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Introduction

The convenience for data collection offered by the Internet 
has proven attractive to researchers. Online methods allow 
easy access to a wide pool of potential respondents giving 
data collectors cost-effective global reach (Rhodes, Bowle, 
& Hergenrather, 2003). Web-based businesses such as 
SurveyMonkey allow researchers to create and distribute 
online questionnaires quickly and with low cost, a service 
that many have used (see www.surveymonkey.com/
Customers.aspx and www.limesurvey.org/en/component/
content/article/1-general-news/193-ask-limesurvey-which-
universities-are-using-limesurvey). There is much interest 
from management researchers in the use of online surveys 
as a research method (see Simsek & Veiga, 2000) and as an 
object of research (see Poncheri, Lindberg, Thompson, & 
Surface, 2008; Thompson & Surface, 2008). Recent man-
agement papers that have used this approach to collect data 
include Goldfarb and Tucker (2011) and Schilke and 
Goerzen (2010). Recent computer science papers that have 
used this approach include Chang and Chin (2011), 
Denvira, Balmera, and Pleasencea (2011), Huang and 
Truong (2008), Ke and Zhang (2008), Schrammel, Köffel, 
and Tscheligi (2009), Wentz and Lazar (2009), and Hussain, 
Slany, and Holzinger (2009). Similar papers are appearing 
in other disciplines.

There are general questions over the accuracy of informa-
tion reported in surveys (Feldman & Lynch, 1988; Schwarz, 
1999); however, a specific disadvantage of the online 
approach is a lack of certainty about the state of respondents 
during data collection—whether, for instance, they are tired 
or inebriated, or more fundamentally whether they are who 
they claim to be. For example, gender swapping in online 
communities is not uncommon (Turkle, 1995).

This article studies the impact that repeated lying has on 
survey results. This impact is evaluated empirically using a 
series of Monte Carlo simulations. Three strategies are 
developed that someone might use to respond multiple times, 
and these are applied to a social science data set. Statistical 
tests are then performed to determine how results vary 
depending on the number of liars and the number of times 
they lie. We set this work in the context of online surveys, 
although, in fact, there is no reason why the results will not 
apply to any survey data collection approach.

The article proceeds as follows: The “Background” sec-
tion sets the work in context, describing repeated lying—
referred to as “farming”—and illustrating how and why it 
might occur. The “Method” section describes in general the 
method used to test the impact of farming, and presents the 
three farming strategies. The “Repeated Truth,” “Random,” 
and “Inlier” sections each describe in detail the method used 
to simulate one of the strategies and present the results. The 
“Conclusion” then offers a discussion of the work.

Background
Studies of lying in surveys and in online forums are not 
uncommon. For example Hancock, Toma, and Ellison (2007) 
and Ellison, Heino, and Gibbs (2006) both report studies of 
dating websites and find that deception is frequent, although 
the magnitudes are small: According to Hancock et al. 
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(2007), two thirds of respondents lie about their weight. 
Several studies suggest that people will misreport facts in an 
online survey when they feel it is socially desirable to do so, 
for instance, about their smoking behavior (Means, Habina, 
Swan, & Jack, 1992), criminal past (Wyner, 1980), and bor-
rowing behavior (Karlan & Zinman, 2008; Zinman, 2009). 
de Leeuwu (2005) finds that when the researcher is present, 
in person or by phone, participants tend to give more socially 
desirable responses. Christian, Dillman, and Smyth (2008) 
show that telephone respondents give significantly more 
positive answers than do web respondents, suggesting an 
advantage to online data collection in potentially overcoming 
this problem of respondent acquiescence.

Aside from appearing socially desirable, it does seem that 
lying might be more likely in online communications than 
other media. Naquina, Kurtzbergb, and Belkinc (2010) find 
that participants are more willing to lie in an email than when 
writing on paper, even if the task design assures participants 
that their lie will not be discovered. The impact of lying on 
survey results therefore becomes an important question.

This article is about lying multiple times, something 
referred to here as farming. This is defined as a participant 
repeatedly completing the same survey. Respondents might 
have any one of a number of motivations for doing this, sev-
eral of which are now discussed.

