
| 23 | genes is driven by two $\sigma$ 70-like promoters and is dependent on a transcription termination      |
| 24 | signal present in the leader RNA. J Bacteriol 184: 3034-3043.                                          |
| 25 | Giguère, S., Cohen, N.D., Chaffin, M.K., Slovis, N.M., Hondalus, M.K., Hines, S.A., and Prescott,      |
| 26 | J.F. (2011) Diagnosis, treatment, control, and prevention of infections caused by <i>Rhodococcus</i>   |
| 27 | equi in foals. J Vet Intern Med 25: 1209-1220.                                                         |
| 28 | Gil, F., Catalao, M.J., Moniz-Pereira, J., Leandro, P., McNeil, M., and Pimentel, M. (2008) The lytic  |
| 29 | cassette of mycobacteriophage Ms6 encodes an enzyme with lipolytic activity. Microbiology              |
| 30 | <b>154</b> : 1364-1371.                                                                                |
| 31 | Glazko, G., Makarenkov, V., Liu, J., and Mushegian, A. (2007) Evolutionary history of                  |
| 32 | bacteriophages with double-stranded DNA genomes. Biol Direct 2: 36.                                    |
| 33 | Guindon, S., and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large           |
| 34 | phylogenies by maximum likelihood. Syst Biol 52: 696-704.                                              |
| 35 | Hatfull, G.F. (2006) Mycobacteriophages. In The Bacteriophages. Calendar, R. (ed). New York:           |
| 36 | Oxford University press, pp. 602-620.                                                                  |

| 1  | Hatfull, G.F., Jacobs-Sera, D., Lawrence, J.G., Pope, W.H., Russell, D.A., Ko, C.C. et al. (2010)                        |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 2  | Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene                                    |
| 3  | acquisition, and gene size. J Mol Biol 397: 119-143.                                                                     |
| 4  | Juhala, R.J., Ford, M.E., Duda, R.L., Youlton, A., Hatfull, G.F., and Hendrix, R.W. (2000) Genomic                       |
| 5  | sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid                                  |
| 6  | bacteriophages. J Mol Biol 299: 27-51.                                                                                   |
| 7  | Kanamaru, S., Leiman, P.G., Kostyuchenko, V.A., Chipman, P.R., Mesyanzhinov, V.V., Arisaka, F.,                          |
| 8  | and Rossmann, M.G. (2002) Structure of the cell-puncturing device of bacteriophage T4. Nat                               |
| 9  | <b>415</b> : 553-557.                                                                                                    |
| 10 | Kondou, Y., Kitazawa, D., Takeda, S., Tsuchiya, Y., Yamashita, E., Mizuguchi, M., et al. (2005)                          |
| 11 | Structure of the central hub of Bacteriophage Mu baseplate determined by X-ray                                           |
| 12 | crystallography of gp44. J Mol Biol 352: 976-985.                                                                        |
| 13 | Kutter, E.M., Skutt-Kakaria, K., Blasdel, B., El-Shibiny, A., Castano, A., et al., (2011)                                |
| 14 | Characterization of a Vil-like phage specific to Escherichia coli O157:H7. Virol J. 8:430.                               |
| 15 | Larkin, M.J., Kulakov, A., and Allen, C.C.R. (2005) Biodegradation and <i>Rhodococcus</i> – masters of                   |
| 16 | catabolic versatility. Curr Opinion Biotechnol 16:282-290.                                                               |
| 17 | Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al.                         |
| 18 | (2007) Clustal W and Clustal X version 2.0. <i>Bioinformatics</i> 23: 2947-2948.                                         |
| 19 | Lavigne, R., Darius, P., Summer, E., Seto, D., Mahadevan, P., Nilsson, A., et al. (2009) Classification                  |
| 20 | of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9: 224.                                    |
| 21 | Letek, M., González, P., MacArthur, I., Rodríguez, H., Freeman, T.C., Valero-Rello, A., et al. (2010)                    |
| 22 | The genome of a pathogenic <i>Rhodococcus</i> : Cooptive virulence underpinned by key gene                               |
| 23 | acquisitions. PLoS Genetics 6: e1001145.                                                                                 |
| 24 | Liu, J., Glazko, G., and Mushegian, A. (2006) Protein repertoire of double-stranded DNA                                  |
| 25 | bacteriophages. Virus Res 117: 68-80.                                                                                    |
| 26 | Mitchell, M.S., and Rao, V.B. (2004) Novel and deviant Walker A ATP-binding motifs in                                    |
| 27 | bacteriophage large terminase-DNA packaging proteins. <i>Virology</i> <b>321</b> : 217-221.                              |
| 28 | Monier, A., Claverie, J.M., and Ogata, H. (2008) Taxonomic distribution of large DNA viruses in the                      |
| 29 | sea. Genome Biol 9:R106.                                                                                                 |
| 30 | Muscatello, G., Leadon, D.P., Klayt, M., Ocampo-Sosa, A., Lewis, D.A., Fogarty, U., et al. (2007)                        |
| 31 | Rhodococcus equi infection in foals: the science of 'rattles'. Equine Vet J 39:470-478.                                  |
| 32 | Ocampo-Sosa, A.A., Lewis, D.A., Navas, J., Quigley, F., Callejo, R., Scortti, M., et al. (2007)                          |
| 33 | Molecular epidemiology of <i>Rhodococcus equi</i> based on <i>traA</i> , <i>vapA</i> , and <i>vapB</i> virulence plasmid |
| 34 | markers. J. Infect. Dis. 196:763-769.                                                                                    |
| 35 | Payne, K., Sun, Q., Sacchettini, J., and Hatfull, G.F. (2009) Mycobacteriophage lysin B is a novel                       |
| 36 | mycolylarabinogalactan esterase. Mol Microbiol 73: 367-381.                                                              |

Page 19 of 47

| 1  | Pedersen, M., Østergaard, S., Bresciani, J., and Vogensen, F.K. (2000) Mutational analysis of two     |
|----|-------------------------------------------------------------------------------------------------------|
| 2  | structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length           |
| 3  | determination and baseplate assembly. Virology 276: 315-328.                                          |
| 4  | Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., et al. (2003)    |
| 5  | Origins of highly mosaic mycobacteriophages genomes. Cell 113: 171 - 182.                             |
| 6  | Petrovski, S., Seviour, R.J., and Tillett, D. (2011) Genome sequence and characterization of the      |
| 7  | Tsukamurella bacteriophage TPA2. Appl Environ Microbiol 77: 1389-1398.                                |
| 8  | Prescott, J.F. (1991) Rhodococcus equi: animal and human pathogen. Clin Microbiol Rev 4: 20-24.       |
| 9  | Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold     |
| 10 | Spring Harbor: Cold Spring Harbor Laboratory Press pp 2.73-2.81                                       |
| 11 | Sanders, J.W., Venema, G., and Kok, J. (1997) A chloride-inducible gene expression cassette and its   |
| 12 | use in induced lysis of Lactococcus lactis. Appl Environ Microbiol 63: 4877-4882.                     |
| 13 | Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of              |
| 14 | proteins silver-stained polyacrylamide gels. Anal Chem 68: 850-858.                                   |
| 15 | Summer, E.J., Liu, M., Gill, J.J., Grant, M., Chan-Cortes, T.N., Ferguson, L., et al. (2011) Genomic  |
| 16 | and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and               |
| 17 | ReqiDocB7. Appl Environ Microbiol 77: 669-683.                                                        |
| 18 | Sun, S., Kondabagil, K., Draper, B., Alam, T.I., Bowman, V.D., Zhang, Z., et al. (2008) The structure |
| 19 | of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces.           |
| 20 | <i>Cell</i> <b>135</b> : 1251-1262.                                                                   |
| 21 | Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5:             |
| 22 | Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and         |
| 23 | maximum parsimony methods. Mol Biol Evol 28: 2731-2739                                                |
| 24 | Taylor, G.K., and Goodlett, D.R. (2005) Rules governing protein identification by mass spectrometry.  |
| 25 | Rapid Commun Mass Spectrom 19: 3420.                                                                  |
| 26 | Vazquez-Boland, J.A., Letek, M., Valero-Rello, A., González, P., and Scortti, M. (2010) Rhodococcus   |
| 27 | equi and its virulence mechanisms. In: Microbiol. Monogr. (H.M. Alvarez, ed) The Biology of           |
| 28 | Rhodococcus, pp. 331-360. Springer Verlag.                                                            |
| 29 | Weinstock, D.M., and Brown, A.E. (2002) Rhodococcus equi: an emerging pathogen. Clin Infect Dis       |
| 30 | 34:1379-1385.                                                                                         |
| 31 | Williams, K.P. (2002) Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes:     |
| 32 | sublocation preference of integrase subfamilies. Nucleic Acids Res 30: 866-875.                       |
| 33 | Xu, J., Hendrix, R., and Duda, R.L. (2004) Conserved translational framesift in dsDNA bacteriophage   |
| 34 | tail assembly genes. Mol Cell 16: 11-21.                                                              |
| 35 |                                                                                                       |

## 1 Figure Legends

2 3

Fig. 1. Electron micrograph of E3 phage, a *Myoviridae* typified by the presence of long

4 inflexible, contractile tails with a constriction ("neck") between head and tail. Capsid

5 diameter is approx.  $93.55 \pm 2.53$  nm and tail is of a similar length ( $94.28 \pm 2.07$  nm) based on

