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Abstract 

Increasing use is being made of constructed wetlands to store and treat urban drainage prior to release into 

watercourses. Known as sustainable urban drainage systems (SUDS) in the UK these have potential to support 

and enhance freshwater biodiversity in urban areas, but the diversity and value of communities present in these 

ponds is not well-established. This study establishes the characteristics of invertebrate communities and 

investigates links with prevailing environmental conditions in four SUDS sites in Dunfermline, Scotland over a 

five-year period. The SUDS ponds supported communities of between 10 and 47 invertebrate species. Only one 

beetle species of conservation significance was recorded, along with an invasive species of mollusc. There were 

significant temporal changes in species richness and community composition, with the sites losing species and 

becoming more dissimilar over time. Variation in the invertebrate species composition at the sites was linked to 

both average environmental conditions and temporal variability, particularly soluble reactive phosphorus and 

dissolved oxygen levels. The biodiversity value SUDS of invertebrate communities may be limited by pollutant 

loads being received from drainage, but they can still potentially contribute to freshwater diversity in urban 

areas. In order to maximise their biodiversity potential, more research needs to be undertaken on appropriate 

design and management considerations. 

 

 

 

Abbreviations: CCA, canonical correspondence analysis; NMDS, non-metric multidimensional scaling; SRP, 

soluble reactive phosphorus; SUDS, sustainable urban drainage system;  

 

 

 

1 Introduction 

Urban drainage represents a significant source of pollution for freshwater ecosystems, containing a potent 

mixture of pollutants [1, 2]. As part of integrated treatment of urban drainage, across the world increasing use is 

being made of constructed wetland systems (known as sustainable urban drainage systems – SUDS – in the UK) 

to store and treat water prior to release into watercourses [3-5]. Treatment of drainage water is generally through 

natural processes of sedimentation, absorption and conversion through uptake by microorganisms and plants [6], 

and there is active research into the design of systems to maximise effectiveness for treatment (e.g. [4, 7]). Such 

wetland and pond systems are primarily constructed for improving water quality and reducing the quantity of 

run-off to receiving watercourses. However, they also have the potential to contribute value in terms of amenity 

and biodiversity in urban areas, the final corner of the so-called ‘SUDS Triangle’ [8]. Through the majority of 

the last century there was a significant decline in pond numbers in the UK [9, 10], but more recently pond 

numbers have begun to increase although in recent years [10-12]. SUDS ponds, wetlands and other components 

may also help to redress the balance and act to support and enhance biodiversity in urban areas [13]. Given their 

significant role in storing and treating polluted urban drainage, the extent to which they can support biodiversity 

could be questioned. A limited number of studies have examined the biological diversity of SUDS ponds or 

similar structures such as highway stormwater management ponds. In general it has been found that they are 

capable of supporting a respectable number of species of both animals and plants [14-17]. Invertebrate 



 
 

  
 A

cc
ep

te
d

 

 

 

 

 

 

 

 

 

  

 
 
 

  P
re

pr
in

t

  3

community composition in freshwaters ecosystems is known to be influenced by environmental conditions; 

invertebrates form the basis of most of biotic indices of water quality e.g. [18, 19]. The diversity and 

composition of invertebrate communities may therefore be potentially limited by impacts of runoff which they 

are designed to treat, through exposure to pollutants and highly variable physico-chemical conditions due to 

temporal changes in the hydrological and pollutant load entering the sites [15, 16, 20-22]. There are also 

potential problems due to the unintentional introduction of invasive species of animals and plants with 

macrophytes stocked to aid their treatment function (notably Phragmites australis) [14, 23-25] or subsequent 

intentional introduction of invasive or non-native species. Almost all of the studies cited above focused on 

information gathered from ‘snapshot’ surveys undertaken in a single year or two years at the most. In order to be 

better able to determine the role of SUDS ponds in promoting freshwater biodiversity it is desirable to 

understand the extent of temporal change, particularly in respect to cumulative impacts of the nutrient and 

pollutant load that they are designed to treat. 