The Internet offers researchers a convenient means of data 
collection and may in part guard against artificial socially 
desirable results but suffers from lower response rates than 
other approaches (Manfreda, Bosnjak, Berzelak, Haas, & 
Vehovar, 2008). This might be due to trust issues (Sax, 
Gilmartin, & Bryant, 2003; Vehovar, Manfreda, & Batagelj, 
2001), due to difficulties in getting representative samples 
(Dillman, Smyth, & Christian, 2009), or because Internet 
access is not universal (Miller, Kobayashi, Caldwell, 
Thurston, & Collett, 2002). A potential solution is to offer 
incentives. In a meta-analysis reported by Church (1993), 
response rates are found to vary in line with size of cash 
incentive. Thomson, Paterson-Brown, Russell, McCaldin, 
and Russell (2004) carry out a randomized controlled trial to 
compare whether one big prize or many small prizes are most 
effective for encouraging general practitioners to complete a 
postal survey. They conclude that one big prize increases the 
response more than many small prizes, despite the lower odds 
of winning. Although this does not seem to translate directly 
online (Kaplowitz, Hadlock, & Levine, 2004), Bosnjak and 
Tuten (2003) find that it is still possible to incentivize online 
respondents. These incentives give respondents a motivation 
to farm. For instance Morabia and Zheng (2009) investigate 
the influence of entry into a raffle as an incentive for partici-
pation in an urban transportation survey. Of 3,913 eligible 
responses, 183 (4.7%) participants are thought to have 
responded twice. Importantly, for the current study, the dupli-
cate answers were fairly consistent although not exactly the 
same. The authors conclude that surveys involving a raffle 
should expect multiple entries from the same individual.

A second and less obvious reason to farm is to influence 
results, which might happen during research into controver-
sial subjects such as how cults present themselves online. An 
example of this sort of thing can be seen in the way some 
editors try to manipulate certain Wikipedia articles (Zittrain, 
2009). It is also possible that a competing researcher may 
farm to destroy results. Cases of this are unknown, but Duffy 
(2010) has demonstrated that it is a real possibility.

Regardless of the motivation for farming, the intention of 
the farmer is to respond to a survey multiple times without 
being detected. Online, respondents can easily create multi-
ple email addresses, with many people having more than one 
already (Viegas, Golder, & Donath, 2006). Tracking Internet 
protocol (IP) addresses—a unique identifier for every device, 
not user, connected to the Internet—will not prevent farming 
as many people have access to more than one web access 
point (coffee shop, library, home, work). Even at home, it is 
possible to change an IP address, sometimes by simply 
switching an Internet router off and on. The use of Internet 
cookies (files stored on a computer to track the websites it 
has been used to visit) can help but even that is not difficult 
for a determined, technical savvy farmer to overcome.

Method
We have limited behavioral data to indicate exactly how a 
respondent might farm. Therefore, we consider three possi-
ble farming strategies that could potentially be used, which 
will be introduced later in this section. A genuine social sci-
ence data set (N = 526) was used as the basis for the empiri-
cal evaluation. The data are survey responses on students’ 
participation in e-learning and Internet use. Prior to the cur-
rent study, the data were cleaned and validated, and indi-
viduals with impossible, missing, or incorrect data values 
were excluded. For the purposes of this study, an assumption 
was made that none of the genuine respondents had farmed. 
These 526 represent our population of study, and we sample 
from it and conduct tests on the samples.

This data set was chosen because the hypotheses that it 
was used to test represent variety in both the testing method 
(t test and ANOVA) and in the results achieved (three were 
supported and one was not). The hypotheses are listed below. 
They were developed from theory by the team that collected 
the data. The first two were tested by independent samples  
t tests and the second two by one-way ANOVAs:

Hypothesis 1: There is a difference between genders in 
the average time spent using a computer excluding 
Internet use

Hypothesis 2: There is a difference between genders in 
the average time spent using a computer for educa-
tional purposes, excluding Internet use.

Hypothesis 3: There is a difference between age groups 
in the average time spent using a computer exclud-
ing Internet use.
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Hypothesis 4: There is a difference between age groups 
in the average time spent using a computer for edu-
cational purposes, excluding Internet use.