- 6 measurements taken on 5 individual phage particles
- 7
- 8

9 Fig. 2. Genomic maps of *Rhodococcus equi* phage E3 and *Mycobacterium* phages Myrna and 10 Bxz1. To facilitate genetic structure/synteny comparison, the terminase region was arbitrarily 11 chosen to "linearise" the E3, Bxz1 and Myrna circular genomes (gp243 and gp236 as first 12 ORFs in the linearised Myrna and Bxz1, respectively). In E3, the nucleotide coordinates start 13 1,650 bp upstream the 5' end of the *terL* (terminase) gene. Pale blue shadowed links indicate 14 genes encoding protein homologues based on BLASTclust algorithm. ORFs are colour coded 15 according to predicted functions: red, DNA and RNA metabolism; blue, transcription factor; 16 pale green, membrane and secreted proteins; dark green, morphogenesis; magenta, lysis 17 proteins; yellow, other enzymes; grey, conserved hypothetical proteins. HGT regions are 18 underlined, tRNA clusters and hyperplastic regions (HPRs) are boxed with solid or dashed 19 rectangles, respectively. Vertical arrows indicate proteins with significant similarity to other 20 *Rhodococcus* phages; black dots, virion associated proteins confirmed by LC-ESI-MS/MS 21 proteomic analysis (see Table S2); triangles, tail fibres proteins (see Fig. S3). Pairwise 22 alignments of Bxz1-like phages showed all to be almost identical phage species, therefore 23 Bxz1 was selected as representative of this group. Genes mentioned in the text are labelled. 24 Annotations in Bxz1 and Myrna are based on Hatfull et al. (2010), with an indication of 25 revised or newly assigned functions (indicated by a star). Abbreviations: Prohead-P, prohead 26 protease; TMP, tape measure protein; SLT, soluble lytic transglycosylase. Genomic maps 27 were built in XPlasMap v0.96 (http://www.iayork.com). 28 29 30 Fig. 3. Maximum Likelihood tree of gp5 (TerL) and related phage terminase large subunit 31 proteins. Model of protein evolution: Blosum62 with estimated Gamma distribution,

32 proportion of invariable sites and empirical frequencies (Blosum62+G+I+F). The best model

- 33 of evolution for protein sequence as determined by jProtTest v2.4 (Abascal *et al.*, 2005),
- 34 according to AIC criterion, was used. Numbers in nodes are percent bootstrap for 100

- 1 replicates; values under 50% are not represented. Families according to ICTV and NCBI
- 2 classification are represented in: green, Myoviridae; yellow, Podoviridae; non-shaded,
- 3 Siphoviridae. The reference bacteriophages for established (solid boxes) or proposed genus
- 4 groups (dotted boxes) are indicated by asterisks. Numbers in brackets represent the global
- 5 nucleotide similarity percentages to the reference genome in the respective genus group.
- 6 Phylum of bacterial hosts is indicated for each taxon by coloured dots: black, Actinobacteria;
- 7 white, Firmicutes; red, Proteobacteria. The scale shows the number of amino acid
- 8 substitutions per site.

ce. . rosts is in . red, *Proteoba*. . er site.



Fig. 1 297x420mm (300 x 300 DPI)

Wiley-Blackwell and Society for Applied Microbiology



Fig. 2 297x420mm (300 x 300 DPI)



Fig. 3 297x420mm (300 x 300 DPI)

Wiley-Blackwell and Society for Applied Microbiology

## **ONLINE SUPPORTING INFORMATION**

## Genomic and proteomic analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi

Samson P. Salifu, Ana Valero-Rello, Samantha A. Campbell, Neil F. Inglis, Mariela Scortti, Sophie Foley\*, and José A. Vazquez-Boland\*

\* Email: s.foley@napier.ac.uk, v.boland@ed.ac.uk

.ν.



**Fig. S1.** Neighbor Joining unrooted trees of (A) DNA polymerase (E3 gp154) and (B) prohead protease (E3 gp77). Numbers in nodes are the percent bootstrap values for 1000 replicates; values under 50% are not represented. Reference bacteriophages for accepted genera according to ICTV and NCBI taxonomy are indicated by asterisks. E3 proteins are indicated by arrows. The scale shows the number of amino acid substitutions per site. The topology of the phylogenetic trees (including the TerL tree; see Fig. 3) reproduced the branching pattern of phage phylogenies based on whole genomes (Rohwer and Edwards, 2002; Glazko *et al.*, 2007), and most well-suported clades grouped phages classified within an established genus.







**Fig. S3.** Neighbor Joining unrooted tree of E3 tail fibre proteins (gp86, gp88 and gp204). The numbers in nodes are the percent bootstrap values for 1000 replicates; values under 50% are not represented. Arrows indicate E3 tail fibre proteins. The scale shows the number of amino acid substitutions per site.

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>°</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function       | Domain /<br>Motif       | Closest Homologue <sup>c</sup>           | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|-------------------------|-------------------------|------------------------------------------|------------------------------------------|----------------------------------------|
| E3_0010                        | 58-366 (309 /63.75)                         | gp1<br>(102/11.4)          |                         |                         |                                          |                                          |                                        |
| E3_0020                        | 363-770 (408 /64.7)                         | gp2<br>(135/14.3)          | Holin                   | 4 TMDs                  | HP Rhodococcus equi                      | ZP_06828142<br>(6e-11)                   | 57 (68/119)                            |
| E3_0030                        | 798-1244 (447 /64.87)                       | gp3<br>(148/16.1)          |                         | 4 TMDs                  |                                          |                                          |                                        |
| E3_0040                        | 1312-1650 (339/62.83)                       | gp4<br>(112/12.9)          |                         | Signal peptide<br>1 TMD |                                          |                                          |                                        |
| E3_0050                        | 1661-3724 (2064/65.93)                      | gp5<br>(687/78.5)          | Large terminase         |                         | gp239 <i>Mycobacterium</i> phage<br>Bxz1 | NP_818289<br>(0.0)                       | 65 (428/661)                           |
| E3_0060                        | 3779-4009 (231/67.53)                       | gp6<br>(76/8.0)            |                         | Signal peptide          |                                          |                                          |                                        |
| E3_0070                        | 4039-4251 (213/65.25)                       | gp7<br>(70/8.0)            |                         |                         |                                          |                                          |                                        |
| E3_0080                        | 4244-4705 (462/65.36)                       | gp8<br>(153/17.6)          | Polynucleotide dikinase |                         | HP Saccharopolyspora<br>erythraea        | ZP_06562255<br>(1e-24)                   | 58 (80/139)                            |
| E3_0090                        | 4705-4983 (279/65.94)                       | gp9<br>(92/10.5)           |                         | Signal peptide<br>1 TMD |                                          |                                          |                                        |
| E3_0100                        | 5068-5391 (324/69.75)                       | gp10<br>(107/12.1)         |                         |                         |                                          |                                          |                                        |
| E3_0110                        | 5427-5819 (393/66.41)                       | gp11<br>(130/14.9)         |                         |                         |                                          |                                          |                                        |
| E3_0120                        | 5895-6152 (258/67.44)                       | gp12<br>(85/9.2)           |                         |                         |                                          |                                          |                                        |
| E3_0130                        | 6179-6376 (198/65.15)                       | gp13<br>(65/7.5)           |                         |                         |                                          |                                          |                                        |
| E3_0140                        | 6379-6642 (264/70.83)                       | gp14<br>(87/9.6)           |                         |                         |                                          |                                          |                                        |
| E3_0150                        | 6639-7127 (489/68.3)                        | gp15<br>(162/17.6)         |                         | Coiled coil             |                                          |                                          |                                        |