The aims of the current study are therefore threefold: firstly to establish the composition and conservation value 

of invertebrate communities present in a series of urban drainage ponds in eastern Scotland. Secondly to analyse 

temporal trends in communities and the extent of between site differences and finally to examine the 

relationships between invertebrate community composition and the prevailing environmental conditions. 

 

2 Materials and methods 

2.1 Study sites 

The study sites were created as part of the integrated drainage system for a 750 ha mixed development on the 

east side of Dunfermline, Fife, Scotland, known as the Dunfermline East Expansion. Due to a combination of 

existing flooding and water quality issues in the area, an integrated suite of SUDS and other measures was 

established to treat all surface water drainage from the site. This study focuses on four sites which have been 

monitored in terms of water and sediment quality, along with initial work on invertebrate communities, since 

construction in 1997/8 (for more details see [3, 26, 27]). Table 1 gives a summary of the main characteristics of 

the sites studied. Three sites (Halbeath, Linburn and Pond 7) were constructed specifically for their SUDS role 

as site control elements. Calais Burn Wetland is a much larger site which was created by extending and 

modifying an existing wetland area. This site functions more as a regional control element in the water 

management system. Both Linburn and the Calais Burn Wetland receive water than has passed through 

upstream detention basins and other SUDS elements which in addition to slowing the rate of runoff discharge 

also remove at least some of the sediment and pollutant load. All sites have fairly steeply sloping sides with 

little in the way of a littoral zone, and have extensive marginal vegetation, predominantly P. australis. Beyond 

the marginal vegetation there is little in the way of significant habitat structure in either the water column or the 

benthos, although the Calais Burn Wetland site has several species of submerged macrophyte present in small 

areas (<5% surface area). 

 

2.2 Invertebrate sampling 

Invertebrates were sampled at the sites annually between 2007 and 2011 in July using a standard 3-minute pond 

net sample as per the methods used in the National Pond Survey in the UK [28]. Two samples were taken at 

each site in each year, roughly corresponding with the position of main inlet and outlet points. Sampled material 
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was sorted in the laboratory to extract invertebrates, which were preserved in 70% industrial methylated spirits. 

In all years invertebrates were identified to species level, with the exception of oligochaetes, ostracods, some 

dipteran groups and immature/larval stages of Corixidae and Coleoptera which were identified to the lowest 

possible taxonomic level and enumerated. Superabundant taxa (Chironomidae, Asellidae and Potamopyrgus 

antipodarum) were enumerated in a series of volumetric subsamples (3 × 0.5 L from a total volume of 10 L 

mixed using an air pump), and then their total abundance derived by multiplication based on the mean number 

found in a subsample. 

 

2.3 Physico-chemistry 

A range of physico-chemical parameters were measured from each site in each year, in order to relate variation 

in invertebrate communities to the prevailing environmental conditions. Three replicate water samples were 

taken from each site contemporaneously to invertebrate sampling. In addition, similar replicate samples were 

also taken at approximately bi-monthly intervals throughout each year, in order to attempt to better characterise 

annual variability in conditions. Water samples were collected in 500 mL acid-washed polypropylene bottles 

and kept cool (~4°C) and in the dark prior to return to the laboratory. Conductivity and pH were measured from 

the field water samples at room temperature using laboratory meters (Hanna Instruments and Orion Research 

model 611, respectively) prior to freezing. The samples were then filtered using Whatman GF/F filters and 

frozen prior to analysis. Levels of nitrate, nitrite, ammonia and soluble reactive phosphorus (SRP) were 

determined using standard colourimetric techniques on a SEAL AQ2+ auto-analyser, with the exception of 

2007, when manual determination using the same colorimetric methods was employed. Dissolved oxygen 

(percentage saturation) was measured in the field using a YSI model 95 meter. All samples were taken at 

approximately 15cm depth and were taken at random time points during the day and in a random site order to 

avoid potential bias associated with consistent timing or order of sampling. A total of 172 samples were taken 

across all sites over the five-year period. 