Results on the full data set of 526 respondents are pre-
sented in Table 1. The distributions of each of the four vari-
ables were positively skewed; hence, prior to carrying out 
parametric statistical testing, the data were first transformed 
using the natural logarithm function to ensure that the 
assumption of normality was met. Results from tests run on 
all 526 respondents are as follows and represent the “correct 
answers.” Male students used a computer excluding the 
Internet for all purposes longer on average than female stu-
dents (p = .001). There was no significant difference in the 
time spent using a computer for educational purposes 
between the genders (p = .676). The time spent using a com-
puter excluding the Internet differs between age groups: for 
all purposes, p < .001, and for educational purposes, p < 
.001. The summary statistics in Table 1 show that, on aver-
age, students tend to spend longer time using a computer as 
age increases. Those aged 16 to 20 years use a computer for 
all purposes significantly less than the older age groups, and 
those aged 25 years or over use a computer for education 
purposes significantly more than the two younger age 
groups. The three farming strategies came from discussions 
with colleagues about how they might farm. They were as 
follows:

Repeated Truth
The first is repeatedly telling the truth. In this case, an indi-
vidual gives their real data more than once. So, for example, 
using this strategy, a 27-year-old male would repeatedly 
claim to be a 27-year-old male and each time accurately 
report their opinions on the phenomena being researched. 
This was considered by colleagues to be the simplest 
approach to generating farmed data.

Random
The second is answering randomly. Here the 27-year-old 
male may or may not give his data accurately the first time, 
but on successive completions would randomly invent data. 
This was considered to be the approach that would be used 
by someone who did not want to give accurate data but did 
not want to put in effort into generating false data.

Inlier
The third technique is where the participant tries to give 
average responses. So here, if the 27-year-old male feels that 
most respondents will be 18 years old (as might be the case 
if for instance undergraduate students are completing the 
survey), he will invent data in line with this. Of course, he 
will not be able to accurately predict what the typical 
responses will be, but the point is he will try not to stand out. 
Another example is as follows: A man wanting to farm a 
survey of women might pretend to be more interested in 
fashion than he really is, just as a woman might feign inter-
est in sports to fit in a survey of males. Inlier farming was 
suggested by colleagues as an approach that could be taken 
by someone who is not part of the population of interest, as 
a method they might use to respond but not stand out.

The basic method was as follows: New records were gen-
erated by Monte Carlo simulation using the three farming 
strategies. Three parameters were varied: n, the size of the 
sample taken from the data set of 526 respondents; a, the 
proportion of individuals within that sample who farmed; 
and b, the number of times they farmed. We examined three 
levels of each parameter, plus a = b = 0, giving a total com-
bination of 30 experimental conditions. How the three levels 
for each parameter were chosen is now explained. A litera-
ture search was conducted in a management subdiscipline 
(marketing, not reported here), and the median sample size 
that was used in papers that used online surveys was found to 
be 210. We used this as our mid level for n. For comparison, 

Table 1. Natural Logarithm of Hours Spent Per Week Using a Computer, Excluding Internet Use, by Full-Time Students, Excluding 
Internet Use (n = 526)

Gender

 

  Male Female  

  M (SD) M (SD) p value

All purposes 2.57 (0.94) 2.30 (0.91)  .001a  
Education purposes 2.11 (0.93) 2.07 (0.86)  .676a  

  Age

p value

  16-20 20-24 25

  M (SD) M (SD) M (SD)

All purposes 2.16 (0.92) 2.45 (0.90) 2.60 (0.93) <.001b

Education purposes 1.86 (0.81) 2.05 (0.93) 2.40 (0.82) <.001b

aIndependent-samples t test.
bOne-way ANOVA.
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we also analyzed data sets of size n = 100 and n = 500. For a 
and b, a study by Morabia and Zheng (2009) suggests that the 
proportion of duplicate entries may be around 5%, but it is 
unknown how this is split across (a) the proportion of indi-
viduals within that sample who farmed and (b) the number of 
times they farmed. Therefore, we looked to known frequen-
cies of plagiarism in students’ coursework (Scanlon & 
Neuman, 2002) as a guide to set a. We chose this domain as 
there are data available on it, and although it is some distance 
from farming, it does intuitively seem to be of a similar nature. 
Scanlon and Neuman (2002) present self-reports from stu-
dents, and based on these, we set a to be 5% and 10%. For the 
third level, we set a low value of a = 1%. For b, we used abso-
lute values of 1, 5, and 10 repetitions. We have no data to sup-
port these, and they must therefore be considered speculative.