**Table S1.** Annotation of bacteriophage E3 genome <sup>a</sup>.

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function | Domain /<br>Motif      | Closest Homologue <sup>c</sup>            | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|-------------------|------------------------|-------------------------------------------|------------------------------------------|----------------------------------------|
| E3_0160                        | 7127-7486 (360/66.38)                       | gp14<br>(119/13.6)         |                   |                        |                                           |                                          |                                        |
| E3_0165                        | 7486-7668 (183/69.94)                       | gp 16.5<br>(60/6.6)        |                   |                        |                                           |                                          |                                        |
| E3_0170                        | 7669-8121 (453/66.88)                       | gp17<br>(150/17.5)         |                   |                        |                                           |                                          |                                        |
| E3_0180                        | 8198-8452 (255/ 65.09)                      | gp18<br>(84/10.0)          |                   |                        |                                           |                                          |                                        |
| E3_0190                        | 8449-8892 (444/69.36)                       | gp19<br>(147/16.4)         |                   |                        |                                           |                                          |                                        |
| E3_0200                        | 8987-9244 (258/68.21)                       | gp20<br>(85/9.2)           |                   |                        |                                           |                                          |                                        |
| E3_0210                        | 9241-9423 (183/67.21)                       | gp21<br>(60/7.1)           |                   |                        |                                           |                                          |                                        |
| E3_0220                        | 9420-9812 (393/69.21)                       | gp22<br>(130/14.4)         |                   | Coiled coil<br>UPF0150 | HP Mycobacterium marinum                  | YP_001852174<br>(4e-18)                  | 60 (73/122)                            |
| E3_0230                        | 9854-10249 (396/66.41)                      | gp23<br>(131/14.1)         |                   |                        |                                           |                                          |                                        |
| E3_0240                        | 10246-10533 (288/66.31)                     | gp24<br>(95/10.6)          |                   |                        |                                           |                                          |                                        |
| E3_0250                        | 10530-11060 (531/67.79)                     | gp25<br>(176/20.0)         |                   |                        |                                           |                                          |                                        |
| E3_0260                        | 11072-11416 (345/64.92)                     | gp26<br>(114/12.9)         |                   |                        | gp133 <i>Mycobacterium</i> phage<br>Omega | NP_818432 (4e-<br>06)                    | 56 (42/76)                             |
| E3_0270                        | 11416-12630 (1215/69.54)                    | gp27<br>(404/45.2)         |                   |                        |                                           |                                          |                                        |
| E3_0280                        | 12642-14021 (1380/67.97)                    | gp28<br>(459/51.7)         |                   |                        |                                           |                                          |                                        |
| E3_0290                        | 14098-14370 (273/67.76)                     | gp29<br>(90/9.9)           |                   |                        |                                           |                                          |                                        |
| E3_0300                        | 14380-14688 (309/66.99)                     | gp30<br>(102/11.4)         |                   |                        |                                           |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function | Domain /<br>Motif | Closest Homologue <sup>c</sup>   | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|-------------------|-------------------|----------------------------------|------------------------------------------|----------------------------------------|
| E3_0310                        | 14685-14942 (258/70.93)                     | gp31<br>(85/9.7)           |                   |                   |                                  |                                          |                                        |
| E3_0320                        | 14939-15238 (300/72.33)                     | gp32<br>(99/10.8)          |                   |                   |                                  |                                          |                                        |
| E3_0330                        | 15238-15555 (318/67.61)                     | gp33<br>(105/12.2)         |                   |                   |                                  |                                          |                                        |
| E3_0340                        | 15555-16058 (504/69.24)                     | gp34<br>(167/18.3)         |                   |                   |                                  |                                          |                                        |
| E3_0350                        | 16055-16240 (186/66.66)                     | gp35<br>(61/6.7)           |                   |                   |                                  |                                          |                                        |
| E3_0360                        | 16237-16512 (276/71.01)                     | gp36<br>(91/10.3)          |                   |                   |                                  |                                          |                                        |
| E3_0365                        | 16512-16634 (123/64.22)                     | gp36.5<br>(40/4.4)         |                   |                   |                                  |                                          |                                        |
| E3_0367                        | 16634-16789 (156/64.1)                      | gp36.7<br>(51/5.5)         |                   |                   |                                  |                                          |                                        |
| E3_0370                        | 16827-17066 (240/66.25)                     | gp37<br>(79/9.1)           |                   |                   |                                  |                                          |                                        |
| E3_0380                        | 17066-17662 (597/69.84)                     | gp38<br>(198/22.0)         |                   |                   |                                  |                                          |                                        |
| E3_0390                        | 17662-17871 (210/66.19)                     | gp39<br>(69/8.0)           |                   |                   |                                  |                                          |                                        |
| E3_0400                        | 17871-18263 (393/70.73)                     | gp40<br>(130/14.4)         |                   |                   | HP Burkholderia<br>vietnamiensis | YP_001119002<br>(0.001)                  | 56 (30/54)                             |
| E3_0410                        | 18260-18676 (417/65.64)                     | gp41<br>(138/15.7)         |                   |                   |                                  |                                          |                                        |
| E3_0420                        | 18669-19067 (399/70.67)                     | gp42<br>(132/15.0)         |                   |                   |                                  |                                          |                                        |
| E3_0430                        | 19067-19393 (327/67.58)                     | gp43<br>(108/12.2)         |                   |                   |                                  |                                          |                                        |
| E3_0440                        | 19393-19662 (270/65.18)                     | gp44<br>(89/10.0)          |                   | 2 TMDs            |                                  |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function | Domain /<br>Motif | Closest Homologue <sup>c</sup>                               | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|-------------------|-------------------|--------------------------------------------------------------|------------------------------------------|----------------------------------------|
| E3_0450                        | 19655-19999 (345/65.79)                     | gp45<br>(114/13.4)         |                   | 2 TMDs            |                                                              |                                          |                                        |
| E3_0460                        | 20096-20368 (273/67.0)                      | gp46<br>(90/10.2)          |                   |                   |                                                              |                                          |                                        |
| E3_0470                        | 20365-20730 (366/70.21)                     | gp47<br>(121/13.5)         |                   | Ogr/Delta-like    |                                                              |                                          |                                        |
| E3_0475                        | 20730-20876 (147/68.02)                     | gp47.5<br>(48/5.1)         |                   |                   |                                                              |                                          |                                        |
| E3_0480                        | 20873-21076 (204/66.66)                     | gp48<br>(67/7.9)           |                   |                   |                                                              |                                          |                                        |
| E3_0490                        | 21076-21333 (258/65.89)                     | gp49<br>(85/9.8)           |                   | 2 TMDs            |                                                              |                                          |                                        |
| E3_0500                        | 21333-21623 (291/65.97)                     | gp50<br>(96/12.0)          | Antidote protein  | HTH domain        | Plasmid maintenance system<br>Saccharopolyspora<br>erythraea | YP_001103117<br>(1e-22)                  | 74 (68/92)                             |
| E3_0510                        | 21620-21835 (216/66.66)                     | gp51<br>(71/8.1)           |                   |                   |                                                              |                                          |                                        |
| E3_0520                        | 21828-22199 (372/68.27)                     | gp52<br>(123/13.7)         |                   |                   | HP Actinoplanes sp                                           | AEV86711 (9e-<br>14)                     | 64 (48/75)                             |
| E3_0530                        | 22196-22459 (264/72.34)                     | gp53<br>(87/9.8)           |                   |                   |                                                              |                                          |                                        |
| E3_0540                        | 22456-22695 (240/67.5)                      | gp54<br>(79/9.3)           |                   |                   |                                                              |                                          |                                        |
| E3_0550                        | 22695-23006 (312/69.55)                     | gp55<br>(103/12.0)         |                   |                   | HP Bacteroides sp.                                           | ZP_05761209<br>(7e-08)                   | 60 (44/74)                             |
| E3_0560                        | 23046-23270 (225/65.33)                     | gp56<br>(74/8.2)           |                   |                   |                                                              |                                          |                                        |
| E3_0570                        | 23267-23584 (318/65.72)                     | gp57<br>(105/11.5)         |                   |                   |                                                              |                                          |                                        |
| E3_0580                        | 23581-23778 (198/68.18)                     | gp58<br>(65/6.9)           |                   |                   |                                                              |                                          |                                        |
| E3_0590                        | 23775-23975 (201/66.66)                     | gp59<br>(66/7.4)           |                   |                   |                                                              |                                          |                                        |
| E3_0600                        | 23972-24316 (345/67.24)                     | gp60<br>(114/12.0)         |                   |                   |                                                              |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function                  | Domain /<br>Motif | Closest Homologue <sup>c</sup>                                      | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|------------------------------------|-------------------|---------------------------------------------------------------------|------------------------------------------|----------------------------------------|
| E3_0610                        | 24313-24513 (201/64.67)                     | gp61<br>(66/7.3)           |                                    |                   |                                                                     |                                          |                                        |
| E3_0620                        | 24510-24896 (387/65.89)                     | gp62<br>(128/14.8)         |                                    |                   | gp82 Mycobacterium phage<br>Che8                                    | NP_817420 (1e-<br>08)                    | 56 (64/115)                            |
| E3_0630                        | 24893-25126 (234/66.23)                     | gp63<br>(77/8.4)           |                                    |                   |                                                                     |                                          |                                        |
| E3_0640                        | 25123-25353 (231/65.8)                      | gp64<br>(76/8.4)           |                                    |                   |                                                                     |                                          |                                        |
| E3_0650                        | 25350-25502 (153/67.97)                     | gp65<br>(50/5.6)           |                                    |                   |                                                                     |                                          |                                        |
| E3_0660                        | 25499-26308 (810/68.39)                     | gp66<br>(269/29.7)         | FAD-dependent thymidylate synthase | PF02511           | FAD-dependent thymidylate<br>synthase Mycobacterium<br>tuberculosis | NP_217270 (6e-<br>953)                   | 60 (163/272)                           |
| E3_0670                        | 26459-27037 (579/70.46)                     | gp67<br>(192/21.4)         |                                    |                   |                                                                     |                                          |                                        |
| E3_0680                        | 27170-28744 (1575/70.15)                    | gp68<br>(524/56.1)         |                                    |                   | gp87 <i>Mycobacterium</i> phage<br>Myrna                            | YP_002224998<br>(1e-04)                  | 54 (47/88)                             |
| E3_0690                        | 28741-29160 (420/70.0)                      | gp69<br>(139/144.3)        |                                    |                   |                                                                     |                                          |                                        |
| E3_0700                        | 29160-32319 (3111/69.97)                    | gp70<br>(1036/113.0)       | Structural                         |                   | gp86 <i>Mycobacterium</i> phage<br>Rizal                            | YP_002224779<br>(2e-16)                  | 56 (59/107)                            |
| E3_0710                        | 32316-32678 (363/63.36)                     | gp71<br>(120/12.8)         |                                    |                   | gp88 <i>Mycobacterium</i> phage<br>Myrna                            | YP_002224999<br>(2e-13)                  | 57 (65/115)                            |
| E3_0720                        | 32680-35169 (2490/66.95)                    | gp72<br>(829/93.2)         | Portal                             |                   | gp89 <i>Mycobacterium</i> phage<br>Myrna                            | YP_002225000<br>(0.0)                    | 61 (524/866)                           |
| E3_0730                        | 35184-35561 (378/70.1)                      | gp73<br>(125/13.3)         |                                    |                   |                                                                     |                                          |                                        |
| E3_0740                        | 35751-36260 (510/66.47)                     | gp74<br>(169/18.5)         | 2'5' RNA ligase                    | PF02834           | gp94 <i>Mycobacterium</i> phage<br>Myrna                            | YP_002225005<br>(5e-29)                  | 62 (103/167)                           |
| E3_0750                        | 36271-36531 (261/66.28)                     | gp75<br>(86/9.7)           | WhiB transcription factor          | PF02467           | Transcriptional regulator<br>Kineococcus radiotolerans              | BAJ32649<br>(5e-08)                      | 58 (36/63)                             |