 

2.4 Statistical analysis 

All analyses were undertaken using R version 2.14.2 [29]. Species richness, Shannon-Weaver diversity and 

Pielou’s evenness were calculated for each sample, and temporal trends in each index examined using a mixed-

model ANOVA, incorporating a random site effect to account for repeated sampling of the same site over time. 

In addition to undertaking analysis of the whole community, separate analyses were performed on Coleoptera, 

Diptera, Hemiptera, Mollusca and Trichoptera. Other taxonomic groups recorded had insufficient species 

richness to allow analysis. Dissimilarity of invertebrate communities was assessed by calculating the Bray-

Curtis index between ln +1 transformed abundances of all samples. Variation in dissimilarity of communities 

was summarised using non-metric multidimensional scaling (NMDS). Temporal and between site changes in 

similarity were assessed using distance-based permutational MANOVA, with year as a within-subjects effect. 

SIMPER analysis [30] was used to determine which species were the most important in driving between site 

differences in community composition. 

Between-site differences in physico-chemical conditions were assessed using mixed-model ANOVA 

incorporating year as a random effect to account for repeated sampling (data for conductivity and all nutrients ln 

+ 1 transformed prior to analysis) and variability of environmental conditions assessed using Levene’s test for 
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equality of variances between different years at each site based on untransformed data. 

Relationships between invertebrate community composition and the physico-chemical parameters measured 

were examined using canonical correspondence analysis (CCA). Given that the invertebrates present were 

potentially likely to be influenced by both the average conditions and the extent of variability over time, the 

mean and coefficient of variation of the physico-chemical parameters measured were used as predictors. Species 

abundance data, conductivity and nutrient level value were all ln +1 transformed prior to analysis. Forward 

selection of environmental variables (p < 0.05 for inclusion) was implemented and the overall significance of 

the final axes assessed using permutation tests. 

 

3 Results 

3.1 Assessment of conservation value of invertebrate communities 

A total of 66 species of invertebrates were recorded across all sites, with the largest number of species recorded 

in the Coleoptera (17 species), Trichoptera (11 species) and Hemiptera (11 species) groups. Across all years, the 

species richness of sites varied between 10 and 47. Full details of the species present in the different sites are 

given in Supporting Information Table S1. Conservation value of the species present was determined by 

reference to the 2011 UK Joint Nature Conservation Committee Conservation Designation list, which 

incorporates national and international conservation designations. The Nationally Scarce beetle Hydroporus 

obsoletus, found at the Halbeath and Calais Burn Wetland sites, was the only species found with any 

conservation designation. This species was lost from Halbeath during the course of sampling (see below). A 

recognised invasive non-native species, the New Zealand mud-snail, Potamopyrgus antipodarum was also 

recorded at all sites except Halbeath. 

 

3.2 Temporal changes in species richness, diversity and similarity 

The Calais Burn Wetland site had substantially more species recorded than the other sites and Halbeath 

consistently the lowest species richness (Fig. 1). There was a significant change in species richness over time in 

all sites, showing a decline in the number of species recorded in each year (mixed-model ANOVA, F[4,32] = 

7.437, p = 0.0002, see Fig. 1). Some species were absent from a site in some years and reappeared in subsequent 

years which complicates analysis of species loss. Species lost were defined as those present for at least two of 

the first three years sampling and absent from the last two years. Table 2 summarises the species lost at different 

sites, mainly from the Coleoptera, Mollusca and Trichoptera groups. The Shannon-Weaver diversity index 

showed no significant variation across all sites over time (mixed-model ANOVA, F[4,32] = 2.048, p = 0.091) 

whereas Pielou’s evenness showed a significant increase (mixed-model ANOVA, F[4,32] = 2.973, p = 0.038, see 

Fig. 1). 