The approach taken to the simulations varies slightly for 
each of the farming strategies, so in the sections that follow, 
the specific approach is presented, followed immediately by 
the results.

Repeated Truth
To illustrate this farming strategy, consider the second row 
of Table 2. This table shows the combinations of n, a, and b 
used in the simulations to give the 30 experimental condi-
tions. Row 2 shows values of 1 for both a and b, so for the 
n = 100 condition (which is the third column), a sample of 
100 was drawn from the population of 526, and then 1% of 
the sample (which is one person) was simulated to have 
farmed once giving a total sample size of 101. For the first 
simulation (Row 1), a random 100 records were chosen with 
replacement from the full data set. The statistical tests were 
run on this clean data. Then one of the records was randomly 
chosen and copied to create a farmed sample of n = 101 
(Row 2). The statistical tests were run with the farmed 
sample. This was repeated 10,000 times, each time taking a 
fresh sample of n = 100. Then, the same thing was done for 
the other parameter values of n, a, and b.

Repeated Truth Results

Tables 3 to 6 present the proportion of results that were sta-
tistically significant at the 5% level for each hypothesis 
under the repeated truth farming strategy. For Hypotheses 1, 
3, and 4, the test results, based on the complete sample of 
526 respondents, lead to the null hypothesis being rejected. 
For sample sizes of n = 100 and n = 210, the proportions of 
significant test results increase slightly as the levels of farm-
ing increase. However, for the larger sample size of n = 500, 
the proportions of significant results decrease slightly as the 
levels of farming increase.

For Hypothesis 2 (Table 5), where the observed test result 
based on the complete sample of 526 respondents is not to 
reject the null hypothesis, the simulation results demonstrate 
that the presence of repeated truth farming tends to increase 
the likelihood of a Type 1 error.

Random
The procedure here was similar to our strategy for repeated 
truth with the difference that instead of making a straight 
copy of a record b times, for each farmed response, we 
randomly generated data between the minimum and maxi-
mum legitimate value of each field using a uniform distri-
bution, such that each possible category or value within a 
particular variable had an equal probability of selection. For 
gender, we randomly selected male or female; for age, we 
randomly generated an age between 16 and 70; and for 
hours spent using the computer, we randomly selected a 
number between 0 and 105 (the assumed maximum number 
of hours possible per day for a week). For hours spent using 
a computer for education, we subtracted a random number 
between zero and the number generated for total time spent 
using a computer, from the number generated for total time 
spent using a computer.1 In the original analysis of the data 
set, age was split into three age groups (16-20, 21-24, and 
25+). The randomly generated age was recoded into these 
same groups.2 Notice that given the three levels of a and b, 
three of our conditions produce the same amount of random 
data (a = 5, b = 1, and b = 1, a = 5, for instance). In these 
cases, we report both.

Random Results
Tables 7 to 10 present the proportion of results that were 
statistically significant at the 5% level for each hypothesis 
under the random farming strategy. The larger the sample 
size, the higher the proportion of statistically significant 
results, although the increase is less dramatic for the 
Hypothesis 2 results. For any particular sample size, there is 
less variability in the proportion of significant results than 
the repeated truth results, and increased farming does not 
appear to have much effect on the results.

Table 2. The 30 Experimental Conditions With 10 Combinations 
of a and b, and Three Initial Sample Sizes: 100, 210, and 500.