| E3_0760                        | 36599-38410 (1812/69.53)                    | gp76<br>(603/66.9)         | Protease associated protein        | LysM              | gp96 <i>Mycobacterium</i> phage<br>Myrna                            | YP_002225007<br>(6e-30)                  | 49 (124/255)                           |
| E3_0770                        | 38464-41151 (2688/67.07)                    | gp77<br>(895/98.4)         | Prohead protease                   | ZnF_C2H2          | gp95 Mycobacterium phage<br>Bxz1                                    | NP_818168<br>(1e-73)                     | 82 (153/188)                           |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function         | Domain /<br>Motif | Closest Homologue <sup>c</sup>                   | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|---------------------------|-------------------|--------------------------------------------------|------------------------------------------|----------------------------------------|
| E3_0780                        | 41180-41701 (522/68.39)                     | gp78<br>(173/18.6)         | Chaperonin-like           |                   | gp96 <i>Mycobacterium</i> phage<br>Bxz1          | NP_818169<br>(6e-33)                     | 63 (108/173)                           |
| E3_0790                        | 41722-42723 (1002/64.97)                    | gp79<br>(333/37.1)         | Major capsid              |                   | gp97 <i>Mycobacterium</i> phage<br>Bxz1          | NP_818170<br>(4e-158)                    | 91 (82/173)                            |
| E3_0800                        | 42859-43119 (261/71.64)                     | gp80<br>(86/8.9)           |                           |                   |                                                  |                                          |                                        |
| E3_0810                        | 43164-43466 (303/74.58)                     | gp81<br>(100/10.5)         |                           |                   |                                                  |                                          |                                        |
| E3_0820                        | 43499-43774 (276/71.01)                     | gp82<br>(91/9.9)           |                           |                   |                                                  |                                          |                                        |
| E3_0830                        | 43865-44512 (648/68.51)                     | gp83<br>(215/24.1)         |                           |                   |                                                  |                                          |                                        |
| E3_0840                        | 44580-46055 (1476/68.49)                    | gp84<br>(491/52.6)         | Lipolytic protein (LysB1) | PF13472           | Lipolytic Paenibacillus sp.                      | YP_003012269<br>(4e-11)                  | 47 (98/212)                            |
| E3_0850(-)                     | 46429-47322 (894/70.35)                     | gp85<br>(297/32.4)         | Lipolytic protein (LysB2) |                   | HP Rhodococcus jostii                            | YP_705817<br>(1e-15)                     | 46 (126/277)                           |
| E3_0860                        | 47441-48409 (969/69.24)                     | gp86<br>(322/34.3)         | Tail fibre                |                   | Tail fibre <i>Rhodococcus</i><br>phage ReqiPoco6 | ADD81003<br>(2e-93)                      | 82 (198/242)                           |
| E3_0870                        | 48489-49322 (834/68.34)                     | gp87<br>(277/30.0)         | Structural                |                   | HP Streptococcus pyogenes                        | ZP_00366663<br>(8e-04)                   | 49 (50/103)                            |
| E3_0880                        | 49332-50129 (798/68.67)                     | gp88<br>(265/27.1)         | Tail fibre                | COG5301           | HP Aeromicrobium marinum                         | ZP_07715597<br>(4e-38)                   | 57 (152/267)                           |
| E3_0890                        | 50133-51623 (1491/68.67)                    | gp89<br>(496/49.7)         | Structural                |                   | HP Rhodococcus equi                              | ZP_06828137<br>(4e-29)                   | 62 (97/158)                            |
| E3_0900                        | 51623-52363 (741/67.47)                     | gp90<br>(246/26.5)         |                           |                   |                                                  |                                          |                                        |
| E3_0905                        | 52452-52688 (237/63.71)                     | gp90.5<br>(78/8.4)         |                           |                   |                                                  |                                          |                                        |
| E3_0910                        | 52685-53122 (438/65.52)                     | gp91<br>(145/15.9)         |                           |                   |                                                  |                                          |                                        |
| E3_0920                        | 53233-53553 (321/64.79)                     | gp92<br>(106/12.0)         |                           |                   |                                                  |                                          |                                        |
| E3_0930                        | 53631-53960 (330/65.15)                     | gp93<br>(109/12.2)         |                           |                   | HP Rhodococcus<br>erythropolis                   | YP_002765948<br>(8e-11)                  | 58 (61/106)                            |
| E3_0940                        | 53960-54166 (207/67.14)                     | gp94 (68/7.2)              |                           |                   |                                                  |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function  | Domain /<br>Motif    | Closest Homologue <sup>c</sup>                      | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|--------------------|----------------------|-----------------------------------------------------|------------------------------------------|----------------------------------------|
| E3_0950                        | 54193-54597 (405/69.62)                     | gp95<br>(134/14.8)         |                    |                      |                                                     |                                          |                                        |
| E3_0960                        | 54822-55628 (807/68.4)                      | gp96<br>(268/29.3)         |                    |                      | gp9 <i>Mycobacterium</i> phage<br>Myrna             | YP_002224927<br>(1e-18)                  | 62 (68/110)                            |
| E3_0970                        | 55687-56010 (324/68.82)                     | gp97<br>(107/12.8)         |                    |                      | gp058 <i>Rhodococcus</i> phage<br>ReqiDocB7         | ADD80844<br>(3e-08)                      | 54 (50/93)                             |
| E3_0980                        | 56068-57180 (1113/68.64)                    | gp98<br>(370/41)           | Amidase (LysA)     | PF01510,<br>PF08310  | HP Rhodococcus opacus                               | YP_002781245<br>(6e-100)                 | 68 (247/368)                           |
| E3_0990                        | 57252-57626 (375/68.53)                     | gp99<br>(124/12.8)         | Structural         |                      |                                                     |                                          |                                        |
| E3_1000                        | 57732-58712 (981/69.82)                     | gp100<br>(326/32.8)        | Structural         | Yersinia<br>adhesion | Haemagglutinin family protein <i>Cyanobium sp</i> . | ZP_05045923<br>(3e-07)                   | 56 (57/103)                            |
| E3_1010                        | 58723-58938 (216/71.29)                     | gp101<br>(71/7.7)          |                    |                      |                                                     |                                          |                                        |
| E3_1020                        | (59014-602011188/69.27)                     | gp102<br>(395/43.8)        |                    |                      | HP Mycobacterium gilvum                             | YP_001136526<br>(6e-28)                  | 48 (193/408)                           |
| E3_1030                        | 60278-60553 (276/66.66)                     | gp103<br>(91/10.0)         |                    |                      |                                                     |                                          |                                        |
| E3_1040                        | 60684-61229 (546/64.46)                     | gp104<br>(181/19.6)        |                    |                      | gp115 <i>Mycobacterium</i> phage<br>Myrna           | YP_002225026<br>(3e-19)                  | 52 (90/176)                            |
| E3_1050                        | 61232-61795 (564/73.04)                     | gp105<br>(187/19.6)        |                    | Coiled coil          |                                                     |                                          |                                        |
| E3_1060                        | 61890-62816 (927/66.88)                     | gp106<br>(308/33.3)        | Structural         |                      | gp115 <i>Mycobacterium</i> phage<br>Rizal           | YP_002224808<br>(9e-32)                  | 59 (105/181)                           |
| E3_1070                        | 62826-63836 (1011/68.44)                    | gp107<br>(336/37.5)        | Structural         |                      | gp110 Mycobacterium phage<br>ET08                   | YP_003347789<br>(2e-63)                  | 58 (192/333)                           |
| E3_1080                        | 63836-64429 (594/68.35)                     | gp108<br>(197/22.5)        | Structural         |                      | gp118 <i>Mycobacterium</i> phage<br>Myrna           | YP_002225030<br>(1e-49)                  | 66 (129/198)                           |
| E3_1090                        | 64426-64863 (438/68.72)                     | gp109<br>(145/16.6)        |                    |                      | gp119 <i>Mycobacterium</i> phage<br>Myrna           | YP_002225031<br>(6e-22)                  | 62 (87/141)                            |
| E3_1100                        | 64860-65612 (753/67.59)                     | gp110<br>(250/27.2)        | Tail minor protein |                      | gp121 <i>Mycobacterium</i> phage Myrna              | YP_002225032<br>(2e-34)                  | 56 (132/238)                           |
| E3_1110                        | 6568267124 (1443/67.29)                     | gp111<br>(480/50.8)        | Tail sheath        | PF004984             | gp122 <i>Mycobacterium</i> phage Myrna              | YP_002225033<br>(1e-133)                 | 69 (327/478)                           |
| E3_1120                        | 67184-67660 (477/64.57)                     | gp112<br>(158/17.6)        | Tail tube          |                      | gp123 <i>Mycobacterium</i> phage<br>Myrna           | YP_002225034<br>(4e-59)                  | 84 (127/152)                           |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function          | Domain /<br>Motif   | Closest Homologue <sup>c</sup>             | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|----------------------------|---------------------|--------------------------------------------|------------------------------------------|----------------------------------------|
| E3_1130                        | 67669-67872 (204 /65.19)                    | gp113<br>(67/7.1)          |                            |                     |                                            |                                          |                                        |
| E3_1140                        | 67894-68418 (525/67.42)                     | gp114<br>(174/19.2)        | $\lambda$ G-like protein   |                     | gp126 <i>Mycobacterium</i> phage<br>Catera | YP_656135 (1e-<br>26)                    | 59 (101/173)                           |
| E3_1140/E3<br>1150             | 67894-68415, 6840-68774<br>(891/66.55)      | gp114/Gp115<br>(296/33.4)  | $\lambda$ G/T-like         |                     | gp119 Mycobacterium phage<br>ET08          | YP_656134<br>(7e-43)                     | 58 (165/289)                           |
| E3_1160                        | 68771-71320 (2550/68.58)                    | gp116<br>(849/87.3)        | Tape measure protein       |                     | gp129 Mycobacterium phage<br>Bxz1          | NP_818202<br>(2e-30)                     | 43 (217/505)                           |
| E3_1170                        | 71320-71931 (612/63.56)                     | gp117<br>(203/21.9)        |                            |                     | gp129 <i>Mycobacterium</i> phage<br>Myrna  | YP_002225040<br>(3e-45)                  | 64 (124/194)                           |
| E3_1750                        | 71931-72089 (159/63.52)                     | gp117.5<br>(52/5.7)        |                            |                     | gp131 <i>Mycobacterium</i> phage<br>Bxz1   | NP_818204<br>(1e-08)                     | 56 (29/52)                             |
| E3_1180                        | 72089-72718 (630/66.03)                     | gp118<br>(209/23.0)        |                            |                     | gp131 <i>Mycobacterium</i> phage Myrna     | YP_002225042<br>(5e-19)                  | 55 (77/142)                            |
| E3_1190                        | 72731-75151 (2421/64.92)                    | gp119<br>(806/88.1)        | Baseplate protein P/SLT    | PF01464/<br>PF00877 | gp131 <i>Mycobacterium</i> phage<br>Cali   | YP_002224604<br>(6e-89)                  | 59 (280/480)                           |
| E3_1200                        | 75148-75987 (840/67.97)                     | gp120<br>(279/29.0)        |                            |                     | gp133 <i>Mycobacterium</i> phage<br>Myrna  | YP_002225044<br>(6e-10)                  | 46 (71/156)                            |
| E3_1210                        | 76040-76456 (417/67.14)                     | gp121<br>(138/15.5)        | Baseplate protein W        |                     | gp136 <i>Mycobacterium</i> phage<br>Bxz1   | NP_818209 (2e-<br>31)                    | 66 (88/134)                            |
| E3_1220                        | 76468-78309 (1842/66.72)                    | gp122<br>(613/65.8)        | Baseplate protein J        | PF04865             | gp135 <i>Mycobacterium</i> phage<br>Cali   | YP_002224608<br>(1e-154)                 | 64 (389/609)                           |
| E3_1230                        | 78309-79742 (1434/66.1)                     | gp123<br>(477/52.6)        | Baseplate protein I        |                     | gp138 Mycobacterium phage<br>LRRHood       | ACU41662<br>(1e-138)                     | 67 (313/474)                           |
| E3_1240                        | 79745-83035 (3291/67.12)                    | gp124<br>(1096/120.4)      | Structural (SCOP b.18.1.7) |                     | gp138 <i>Mycobacterium</i> phage<br>Myrna  | YP_002225049<br>(0.0)                    | 60 (503/839)                           |
| E3_1250                        | 83045-83704 (660/69.24)                     | gp135<br>(219/22.8)        | Structural                 |                     |                                            |                                          |                                        |
| E3_1260                        | 83865-84263 (399/68.67)                     | gp126<br>132/14.4)         |                            |                     |                                            |                                          |                                        |
| E3_1270                        | 84292-84495 (204/69.11)                     | gp127<br>(67/7.5)          |                            |                     |                                            |                                          |                                        |
| E3_1275                        | 84518-84685 (168/66.66)                     | gp127.5<br>(55/5.8)        |                            |                     |                                            |                                          |                                        |
| E3_1280                        | 84713-85261 (549/68.3)                      | gp128<br>(182/19.8)        |                            |                     |                                            |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function         | Domain /<br>Motif   | Closest Homologue <sup>c</sup>                 | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|---------------------------|---------------------|------------------------------------------------|------------------------------------------|----------------------------------------|
| E3_1290                        | 85516-86661 (1146/68.23)                    | gp129<br>(381/41.8)        |                           |                     |                                                |                                          |                                        |
| E3_1300                        | 86722-87051 (330/70.3)                      | gp130<br>(109/12.2)        |                           |                     |                                                |                                          |                                        |
| E3_1310                        | 8704887383 (336/68.45)                      | gp131<br>(111/12.3)        |                           |                     |                                                |                                          |                                        |
| E3_1315                        | 87380-87700 (321/63.55)                     | gp131.5<br>(106/12.0)      |                           |                     |                                                |                                          |                                        |
| E3_1320                        | 87797-88015 (219/68.49)                     | gp132<br>(72/8.0)          |                           |                     |                                                |                                          |                                        |
| E3_1330                        | 88048-88518 (471/69.0)                      | gp133<br>(156/17.4)        |                           |                     |                                                |                                          |                                        |
| E3_1340 (-)                    | 88720-88917 (252/71.88)                     | gp134<br>(83/9.2)          | Transcriptional regulator | HTH motif           |                                                |                                          |                                        |
| E3_1350 (-)                    | 88914-89291 (378/67.19)                     | gp135<br>(125/14.2)        | Transcriptional regulator | HTH motif           |                                                |                                          |                                        |