When analysed separately, there were significant declines in species richness of Trichoptera (mixed-model 

ANOVA, F[4,32] = 4.204, p = 0.0075) and Mollusca (F[4,32] = 3.046, p = 0.031) and also a decline in in the 

diversity (Shannon index) of Trichoptera (F[4,32] = 4.867, p = 0.0035). Changes in species richness, diversity or 

evenness for all other taxon groups analysed were not significant. 

In terms of similarity of community composition, there were clear differences evident between sites (Fig. 2), 

with the communities present at each site becoming increasingly dissimilar over time (permutational 

MANOVA, F[12,19] = 8.1677, p < 0.001). Table 3 gives the top five taxa identified as contributing most 
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substantially to the differences between the communities at each site through the SIMPER analysis.  

 

3.3 Physico-chemical variation 

Physico-chemical variables recorded at the sites are summarised in Table 4. There were significant between site 

differences in all parameters apart from conductivity. Sites also differed in the extent of variability of conditions 

recorded, notably in conductivity, dissolved oxygen, nitrite and SRP (Table 4). 

 

3.4 Species-environment relationships 

In the CCA, mean pH, along with means and coefficient of variation of SRP and dissolved oxygen were retained 

in the analysis and the derived axes were highly significant (Monte Carlo significance test, F = 3.633, p = 0.005, 

explaining 45.5% of the variation in the species data and 75.7% of the species-environment relation). Figure 3 

shows the distribution of sites and species in relation to the environmental variables. The invertebrate 

communities found at the sites formed fairly distinct groups in relation the environmental variation described by 

the CCA ordination in a similar manner to that shown in the NMDS analysis. The communities found at 

Halbeath and Linburn were both influenced by relatively low dissolved oxygen levels and low pH values. These 

two sites however are separated based on high variation in dissolved oxygen concentrations at Halbeath and 

high and variable SRP levels. The Calais Burn wetland site invertebrate community was linked to consistently 

higher pH values than the other sites (see also Table 4), whereas the Pond 7 invertebrate communities were 

associated with low variability in dissolved oxygen, but greater variation in SRP. All sites showed some 

temporal variation in community composition in response to changes in physico-chemistry between years, with 

Linburn and Halbeath in particular showing variation that points to the influence of increasingly high levels of 

SRP and varying dissolved oxygen respectively. The increasing separation of the communities found at the sites 

over time is consistent with the patterns shown in the previous analysis of community dissimilarity. 

 

4 Discussion 

Initial monitoring studies of the SUDS ponds considered here showed that they were rapidly colonised and 

developed invertebrate communities of between 10 and 28 species, over a period of five years after construction 

[27]. This rapid rate of colonisation is consistent with other studies of both SUDS ponds and ponds more 

generally, which indicate that fairly diverse communities can develop within two or three years [13, 31, 32]. 

Variation in the sampling techniques used in the initial studies [27] and the present study prevented direct 

comparison of the results, but levels of species richness at the start of the present study (ten years after 

construction) were comparable with those recorded previously. According to the national ranking developed 

based on the survey of minimally impaired sites that were sampled across the UK as part of the National Pond 

Survey [10] the relatively low species richness of these sites would place them in the Moderate conservation 

value category, with the exception of the Calais Burn Wetland site, which would come into the High category 

based on species richness. Only one species with conservation designation was recorded, the Nationally Scarce 

Hydroporus obsoletus, initially present at both Halbeath and Calais Burn Wetland, although lost from Halbeath 

during the period of sampling. This is lower than the national average for unimpaired ponds of 2.6 species per 

site [33]. This relatively low conservation value is not entirely unexpected based on the previous studies [14, 

17]. The limited habitat diversity present at the sites and also the inputs of urban drainage waters that they are 
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receiving are both likely to contribute to the limited conservation value. The presence of the invasive mollusc P. 

antipodarum at three of the sites has previously been linked to the stocking of P. australis as marginal 

vegetation [27]. High nutrient levels present in such urban waters has been linked to the success of invasive 

species [25] suggesting that this may be a consistent issue. 