% farmed (a)
Number of 

repetitions (b) Sample size (n)

0 0 100 210 500
1 1 101 212 505
1 5 105 230 525
1 10 110 220 550
5 1 105 215 525
5 5 125 260 625
5 10 150 310 750

10 1 110 231 550
10 5 150 315 750
10 10 200 420 1,000
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Table 3. Proportion of Hypothesis 1 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Repeated 
Truth Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.28 0.52 0.87
1 1 0.31 0.56 0.9
1 5 0.32 0.56 0.89
1 10 0.32 0.56 0.88
5 1 0.44 0.63 0.88
5 5 0.46 0.63 0.87
5 10 0.47 0.63 0.85

10 1 0.56 0.67 0.85
10 5 0.57 0.68 0.84
10 10 0.58 0.67 0.83

Table 4. Proportion of Hypothesis 2 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Repeated 
Truth Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.06 0.07 0.08
1 1 0.06 0.07 0.08
1 5 0.07 0.08 0.09
1 10 0.08 0.09 0.1
5 1 0.22 0.22 0.23
5 5 0.25 0.25 0.26
5 10 0.28 0.28 0.29

10 1 0.43 0.41 0.43
10 5 0.45 0.45 0.44
10 10 0.47 0.46 0.46

Table 5. Proportion of Hypothesis 3 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Repeated 
Truth Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.36 0.67 0.97
1 1 0.4 0.72 0.98
1 5 0.41 0.71 0.98
1 10 0.42 0.71 0.97
5 1 0.6 0.8 0.97
5 5 0.62 0.8 0.97
5 10 0.63 0.8 0.97

10 1 0.75 0.85 0.96
10 5 0.76 0.85 0.96
10 10 0.77 0.85 0.96

Table 6. Proportion of Hypothesis 4 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Repeated 
Truth Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.58 0.91 1
1 1 0.63 0.93 1
1 5 0.63 0.92 1
1 10 0.63 0.92 1
5 1 0.76 0.94 1
5 5 0.76 0.93 1
5 10 0.76 0.93 1
10 1 0.83 0.94 1
10 5 0.83 0.93 1
10 10 0.84 0.93 0.99

Table 7. Proportion of Hypothesis 1 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Random 
Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.28 0.52 0.88
1 1 0.29 0.53 0.88
1 5 0.29 0.53 0.87
1 10 0.28 0.52 0.88
5 1 0.28 0.52 0.88
5 5 0.28 0.52 0.87
5 10 0.29 0.53 0.87

10 1 0.28 0.52 0.87
10 5 0.28 0.52 0.87
10 10 0.28 0.52 0.87

Table 8. Proportion of Hypothesis 2 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Random 
Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.06 0.06 0.08
1 1 0.06 0.06 0.08
1 5 0.06 0.06 0.08
1 10 0.06 0.06 0.08
5 1 0.06 0.06 0.08
5 5 0.06 0.06 0.08
5 10 0.06 0.06 0.08

10 1 0.06 0.06 0.08
10 5 0.06 0.06 0.08
10 10 0.06 0.06 0.08
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Inlier

The same basic procedure as in the previous simulations 
was used. This time, to produce the inlier farmed records, 
we used a convenience sample of 38 university students 
and staff. Each respondent was shown the instructions of 
the original survey and was asked to guess what he or she 
thought the average survey response for each of the four 
variables would be (with age group replaced by age). We 
used these responses as indications of how people would 
behave when attempting to farm by giving an average 
response, and inlier records were generated according to 
the observed probability distributions. The responses from 
the 38 individuals were used to calculate the probability of 
someone guessing male; this probability was .216. Hence, 
a Bernoulli distribution with a probability of .216 was used 
to generate each farmed case of gender. For respondent age 
and the two measures of hours using a computer, we used 
a normal distribution with mean and standard deviation set 
according to the survey responses. The distribution used to 
generate the farmed results was N(20.8, 2.22) for age, 
N(13.6, 8.72) for the average time spent using a computer 
excluding Internet use, and N(9.2, 5.72) for the average 
time spent using a computer for education purposes only, 
excluding Internet use.

Inlier Results
Tables 11 to 14 present the proportion of results that were 
statistically significant at the 5% level for each hypothesis 
under the inlier farming strategy. As the levels of farming 
increases, there are dramatic changes in the proportion of 
statistically significant results. For Hypotheses 1, 3, and 4, 
the proportions of significant results decrease as farming 
increases; however, for Hypothesis 2, the proportion of sta-
tistically significant results increases.