| E3_1360 (-)                    | 89288-91237 (1950/68.36)                    | gp136<br>(649/72.9)        | Helicase-like             | PF00271             | gp179 <i>Mycobacterium</i> phage<br>Bxz1       | NP_818230<br>(1e-100)                    | 55 (323/592)                           |
| E3_1370                        | 91571-92437 (867/68.74)                     | gp137<br>(288/31.2)        | Transcriptional regulator | HTH motif           |                                                |                                          |                                        |
| E3_1380                        | 92319-92711 (393/65.13)                     | gp138<br>(130/14.4)        |                           |                     | gp177 <i>Mycobacterium</i> phage<br>Myrna      | YP_002225056<br>(1e-04)                  | 50 (63/125)                            |
| E3_1390                        | 92730-93014 (285/71.92)                     | gp139<br>(94/10.7)         |                           |                     |                                                |                                          |                                        |
| E3_1400                        | 93115-93414 (300/65.33)                     | gp140<br>(99/10.6)         |                           |                     |                                                |                                          |                                        |
| E3_1410                        | 93495-94199 (705/66.8)                      | gp141<br>(234/26.0)        |                           |                     | gp188 <i>Mycobacterium</i> phage<br>Catera     | YP_656169<br>(1e-13)                     | 50 (100/203)                           |
| E3_1420                        | 94258-94563 (306/63.39)                     | gp142<br>(101/11.5)        |                           |                     | gp181 <i>Mycobacterium</i> phage<br>Myrna      | YP_002225060<br>(4e-14)                  | 63 (65/104)                            |
| E3_1430                        | 94614-95510 (897/66.77)                     | gp143<br>(298/33.0)        | 5'3' exonuclease          | PF02739,<br>PF01367 | DNA polymerase I<br>Mycobacterium tuberculosis | ZP_03536625<br>(5e-29)                   | 50 (137/279)                           |
| E3_1440                        | 95507-95842 (336/67.55)                     | gp144<br>(111/12.0)        |                           |                     |                                                |                                          |                                        |
| E3_1450                        | 95839-97035 (1197/70.09)                    | gp145<br>(398/43.8)        | N-acetyl aminotransferase | PF00202             | N-acetylornithine aminotransferase             | NP_691999<br>(2e-17)                     | 44 (172/391)                           |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function           | Domain /<br>Motif   | Closest Homologue <sup>c</sup>               | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|-----------------------------|---------------------|----------------------------------------------|------------------------------------------|----------------------------------------|
| E3_1460                        | 97074-97457 (384/63.28)                     | gp146<br>(127/14.1)        |                             |                     | gp189 Mycobacterium phage<br>Bxz1            | NP_818240<br>(9e-09)                     | 62 (62/101)                            |
| E3_1470                        | 97473-97883 (411/62.74)                     | gp147<br>(136/15.8)        |                             |                     | gp185 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225064<br>(7e-17)                  | 67 (72/109)                            |
| E3_1480                        | 97870-98664 (795/66.54)                     | gp148<br>(264/29.8)        | DnaC                        | PF01695             | gp186 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225065<br>(6e-70)                  | 63 (171/274)                           |
| E3_1490                        | 98673-99938 (1266/68.8)                     | gp149<br>(421/47.4)        | DnaB                        | PF03796             | gp187 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225066<br>(3e-90)                  | 62 (254/410)                           |
| E3_1500                        | 99938-101044 (1107/66.93)                   | gp150<br>(368 /42.0)       | DnaG                        | PF08275             | gp188 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225067<br>(1e-63)                  | 55 (202/373)                           |
| E3_1505                        | 101044-101217 (174/67.24)                   | gp150.5<br>(57/6.1)        |                             |                     |                                              |                                          |                                        |
| E3_1510                        | 101251-101862 (612/68.79)                   | gp151<br>(203/23.3)        | HNH endonuclease            | PF01844             | HP Thalassomonas phage<br>BA3                | YP_001552315<br>(5e-08)                  | 52 (45/88)                             |
| E3_1520                        | 101849-102472 (624/66.18)                   | gp152<br>(207/24.3)        | DnaJ                        | PF00226             | gp200 Mycobacterium phage<br>LRRHood         | ACU41695<br>(6e-19)                      | 51 (99/197)                            |
| E3_1530                        | 102565-103884 (1320/69.54)                  | gp153<br>(439/48.9)        |                             |                     |                                              |                                          |                                        |
| E3_1540                        | 103974-107150 (3177/65.34)                  | gp154<br>(1058/119.3)      | DNA polymerase IIIa         | PF07733,<br>PF02811 | gp201 Mycobacterium phage<br>Catera          | YP_656181<br>(0.0)                       | 59 (665/1133)                          |
| E3_1550                        | 107161-108306 (1146/66.23)                  | gp155<br>(381/40.8)        | Rec A                       | PF00154             | gp205 <i>Mycobacterium</i> phage<br>ScottMcG | YP_002224204<br>(6e-75)                  | 65 (227/354)                           |
| E3_1560                        | 108306-108656 (351/62.39)                   | gp156<br>(116/13.6)        | Resolvase-like              |                     | gp195 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225074<br>(3e-12)                  | 56 (61/110)                            |
| E3_1570                        | 108661-109473 (813/64.82)                   | gp157<br>(270/31.0)        | RecB-like                   |                     | gp204 <i>Mycobacterium</i> phage<br>Bxz1     | NP_818255<br>(3e-68)                     | 66 (175/266)                           |
| E3_1580                        | 109470-110030 (561/66.48)                   | gp158<br>(186/20.4)        | Holliday junction resolvase | PF02075             | gp8 <i>Mycobacterium</i> phage<br>Phlyer     | YP_002564106<br>(7e-24)                  | 60 (106/178)                           |
| E3_1590                        | 110027-110746 (720/68.05)                   | gp159<br>(239/27.5)        |                             |                     | gp200 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225079<br>(8e-45)                  | 63 (142/227)                           |
| E3_1600                        | 110761-111183 (423/61.7)                    | gp160<br>(140/16.1)        | Sigma factor 70-like        | PF08281             | gp207 <i>Mycobacterium</i> phage<br>Bxz1     | NP_818258 (8e-<br>22)                    | 71 (75/107)                            |
| E3_1610                        | 111246-111515 (270/65.92)                   | gp161<br>(89/10.1)         |                             |                     | gp202 <i>Mycobacterium</i> phage<br>Myrna    | YP_002225081<br>(2e-15)                  | 68 (55/82)                             |
| E3_1620                        | 111532-112275 (744/69.08)                   | gp162<br>(247/27.7)        |                             |                     | gp209 <i>Mycobacterium</i> phage<br>Bxz1     | NP_818260<br>(3e-19)                     | 52 (91/176)                            |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function                          | Domain /<br>Motif          | Closest Homologue <sup>c</sup>              | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|--------------------------------------------|----------------------------|---------------------------------------------|------------------------------------------|----------------------------------------|
| E3_1630                        | 112389-113396 (1008/67.75)                  | gp163<br>(335/36.6)        |                                            | PF06067                    | gp214 <i>Mycobacterium</i> phage<br>LRRHood | ACU41709<br>(3e-51)                      | 56 (190/340)                           |
| E3_1640                        | 113508-113939 (432/64.58)                   | gp164<br>(143/16.0)        |                                            |                            | gp214 <i>Mycobacterium</i> phage<br>Myrna   | YP_002225091<br>(7e-07)                  | 54 (66/124)                            |
| E3_1650                        | 113969-114532 (564/66.13)                   | gp165<br>(187/20.3)        |                                            |                            |                                             |                                          |                                        |
| E3_1660                        | 114529-114771 (243/73.66)                   | gp166<br>(80/8.7)          |                                            |                            |                                             |                                          |                                        |
| E3_1670                        | 114768-115532 (765/68.75)                   | gp167<br>(254/27.8)        | Lipolytic protein (LysB3)                  |                            | HP Rhodococcus opacus                       | YP_002782668<br>(5e-08)                  | 41 (101/250)                           |
| E3_1680                        | 115529-115918 (390/65.64)                   | gp168<br>(129/14.2)        |                                            |                            | HP Desulfatibacillum alkenivorans           | YP_002433729<br>(2e-10)                  | 61 (48/79)                             |
| E3_1690                        | 115930-116505 (576/69.44)                   | gp169<br>(191/21.1)        |                                            |                            |                                             |                                          |                                        |
| E3_1700                        | 116576-116899 (324/69.75)                   | gp170<br>(107/12.1)        |                                            |                            |                                             |                                          |                                        |
| E3_1710                        | 116991-117383 (393/67.93)                   | gp171<br>(130/14.4)        |                                            | 1 TMD                      |                                             |                                          |                                        |
| E3_1715                        | 117387-117527 (141/63.82)                   | gp171.5<br>(46/4.7)        |                                            | Signal peptide<br>1 TMD    |                                             |                                          |                                        |
| E3_1720                        | 117552-118379 (828/64.73)                   | gp172<br>(275/30.7)        | Band 7                                     | Signal peptide,<br>PF01145 | HP Streptosporangium roseum                 | YP_003337973<br>(5e-45)                  | 55 (152/277)                           |
| E3_1730                        | 118389-118583 (195/68.71)                   | gp173<br>(64/6.8)          |                                            |                            |                                             |                                          |                                        |
| E3_1740                        | 118652-118924 (273/67.39)                   | gp174<br>(90/9.5)          |                                            |                            |                                             |                                          |                                        |
| E3_1750                        | 118957-119190 (234/69.23)                   | gp175<br>(77/8.4)          |                                            |                            |                                             |                                          |                                        |
| E3_1760                        | 119183-119677 (495/67.07)                   | gp176<br>(164/18.3)        |                                            | Coiled coil                |                                             |                                          |                                        |
| E3_1770                        | 119674-119916 (243/67.07)                   | gp177<br>(80/8.7)          | Nicotinamide<br>mononucleotide transporter | 3 TMDs                     | HP Nocardia farcinica                       | YP_120153<br>(4e-17)                     | 74 (58/79)                             |
| E3_1780                        | 119909-120457 (549/69.94)                   | gp178<br>(182/19.8)        | NTPase                                     | PF01503                    | HP Methanogenic archaeon                    | ADD92914<br>(2e-04)                      | 56 (43/77)                             |
| E3_1790                        | 120454-120771 (318/68.23)                   | gp179<br>(105/11.3)        | Transcriptional regulator                  |                            |                                             |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function         | Domain /<br>Motif | Closest Homologue <sup>c</sup>          | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|---------------------------|-------------------|-----------------------------------------|------------------------------------------|----------------------------------------|
| E3_1800                        | 120848-121060 (213/67.13)                   | gp180<br>(70/7.7)          |                           |                   |                                         |                                          |                                        |
| E3_1810                        | 121084-121449 (366/65.84)                   | gp181<br>(121/13.2)        | Transcriptional regulator | Winged helix      |                                         |                                          |                                        |
| E3_1820                        | 121450-122274 (825/67.03)                   | gp182<br>(274/31.1)        |                           | 1 TMD             |                                         |                                          |                                        |
| E3_1830                        | 122284-122496 (213/67.6)                    | gp183<br>(70/7.8)          |                           |                   |                                         |                                          |                                        |
| E3_1840                        | 122504-122911 (408/68.38)                   | gp184<br>(135/15.3)        |                           |                   |                                         |                                          |                                        |
| E3_1850                        | 122955-123410 (456/67.32)                   | gp185<br>(151/17.0)        |                           |                   |                                         |                                          |                                        |
| E3_1860                        | 123407-124150 (744/67.06)                   | gp186<br>(247/27.0)        | DNA polymerase IIIɛ       | PF00929           | DNA polymerase IIIE<br>Rhodococcus equi | ZP_06829322<br>(3e-34)                   | 56 (136/244)                           |
| E3_1870                        | 124301-124552 (252/66.66)                   | gp197<br>(82/9.3)          |                           |                   |                                         |                                          |                                        |
| E3_1875                        | 124703-124864 (162 /67.9)                   | gp187.5<br>(53/6.1)        |                           |                   |                                         |                                          |                                        |
| E3_1880                        | 124861-125292 (432/66.43)                   | gp188<br>(143/15.9)        |                           | Signal peptide    |                                         |                                          |                                        |
| E3_1890                        | 125292-125735 (444/68.69)                   | gp189<br>(147/16.5)        |                           |                   |                                         |                                          |                                        |
| E3_1895                        | 125789-125962 (174/68.39)                   | gp189.5<br>(57/6.6)        |                           |                   |                                         |                                          |                                        |
| E3_1900                        | 126014-126658 (645/71.31)                   | gp190<br>(214/23.7)        |                           |                   |                                         |                                          |                                        |
| E3_1910                        | 126687-127466 (780/70.38)                   | gp191<br>(259/28.6)        |                           |                   |                                         |                                          |                                        |
| E3_1920                        | 127532-127831 (300/69.33)                   | gp192<br>(99/10.5)         |                           |                   |                                         |                                          |                                        |
| E3_1930                        | 127828-128352 (525/66.28)                   | gp193<br>(174/20.3)        |                           |                   | HP Bacillus thuringiensis               | ZP_04143016<br>(5e-11)                   | 59 (50/85)                             |
| E3_1940                        | 128349-128687 (339/68.43)                   | gp194<br>(112/12.9)        |                           |                   |                                         |                                          |                                        |
| E3_1950                        | 128687-129001 (315/64.76)                   | gp195<br>(104/12.1)        |                           |                   |                                         |                                          |                                        |