Without a full inventory of invertebrates from other nearby water bodies it is difficult to be sure as to the extent 

to which the invertebrate communities found contribute to overall freshwater biodiversity in the area. There are 

no other standing waters within 3km of the sites studied, so whilst some generalist taxa found may be also found 

in nearby running waters, it seems likely that other more specialised standing water taxa have colonised the area 

from greater distances, either actively or passively [34] and hence the presence of the SUDS sites has resulted in 

an increase in overall freshwater biodiversity. 

Differences in overall species richness between sites were consistent with previous data, with Calais Burn 

Wetland having higher species richness than all the other sites sampled and Halbeath the fewest species [13, 

27]; the Calais Burn Wetland site is significantly larger (Table 1), and has a more complex morphology 

compared to the other sites. It was also created by excavating an existing marsh area to improve its function for 

treatment of drainage waters. Both these factors are likely to have influenced the greater levels of diversity 

found. However, over the course of the five years in which the current study was undertaken, there was a 

significant decline in species richness across all sites. Evenness also increased over the same period, suggesting 

that those species remaining had a more equitable abundance distribution. Diversity, as measured by the 

Shannon index, did not show any significant trend; given that this reflects both species richness and relative 

abundance patterns it is possible that these effectively cancelled each other out, resulting in no great change. On 

an individual taxonomic group basis, a significant decline in species richness was only evident for the Mollusca 

and Trichoptera groups, with the latter also showing a decline in diversity. Other groups showed no significant 

trend in any of the measures calculated. The overall decline in richness and increase in evenness would therefore 

appear to be due to relatively subtle changes in different taxonomic groups, which are only clearly evident when 

the overall community is analysed. 

In addition to the changes in species richness, the sites also became increasingly dissimilar over time suggesting 

that their communities were gradually diverging in composition, at the same time as losing species overall. 

Some degree of variation in species composition between years is a natural characteristic of pond communities 

[35, 36] and diverging community composition and a decline in species richness can be associated with 

successional habitat changes [37, 38]. The steep bank profile and overall depth of the SUDS sites limits the 

extent to which marginal vegetation can encroach, and there is a relatively low sedimentation rate at the sites 

[3]. Therefore, the changes in species richness observed so do not appear likely to be explained by the very 

limited changes in the habitat structure. The greater extent of change demonstrated here appear to be linked to 

the overall levels and variation in pollutant loads over time. The sites showed substantial variation in both 

average values of different physico-chemical parameters and also the extent to which they varied over time 

(Table 4). 

The importance of variation in environmental conditions, as well as average values, in the CCA results (Fig. 3) 

underscores the potential influence of temporally varying environmental conditions on pond invertebrate 

community development and change [37]. Nutrient levels (SRP), dissolved oxygen concentrations and pH were 

important predictors of community composition, with sites separating out along the environmental gradients. 
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The Calais Burn Wetland had the highest and relatively stable oxygen concentrations, high pH and relatively 

low SRP levels. This relatively benign environment, in addition to the greater area and habitat diversity, may 

have influenced the greater diversity evident at this site. Temporal trends in species composition in the results of 

the CCA were particularly evident at the Halbeath and Linburn sites, which mirrored the changes in species 

richness and community similarity noted in earlier analyses, and similar characteristic species identified as 

important in distinguishing the sites in the CCA as in the SIMPER analysis. The sites are generally quite well 

separated in terms of environmental conditions (Fig. 3) which would tend to suggest that the gradual divergence 

of community dissimilarity and changes in species richness are linked to persistent trends in environmental 

conditions, notably high SRP and low oxygen levels. Similar links between invertebrate community 