Table 10. Proportion of Hypothesis 4 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Random 
Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.58 0.9 1
1 1 0.57 0.87 0.97
1 5 0.57 0.87 0.97
1 10 0.57 0.87 0.98
5 1 0.57 0.87 0.97
5 5 0.57 0.87 0.97
5 10 0.57 0.87 0.97

10 1 0.57 0.87 0.97
10 5 0.57 0.87 0.97
10 10 0.57 0.87 0.97

Table 9. Proportion of Hypothesis 3 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Random 
Monte Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.36 0.67 0.97
1 1 0.39 0.68 0.97
1 5 0.39 0.68 0.97
1 10 0.39 0.68 0.97
5 1 0.38 0.68 0.97
5 5 0.39 0.68 0.97
5 10 0.39 0.68 0.97

10 1 0.39 0.68 0.97
10 5 0.39 0.68 0.97
10 10 0.39 0.68 0.97

Table 11. Proportion of Hypothesis 1 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Inlier Monte 
Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.28 0.55 0.88
1 1 0.26 0.49 0.86
1 5 0.19 0.41 0.81
1 10 0.13 0.34 0.74
5 1 0.2 0.41 0.8
5 5 0.05 0.2 0.6
5 10 0.03 0.14 0.47

10 1 0.14 0.33 0.74
10 5 0.03 0.14 0.47
10 10 0.04 0.12 0.34

Table 12. Proportion of Hypothesis 2 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Inlier Monte 
Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.06 0.06 0.07
1 1 0.04 0.04 0.06
1 5 0.03 0.03 0.04
1 10 0.05 0.05 0.04
5 1 0.03 0.03 0.04
5 5 0.13 0.13 0.11
5 10 0.21 0.25 0.24

10 1 0.05 0.05 0.04
10 5 0.2 0.24 0.24
10 10 0.29 0.4 0.47
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Conclusion

This section now presents a summary and explanation of the 
results, and discusses the work.

Summary of Results
The results presented in this article show that the effects on 
statistical test results depend on which hypothesis is being 
tested, the sample size, and the method of farming. Our main 
result is that farming affects results in ways that cannot be 
predicted. Morabia and Zheng (2009) and Steele, Schwendig, 
and Kilpatrick (1992) suggest that research results will not 
be distorted if less than 5% of the sample respond twice, and 
on the whole, our data support this.

In general, as the sample size increases, the proportion of 
statistically significant results for unfarmed samples 
increases, albeit less dramatically for the Hypothesis 2 
results. This increase is not surprising as an increased sample 

size will lead to more statistical power, and hence the likeli-
hood of a Type II error is decreased.

For the repeated truth results, the proportion of significant 
test results decreases slightly as farming increases for the 
larger sample size of n = 500 for Hypothesis 1, 3, and 4, 
compared with dramatic increases in the proportions for the 
smaller samples of 100 and 210 (Tables 3, 5, and 6).

For the random farming method (Tables 7-10), there is 
less variability in the proportion of significant results for 
three of the hypotheses. However, for Hypothesis 4 (Table 
10), increased farming by the random method tends to lead 
to a decrease in the proportion of significant results for sam-
ples of size 210 and 500, thereby showing an increase in 
Type II error.

For the inlier farming results, the proportions of signifi-
cant results for Hypotheses 1, 3, and 4 (Tables 11, 13, and 
14) decrease dramatically as the levels of farming increase; 
however, for Hypothesis 2 (Table 12), the proportion of sig-
nificant results increase in line with an increase in farming.

Possible Explanation
The repeated truth method of farming may lead to a reduc-
tion in variability in the farmed data set, since repeated 
responses are added during the farming process. This would 
lead to an artificial increase in statistical power compared 
with the unfarmed data, thereby increasing the likelihood of 
a Type I error. However, these results do not hold for sam-
ples of size n = 500, where the proportions of statistically 
significant results decrease slightly with increased farming.

The random farming method should preserve the variabil-
ity in each of the four individual variables; however, the 
covariance structure between the four variables will not be 
retained since the variables were randomly generated inde-
pendently of each other to create the farmed cases. This most 
likely explains the reduction in the proportion of significant 
results in the larger sample sizes, as the trend in the number 
of hours spent using a computer according to gender and age 
group will not be retained in the farmed data sets. Even in the 
smallest sample sizes where there is little difference in the 
proportion of significant results, the trend is there but is not 
so pronounced. Although the inlier farming results will lead 
to a reduction in the variability of each of the four variables, 
again the covariance structure between the farmed cases will 
not be retained, which explains the reduction in the propor-
tions of significant results for Hypotheses 1, 3, and 4. 
Hypothesis 2 results show, however, a slight increase in Type 
I error.