| Locus<br>(strand) <sup>b</sup> | Coordinates <sup>c</sup><br>(size nt / %GC) | Product<br>(size aa / kDa) | Putative Function    | Domain /<br>Motif | Closest Homologue <sup>c</sup>                | Acc. no.<br>(E-value <10 <sup>-3</sup> ) | % Similarity <sup>d</sup><br>(overlap) |
|--------------------------------|---------------------------------------------|----------------------------|----------------------|-------------------|-----------------------------------------------|------------------------------------------|----------------------------------------|
| E3_1960                        | 128998-129294 (297/70.03)                   | gp196<br>(98/10.8)         |                      |                   |                                               |                                          |                                        |
| E3_1970                        | 129294-129572 (279/69.89)                   | gp197<br>(92/10.2)         |                      |                   |                                               |                                          |                                        |
| E3_1980                        | 129585-129890 (306/66.99)                   | gp198<br>(101/11.2)        |                      |                   |                                               |                                          |                                        |
| E3_1990                        | 129947-130468 (522/66.47)                   | gp199<br>(173/19.8)        | HNH endonuclease     | PF13392           | Endonuclease <i>Clavibacter</i><br>phage CMP1 | YP_003359141<br>(5e-10)                  | 50 (59/120)                            |
| E3_2000                        | 130562-130786 (225/63.55)                   | gp200<br>(74/8.2)          |                      |                   |                                               |                                          |                                        |
| E3_2010                        | 130852-131274 (423/69.26)                   | gp201<br>(140/16.1)        |                      |                   |                                               |                                          |                                        |
| E3_2020                        | 131323-132225 (903/69.87)                   | gp202<br>(300/32.2)        | Histone deacetylase  | PF00850           | Histone deacetylase<br>Sorangium cellulosum   | YP_001619848<br>(1e-31)                  | 52 (141/275)                           |
| E3_2030                        | 132241-132723 (483/66.87)                   | gp203<br>(160/17.7)        |                      |                   |                                               |                                          |                                        |
| E3_2040                        | 132849-136334 (3486/68.93)                  | gp204<br>(1161/118.5)      | Tail fiber protein H |                   | gp238 <i>Mycobacterium</i> phage<br>Spud      | YP_002224457<br>(1e-151)                 | 51 (607/1212)                          |
| E3_2050                        | 136366-138942 (2577/64.68)                  | gp205<br>(858/95.6)        | Structural           |                   | gp102 <i>Mycobacterium</i> phage<br>Cali      | YP_002224575<br>(4e-76)                  | 71 (183/258)                           |
| E3_2060                        | 138942-140201 (1260/68.65)                  | gp206<br>(419/47.0)        | Aminotransferase     |                   | gp129 <i>Mycobacterium</i> phage<br>Pumpkin   | ACU42061 (4e-<br>20)                     | 61 (77/127)                            |
| E3_2070                        | 140203-140958 (756/64.68)                   | gp207<br>(251/26.5)        |                      |                   | gp240 <i>Mycobacterium</i> phage Myrna        | YP_002225117<br>(2e-05)                  | 47 (93/198)                            |
| E3_2080                        | 140968-141756 (789/66.92)                   | gp208<br>(262/27.5)        | Structural           |                   |                                               |                                          |                                        |
| E3_2090                        | 141769-142551 (783/69.47)                   | gp209<br>(260/26.9)        | Structural           |                   |                                               |                                          |                                        |