composition and environmental parameters have been notes in other studies of similar sites e.g. [25], and the 

variables that were emphasised (SRP and dissolved oxygen particularly) are consistent with known influences 

on invertebrate communities across the range of freshwater ecosystems [39]. Other pollutants which were not 

assessed in the current study, such as heavy metals and hydrocarbons derived from road surfaces, are also 

potentially important in determining species composition and abundance in SUDS sites [21, 22, 33]. In these 

sites the levels of these pollutants found in sediment, at least up to 2006, was relatively low and stable [3], 

suggesting they are unlikely to be exerting a strong influence in comparison to the observed effects of SRP and 

oxygen concentration. 

Urban drainage ponds clearly have a role to play in promoting local freshwater biodiversity. Although the 

communities that develop may be limited by the nutrient and other pollutant loadings that they receive, along 

with the limited habitat diversity that is commonly evident, they may still contribute significantly to overall 

diversity. Concerns have been raised over long-term sustainability of SUDS due to build-up of sediment and 

associated pollutants, which will eventually require to be disposed of [3, 40]. On the basis that there were clear 

temporal trends of declining species richness across the sites studied, similar concerns can be raised over their 

value for biodiversity. If conditions gradually deteriorate due to build-up of pollutants then this will further 

restrict the diversity of invertebrate communities present. There have only been limited studies undertaken 

temporal trends in water and sediment quality in such sites. These have generally suggested that this may not be 

a significant issue over timescales of up to 11 years [3, 21], but the evidence here suggests a counter-argument 

in respect of the biodiversity value of SUDS, at least for invertebrates. In the longer-term, the need for sediment 

management and removal is also likely to result in significant disturbance on a periodic basis, impacting the 

communities of invertebrates supported by SUDS sites. Given the limited number of sites considered in the 

present study, the generality of the conclusions drawn here remains an open question requiring further 

investigation. Other studies have emphasised the need for long-term monitoring to better understand the patterns 

and processes involved in temporal change of invertebrate communities [38] and this is clearly also important in 

relation to the effectiveness of SUDS both as treatment systems and for biodiversity. Coupled with the present 

emphasis on research into the most effective design for treatment [4] should be similar considerations in relation 

to the biodiversity value of the systems. Some suggestions have already been made as to how to maximise the 

biological potential of SUDS [8, 24, 33] but there is a need for further study of the effectiveness of different 

measures. The SUDS studied here vary in terms of the extent of processing of water prior to discharge into the 

sites through the ‘treatment train’ [40]. Designing systems whereby there is sequential treatment of water as it 

passes through the system may enable SUDS towards the end of the process to support higher quality habitats. It 
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may be fair to accept that a dual role for water treatment and biodiversity support may not be entirely 

compatible [15] but the careful design and management of systems should enable SUDS to achieve their 

maximum potential for both roles. 
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Table 1. Summary characteristics of urban drainage sites studied (adapted from [3]). 

Characteristic Halbeath Linburn Pond 7 Calais burn wetland 

Catchment land-use Leisure development, 

highway 

Residential, 

highway, grassland 

Residential, 

highway 

Residential, parkland, 

highway 

Catchment area (ha) 13.5 67.5 67 197 

Date of construction 1997 1998 1998 1998 

Surface area (m2) 6489 9848 4992 18633 

Mean depth (m) 1.49 2.24 1.15 0.94 

 

 

 

 

 

 

Table 2. Summary of invertebrate species lost from SUDS sites sampled between 2007 and 2011. See text for 

definition of species loss. 

Site Halbeath Linburn Calais Burn 

wetland 

Pond 7 

Species lost Hydroporus 

obsoletus 

Hyphydrus ovatus 

Hyphydrus ovatus 

Lymnaea peregra 

Hygrotus inaequalis 

Nebrioporus 

elegans 

Ilybius fuliginosus 

Haliplus confinis 

Ocetis bicolor 

Limnephilus stigma 

Agrypnia obsoleta 

Planorbis vortex 

Corixa panzeri 

Haliplus 

lineatocollis 

Helophorus grandis 

Limnephilus politus 

Lymnaea stagnalis 
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Table 3. Summary of the top five invertebrate species identified by SIMPER analysis as most strongly 

influencing between site dissimilarity of community composition at different SUDS sites. 