Discussion
If we reconsider the two motives for farming listed at the 
start of the article, influencing results and repeatedly gaining 
an incentive, our repeated truth strategy is perhaps likely to 
be the one used to influence results, while the others might 

Table 13. Proportion of Hypothesis 3 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Inlier Monte 
Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.37 0.68 0.97
1 1 0.34 0.65 0.95
1 5 0.27 0.54 0.87
1 10 0.19 0.43 0.78
5 1 0.26 0.54 0.87
5 5 0.09 0.24 0.59
5 10 0.05 0.12 0.41

10 1 0.2 0.43 0.79
10 5 0.05 0.12 0.4
10 10 0.05 0.08 0.25

Table 14. Proportion of Hypothesis 4 Test Results That Were 
Statistically Significant at the 5% Level for the 10,000 Inlier Monte 
Carlo Simulated Data Sets

Initial sample size (n)

Percentage 
farmed (a)

Number of 
repetitions (b) 100 210 500

0 n/a 0.58 0.91 1
1 1 0.36 0.74 0.99
1 5 0.11 0.36 0.91
1 10 0.07 0.2 0.74
5 1 0.12 0.36 0.91
5 5 0.05 0.09 0.37
5 10 0.05 0.06 0.18
10 1 0.07 0.19 0.73
10 5 0.05 0.06 0.17
10 10 0.05 0.05 0.09
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be used by someone wanting merely to avoid detection to 
gain the rewards. The repeated truth strategy tends to artifi-
cially increase the statistical power of unfarmed data, and 
therefore could indeed influence results, but our findings 
suggest that unless a high proportion of farmers exist or a 
high proportion of farming occurs, the impact on results is 
unlikely to cause much concern.

While the Internet opens opportunities for farming, it also 
gives researchers controls to deal with it. The best approach 
might be to combine real-world methods alongside online 
convenience. The ability to do this depends on the sampling 
method used, but one method is to identify individuals and 
assign them a unique identifier that gets submitted alongside 
the survey. Careful control of the identifiers should equate to 
careful control of farming. This would, however, not work 
with some sampling methods such as snowball sampling. In 
any case, the identifiers should be nonsequential as the use of 
sequential identifiers would mean they are easy for someone 
to guess, and this could allow farming to occur. However, if 
this happened, it would likely be discovered by the researcher 
when a genuine respondent tried to use his or her identifier 
that had previously been guessed by a farmer. Someone 
doing this could only expect to ruin data collection, not influ-
ence results or gain financially.

The three types of farming were simulated to be as realis-
tic as possible, based on possible techniques that respondents 
may use in practice. In reality, some farmers may use more 
sophisticated techniques, and further research into the psy-
chological reasons and strategies of farmers would be 
beneficial.

It would also be interesting to carry out a simulation study 
to explore whether any multivariate statistical techniques 
have the power to detect farmed cases, by flagging up any 
suspect cases that have an unusual or extreme covariance 
structure. Any useful methods could then be recommended 
as part of a data validity checking procedure prior to carrying 
out a statistical analysis of the survey data collected.

Our results demonstrate that farming in online studies is a 
small problem that can potentially lead to either Type I or 
Type II errors, which cannot be predicted. Therefore, when 
designing an online survey, steps should be taken to ensure 
that the risk of farming is kept to a minimum, to ensure that 
the data collected are not distorted and that the overall study 
results are valid and reliable.
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Notes

1.	 We did this to keep our data within limits so that it would still 
be sensible, that is, we did not allow a farmed response to have 
data where the time spent using a computer for education pur-
poses was greater than the total time spent using a computer.

2.	 The reason a random age group was not generated was because 
respondents would not have known that their responses would 
have been recoded in this way, and therefore, the existence of 
age groups could not have influenced farming behavior.
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