<sup>a</sup> ORFs identified on basis of ATG, GTG or TTG start codons, 40 amino acids minimum coding capacity, and presence of probable Shine-Dalgarno sequences optimally positioned within -15 to -4 nucleotides upstream of the putative start codon. Informational noise was limited using a conservative annotation approach (Letek *et al.*, 2008).

<sup>b</sup> Coordinates of E3 genome according to sequence deposited under GenBank accession no. HM114277; negative strand indicated as (-).

<sup>c</sup> HP, hypothetical protein.

<sup>d</sup> Percentage amino acid similarity retrieved from BLASTp output.

| Gene    | Mw    | Size |     | 0( þ | Putative                   | Homologues (E-value <10 <sup>-3</sup> ) |                 | gues (E-value <10 <sup>-3</sup> )                                                                                                 |
|---------|-------|------|-----|------|----------------------------|-----------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| product | (kDa) | (aa) | NRP | % aa | function                   | Myrna                                   | Bxz1            | Other                                                                                                                             |
| gp70    | 113.0 | 1036 | 3   | 9.5  | Structural                 | gp87                                    | gp87            | Bxz1-like phages                                                                                                                  |
| gp72    | 93.2  | 829  | 20  | 32.1 | Portal                     | gp89                                    | gp89            | Bxz1-like phages                                                                                                                  |
| gp77    | 98.4  | 895  | 3   | 5.3  | Prohead protease           | gp97                                    | gp95            | Bxz1-like phages                                                                                                                  |
| gp78    | 18.6  | 173  | 8   | 70.5 | Chapronin-<br>like protein | gp98                                    | gp96            | Bxz1-like phages                                                                                                                  |
| gp79    | 37.1  | 333  | 21  | 87.1 | Major capsid               | gp99                                    | gp97            | Bxz1-like phages                                                                                                                  |
| gp84    | 52.6  | 491  | 14  | 37.9 | Lipolytic                  |                                         |                 | Lipolytic Paenibacillus sp.                                                                                                       |
| gp86    | 34.3  | 322  | 3   | 15.8 | Tail fibre                 |                                         |                 | Tail fibre proteins of <i>R. equi</i><br>phages ReqiPepy6 (gp004) and<br>ReqiPoco6 (gp005)                                        |
| gp87    | 30.0  | 277  | 3   | 15.9 | Structural                 |                                         |                 | HP <sup>c</sup> Streptococcus pyogenes<br>prophages 10750.2 and 315.5                                                             |
| gp88    | 27.1  | 265  | 4   | 32.8 | Tail fibre                 | gp111,                                  | gp112,          | Bxz1-like phages,                                                                                                                 |
| 01      |       |      |     |      |                            | gp239                                   | gp232           | HP Aeromicrobium marinum                                                                                                          |
| gp89    | 49.7  | 496  | 3   | 10.5 | Structural                 | gp239                                   | gp232           | Bxz1-like phages, HP R. equi                                                                                                      |
| gp99    | 12.8  | 124  | 7   | 50.8 | Structural                 |                                         |                 |                                                                                                                                   |
| gp100   | 32.8  | 326  | 9   | 48.5 | Structural                 |                                         |                 | Haemagglutinin protein<br><i>Cyanobium</i> sp.                                                                                    |
| gp106   | 33.3  | 308  | 5   | 19.5 | Structural                 | gp117                                   | gp117           | Bxz1-like phages                                                                                                                  |
| gp107   | 37.5  | 336  | 10  | 36.6 | Structural                 | gp118                                   | gp119           | Bxz1-like phages                                                                                                                  |
| gp108   | 22.5  | 197  | 4   | 21.8 | Structural                 | gp118                                   | gp120           | Bxz1-like phages                                                                                                                  |
| gp110   | 27.2  | 250  | 2   | 12   | Minor tail                 | gp121                                   | gp123           | Bxz1-like phages                                                                                                                  |
| gp111   | 50.8  | 480  | 23  | 73.5 | Tail sheath                | gp122                                   | gp124           | Bxz1-like phages                                                                                                                  |
| gp112   | 17.6  | 158  | 5   | 39.9 | Tail tube                  | gp123                                   | gp125           | Bxz1-like phages                                                                                                                  |
| gp119   | 88.1  | 806  | 7   | 12.3 | Baseplate<br>protein       | gp132                                   | gp133           | Bxz1-like phages                                                                                                                  |
| gp121   | 15.5  | 138  | 5   | 50.0 | Baseplate W                | gp135                                   | gp136           | Bxz1-like phages                                                                                                                  |
| gp122   | 65.8  | 613  | 15  | 35.3 | Baseplate J                | gp136                                   | gp137           | Bxz1-like phages,<br>Lactobacillus phage LP65<br>(gp095), Staphylococcus<br>phage Twort (ORF026),<br>Bacillus phage SP01 (gp14.2) |
| gp123   | 52.6  | 477  | 20  | 63.3 | Baseplate I                | gp137                                   | gp142           | Bxz1-like phages                                                                                                                  |
| gp124   | 120.4 | 1096 | 10  | 13.4 | Structural                 | gp138                                   | gp143           | Bxz1-like phages                                                                                                                  |
| gp125   | 22.8  | 219  | 5   | 37.9 | Structural                 |                                         |                 |                                                                                                                                   |
| gp204   | 118.5 | 1161 | 13  | 15.9 | Tail fibre                 | gp239                                   | gp232           | Bxz1-like phages,<br>Corynebacterium phages P1201<br>(gp40) and BFK20 (gp22)                                                      |
| gp205   | 95.6  | 858  | 9   | 18.1 | Structural                 | gp102                                   | gp103,<br>gp104 | Bxz1-like phages                                                                                                                  |
| gp208   | 27.5  | 262  | 2   | 11.5 | Structural                 |                                         |                 |                                                                                                                                   |
| gp209   | 26.9  | 260  | 4   | 24.2 | Structural                 |                                         |                 |                                                                                                                                   |

Table S2. Proteomic analysis of E3 virion-associated proteins identified by LC-ESI-MS/MS<sup>a</sup>.

<sup>a</sup> Data analysed in accordance with published guidelines (Taylor and Goodlett, 2005) with carbamidomethyl (C) and oxidation (M) selected as fixed and variable modifications respectively, and mass tolerance values for MS and MS/MS of 1.5 Da and 0.5 Da respectively. Molecular weight search (MOWSE) scores for individual protein identifications were inspected manually and considered significant if a) two peptides were matched for each protein, and b) each peptide contained an unbroken "b" or "y" ion series of a minimum of four amino acid residues.

<sup>b</sup> Number of non-redundant peptides and percentage of amino acids identified by mass spectrometry.