 Halbeath Linburn Calais Burn wetland 

Linburn Chaoborous crystallinus 

Asellus aquaticus 

Potamopyrgus antipodarum 

Gammarus pulex 

Lymnaea peregra 

  

Wetland Potamopyrgus antipodarum 

Chaoborous crystallinus 

Phyrganea bipunctata 

Cloeon dipterum 

Enallagma cyathigerum 

Radix balthica 

Potamopyrgus antipodarum 

Gammarus pulex 

Lymnaea stagnalis 

Cloeon dipterum 

 

Pond 7 Potamopyrgus antipodarum 

Chaoborus crystallinus 

Corixa punctata 

Asellus aquaticus 

Hesperocorixa sahlbergi  

Radix balthica 

Sigara concinna 

Lymnaea stagnalis 

Corixa punctata 

Physa fontinalis 

Asellus aquaticus 

Corixa punctata 

Nebrioporus elegans Lymnaea 

peregra 

Hesperocorixa sahlbergi 
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Figure 1. 
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Table 4. Summary of chemical water quality parameters measured at the SUDS sites between 2007 and 2011. Values given are means, with coefficient of variation in 

parentheses, across all years combined. Stars indicate the significance values from mixed-model ANOVA of between site differences and Levene’s test of equality of 

variances between sites (see text for details), * <0.05, ** <0.01, *** <0.001. 

Parameter Site Site difference Equality of variance 

between sites 

 Halbeath Linburn Pond 7 Calais Burn wetland   

pH 7.3 (4.6) 7.6 (4.4) 7.6 (3.9) 7.9 (4.2) ***  

Conductivity (µS cm-1) 752.7 (64.7) 588.7 (29.6) 614.8 (34.2) 539.4 (20.5)  *** 

Dissolved oxygen 

saturation (%) 

47.1 (42.3) 77.5 (15.0) 90.1 (15.6) 95.2 (18.6) *** * 

Nitrate (mg L-1) 92.5 (150.5) 210.8 (89.7) 118.2 (162.6) 146.7 (206.5) ***  

Nitrite (mg L-1) 12.2 (114.5) 11.0 (43.1) 8.1 (99.5) 6.9 (88.7) *** ** 

Ammonia (mg L-1) 98.2 (166.4) 190.3 (195.4) 61.8 (117.3) 68.3 (99.4) ***  

Soluble reactive 

phosphorus (mg L-1) *** 

16.0 (68.7) 57.4 (76.3) 22.4 (77.9) 11.8 (65.9) *** *** 
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Figure 1 Changes in a) species richness and b) Pielou’s evenness of SUDS sites between 2007 and 2011. Values 

shown are means +/- standard deviation. 

Figure 2 Two-dimensional non-metric multidimensional scaling plot of dissimilarity (Bray-Curtis index) of 

invertebrate communities. Two-dimensional stress = 0.159. Site codes H = Halbeath, L = Linburn, P = Pond 7 

and W = Calais Burn wetland; numbers following indicate year of sampling. 

Figure 3 Plot of the first two axes from a canonical correspondence analysis of invertebrate abundance and 

physico-chemical data. Site codes H = Halbeath, L = Linburn, P = Pond 7 and W = Calais Burn wetland; 

numbers following indicate year of sampling. SRP = soluble reactive phosphorus, DO = dissolved oxygen. 

Variables ending in M indicate influence of mean values, those ending in CV the influence of the coefficient of 

variation in the relevant variable. A full list of species codes is given in Supporting Information Table S1. 

 

 