<sup>c</sup> Hypothetical protein.

| Bacterial strain              | Description                        | Source <sup>a</sup>  | E3<br>susceptibility |
|-------------------------------|------------------------------------|----------------------|----------------------|
| Rhodococcus equi <sup>b</sup> |                                    |                      |                      |
| NCIMB 10027                   | Equine isolate, type strain        | NCIMB                | +                    |
| 1038                          | Equine isolate, genome strain      | Letek et al., 2010   | +                    |
| CV1                           | Equine isolate                     | CVS                  | +                    |
| CV2                           | Equine isolate                     | CVS                  | +                    |
| CV3                           | Equine isolate                     | CVS                  | +                    |
| VI1                           | Equine isolate                     | EVS                  | +                    |
| GV1                           | Equine isolate                     | GVS                  | +                    |
| GV2                           | Equine isolate                     | GVS                  | +                    |
| Rhodococcus erythropolis      |                                    |                      |                      |
| SQ1                           | Environmental isolate              | Quan and Dabbs, 1993 | -                    |
| NCIMB 11148                   | Environmental isolate, type strain | Collection           | -                    |
| NCIMB 9905                    | Environmental isolate              | NCIMB                | -                    |
| NCIMB 13065                   | Chemical storage tank isolate      | NCIMB                | -                    |
| Rhodococcus rhodochrous       |                                    |                      |                      |
| NCIMB 9703                    | Environmental isolate              | NCIMB                | -                    |
| NCIMB 9160                    | Environmental isolate              | NCIMB                | -                    |
| NCIMB 1127                    | Environmental isolate              | NCIMB                | -                    |
| NCIMB 11273                   | Environmental isolate              | NCIMB                | -                    |
| NCIMB 9259                    | Environmental isolate              | NCIMB                | -                    |
| NCIMB 13259                   | Chemical waste isolate             | NCIMB                | -                    |
| Rhodococcus ruber             |                                    |                      |                      |
| NCIMB 11149                   | Environmental isolate              | NCIMB                | -                    |
| Rhodococcus opacus            |                                    |                      |                      |
| NCIMB10810                    | Gasworks pipe isolate, type strain | NCIMB                | -                    |
| Rhodococcus fascians          |                                    |                      |                      |
| IEGM AC170                    |                                    | IEGM                 | -                    |
| ATCC 3318                     |                                    | ATCC                 | -                    |
| Mycobacterium phlei           |                                    |                      |                      |
| NCIMB 8573                    |                                    | NCIMB                | -                    |
| Gordonia 'australis'          |                                    |                      |                      |
| A554                          | Environmental isolate              | ENU                  | -                    |

**Table S3.** Bacterial strains used for host range analysis.

<sup>a</sup> NCIMB, National Collection of Industrial and Marine Bacteria, Aberdeen, UK; UKCVS, Prof Alexander & Lindsay, University of Cambridge Veterinary School; EVS, Dr Smith, University of Edinburgh Veterinary School; GVS, Dr Taylor, University of Glasgow Veterinary School; ENU, Dr Stainsby, Edinburgh Napier University. <sup>b</sup> Most isolates from a selection of strains from different sources and geographical origins of the global *R. equi* collection maintained in JV-B laboratory (Ocampo-Sosa et al. 2007) were susceptible.

| Programs                           | Purpose                                                    | References or websites                                     |  |  |
|------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--|--|
| Glimmer v2.0 and<br>Prodigal v2.60 | ORFs, RBSs and terminators                                 | Delcher <i>et al.</i> , 1999<br>Hyatt <i>et al.</i> , 2010 |  |  |
| TMHMM v2.0                         | Transmembrane domains                                      | Sonnhammer et al., 1998                                    |  |  |
| SignalP v3.0                       | Signal peptide                                             | Bendtsen et al., 2004                                      |  |  |
| tRNAscan                           | tRNA and tmRNA                                             | Laslett and Canback, 2004                                  |  |  |
| ARAGORN                            | tRNA and tmRNA                                             | Schattner et al., 2005                                     |  |  |
| Artemis v12.0                      | Manual curation and edition of annotation                  | Rutherford et al., 2000                                    |  |  |
| BLASTClust                         | Cluster of homologue proteins                              | Altschul et al., 1990                                      |  |  |
| Alien Hunter                       | Horizontal gene transfer (HGT)                             | http://www.sanger.ac.uk                                    |  |  |
| EMBOSS Stretcher                   | Global DNA homology                                        | http://www.ebi.ac.uk                                       |  |  |
| Pfam                               | Functional domains and family proteins                     | Finn et al., 2008                                          |  |  |
| BLASTp                             | Protein similarity                                         | http://www.ncbi.nlm.nih.gov                                |  |  |
| NCBI's CDD                         | Conserved domain database                                  | http://www.ncbi.nlm.nih.gov                                |  |  |
| InterProScan                       | Protein signature recognition                              | Zdobnov and Apweiler, 2001                                 |  |  |
| Phyre v0.2                         | Protein fold recognition                                   | Kelley and Sternberg, 2009                                 |  |  |
| I-TASSER                           | Tertiary structure predictions                             | Roy et al., 2010                                           |  |  |
| HHPred                             | Secondary structure and protein function predictions       | Soding et al., 2005                                        |  |  |
| ClustalX v2.0                      | Protein sequence alignment                                 | Larkin <i>et al.</i> , 2007                                |  |  |
| MEGA v5.0                          | Phylogenetic trees using Neighbor Joining<br>(NJ) method   | Tamura <i>et al.</i> , 2011                                |  |  |
| PhyML v2.4.5                       | Phylogenetic trees using Maximum<br>Likelihood (ML) method | Guindon and Gascuel, 2003                                  |  |  |

**Table S4.** Software used for genome annotation.

3/2

## Supporting Information – Text

E3 products for which phage homologues could not be identified or are exceptional. The coding genes are all in HPRs and highlight the potential lateral exchanges that may occur between phage and non-virus genomes. Examples include gp100 from HPR-2 possessing a Hep Hag domain typically found in bacterial haemagglutinins, invasins and autotransporters (Tiyawisutsri et al., 2007) but extremely rare in viruses. To date it has been found in the serum resistance immunoglobulin-binding Eib proteins encoded by three Escherichia coli prophages (Sandt and Hill, 2000), and in Bacillus phage SPO1, encoded in a locus inserted between the terminase and portal genes and containing other bacteria-related genes together with five tRNA genes (Stewart et al., 2009). HPR-4 encodes two proteins, gp172 and gp202, for which no phage homologues could be identified. Gp172 contains a Band 7 domain (PF01145) present in eukaryotic integral membrane proteins. Bacterial high frequency lysogenisation proteins also belong to this family, of which HflC has been implicated in temperate phage  $\lambda$  lysogenisation decision making in *E. coli* (Herman *et al.*, 1993). Gp202 contains a histone deacetylase domain (PF00850), implicated in stabilising the interaction of histone-like proteins with DNA (Leipe and Landsman 1997). To our knowledge, E3 gp202 is the first histone deacetylase-like protein to be reported in a phage, where it may play a role in regulated host-phage interaction.

## **Supporting Information – References**

- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic alignment search tool. *JMol Biol* **215**: 403-410.
- Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. *J Mol Biol* 340: 783-795.
- Delcher, A.L., Harmon, D., Kasif, S., White, O., and Salzberg, S.L. (1999) Improved microbial gene identification with GLIMMER. *Nucleic Acids Res* 27: 4636-4641.
- Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R. et al. (2008) The Pfam protein families database. *Nucleic Acids Res* 36: D281-288.
- Glazko, G., Makarenkov, V., Liu, J., and Mushegian, A. (2007) Evolutionary history of bacteriophages with double-stranded DNA genomes. *Biol Direct* **2**: 36.

- Herman, C., Ogura, T., Tomoyasu, T., Hiraga, S., Akiyama, Y., Ito, K., *et al.* (1993) Cell growth and lambda phage development controlled by the same essential *Escherichia coli* gene, ftsH/hflB. *PNAS* **90**: 10861-10865.
- Hyatt, D., Chen, G.-L., LoCascio, P., Land, M., Larimer, F., and Hauser, L. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 11: 119.
- Kelley, L.A., and Sternberg, M.J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. *Nat Protoc* 4: 363-371.
- Kondou, Y., Kitazawa, D., Takeda, S., Tsuchiya, Y., Yamashita, E., Mizuguchi, M., *et al.* (2005) Structure of the central hub of Bacteriophage Mu baseplate determined by X-ray crystallography of gp44. *J Mol Biol* 352: 976-985.
- Laslett, D., and Canback, B. (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res* **32**: 11-16.
- Letek, M., Ocampo-Sosa, A.A., Sanders, M., Fogarty, U., Buckley, T., Leadon, D.P., *et al.*, (2008) Evolution of the *Rhodococcus equi vap* pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. *J Bacteriol* 190: 5797-5805.
- Leipe, D.D., and Landsman, D. (1997) Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. *Nucleic Acids Res* 25: 3693-3697.
- Quan S, and Dabbs E.R. (1993) Nocardioform arsenic resistance plasmid characterization and improved *Rhodococcus* cloning vectors. Plasmid **29**:74-79.
- Rohwer, F., and Edwards, R. (2002) The Phage Proteomic Tree: a genome-based taxonomy for phage. *J Bacteriol* **184**: 4529-4535.
- Roy, A., Kucukural, A., and Zhang, Y. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. *Nat Protoc* **5**: 725-738.
- Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., and Barrell,B. (2000) Artemis: sequence visualization and annotation. *Bioinformatics* 16: 944-945.
- Sandt, C.H., and Hill, C.W. (2000) Four different genes responsible for nonimmune immunoglobulin-binding activities within a single strain of Escherichia coli. *Infect Immun* 68: 2205-2214.
- Schattner, P., Brooks, A.N., and Lowe, T.M. (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. *Nucleic Acids Res* 33: W686-689.

- Söding, J., Biegert, A., and Lupas, A.N. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33: W244-W248.
- Sonnhammer, E.L., von Heijne, G., and Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol *Biol* **6**: 175-182.
- Stewart, C.R., Casjens, S.R., Cresawn, S.G., Houtz, J.M., Smith, A.L., Ford, M.E., et al. (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388: 48-70.
- Taylor, G.K., and Goodlett, D.R. (2005) Rules governing protein identification by mass spectrometry. Rapid Commun Mass Spectrom 19: 3420.
- Tiyawisutsri, R., Holden, M.T., Tumapa, S., Rengpipat, S., Clarke, S.R., Foster, S.J., et al. (2007) Burkholderia Hep Hag autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis. BMC Microbiol 7: 19.
- Zdobnov, E,M, and Apweiler, R. (2001) InterProScan an integration platform for thesignature-recognition methods in InterPro. *Bioinformatics* 17: 847-848.

