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ABSTRACT 

We describe a visual data cleansing application for pedigree 
genotype data, which is used to redeem otherwise unusable 
pedigree data sets. Biologists and bioinformaticians dynamically 
and iteratively mask pieces of information from a dirty data set 
and graduate towards a usable cleaned version of the data, which 
can then be saved and used in ongoing biological analyses. 
Cleansing of such data is complicated over and above simple error 
cleaning in that change or masking of the pedigree structure may 
shift errors to new parts of the pedigree. Thus a branching history 
of data manipulations is kept to allow users to restore the data and 
visualisation to any of the previous states it has travelled through.  

Categories and Subject Descriptors 
H.5.2. [Information Interfaces and Presentation]: User 
Interfaces – Graphical user interfaces (GUI)  

General Terms 
Algorithms, Design, Human Factors 

Keywords 
Data wrangling, data cleansing, pedigree visualization 

1. INTRODUCTION 
Pedigree genotypes are datasets constructed from overlaying 
genetic marker data collected from a set of individuals onto the 
genealogy of that same set of individuals. With genetic 
inheritance, it follows that the values of offspring at any given 
marker should be inherited from their parents’ values for that 
marker. However, this naïve assumption about data quality is 
incorrect and errors abound in the data as offspring have values 
that cannot be traced to one or both of their parents. The reasons 
for these errors are many and varied, but the end result is that the 
data is rendered unreliable and invariably useless for downstream 
analyses. As such, there is a need to clean pedigree genotype data 
so that biologists can effectively use it in their work. 

2. RELATED WORK 
A recent direction in visualisation research has been the 
interactive visual transformation of data, which can include data 
cleaning as one of the goals. Kandel et al’s [1] Wrangler is a 

framework that allows users to visually specify transformations on 
data sets to improve data quality, which has various advantages 
over manual cleaning such as re-use of scripts and speed of 
operation. Bilgic et al’s [2] more specific application attempts to 
clean data in social networks i.e. merge instances that refer to the 
same person (i.e. “j.smith” vs. “John Smith”) or, conversely, to 
mark similar names as distinct entities. Our work is more in the 
vein of this latter approach as we have a well-specified data 
domain with a central overarching task – remove errors from the 
data – with no requirement for any other data transformation. 
The concepts of missing and erroneous data, though united under 
the umbrella term of “uncertainty data” [3], can be seen as having 
somewhat opposing attributes. Erroneous data is present and 
definitely wrong, whereas missing data is absent and therefore we 
cannot know if it is wrong or not. Existing research into specific 
techniques for uncertainty visualisation [4] tends to concentrate on 
how to communicate uncertainty parameters and provenance 
information attached to data rather than data that is clearly wrong. 

3. METHOD 
3.1 Problem Description 
Table 1. A small matrix of individuals vs. markers. Incorrect 
states are highlighted in red. 

 M1 M2 M3 M4 M5 Errors 
I1      1 
I2      3 
I3      1 
I4      1 
I5      0 
Errors 1 1 3 0 1 6 

A small example data set is shown in Table 1 as a matrix of 
individuals against markers, where each cell represents a genotype 
- the value an individual for a particular marker. Markers can vary 
in type, but the industry standard are SNP (Single Nucleotide 
Polymorphism) markers, each of which consist of a single base-
pair represented by a pair of letters from the {G,T,C,A} set. 
Adding up the errors in the columns and rows gives the errors per 
individual and per marker for the data set. While this method of 
representation gives an overview of the data set that is useful for 
describing the problem, and indeed mirrors the solution found in 
[5], it falls down when presented with real world data sets as it 
cannot a) show the pedigree structure of the individuals or b) 
handle in a visually compact representation the amounts of 
markers present in real-world data sets. It is worth noting that 
when this project started, the biologists envisaged future data sets 
as having up to 10,000 markers – they recently received a data set 
with 250,000 markers.  
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3.2 Interface Description 
The interface to our data cleansing tool and its main constituent 
components are shown in Figure 1, and described in more detail in 
our previous work [6]. Unsurprisingly, given the possible size of 
these data sets, and specifically the number of markers, the 
interface uses aggregations over the marker and individual sets. 
The histograms (a) show the distribution of errors per marker or 
per individual, either upon load (the initial state as in the first two 
histograms) or after user applied cleaning (the current state is 
shown per individual in the third histogram). The histograms tend 
to display a typical long tail effect, where most individuals and 
markers have few or no errors, while a handful have many. 
In the bottom half of the interface, a pedigree sandwich view (b) 
[6] shows relationships between offspring and their parents in 
each generation. The two tables (c) to the right of the sandwich 
view give detailed information on errors for every individual and 
marker in the data set, sub-dividing errors into types (to sire, dam, 
and novel alleles). Missing data is subdivided into incomplete – 
missing in the initial data set – and masked – data deliberately 
hidden by the user to remove an error. Selecting a marker in the 
table switches the application into single marker view, showing 
only the errors and maskings for that particular marker. Individual 
markers can also be masked through this table. A branching 
history widget (d) allows restoration of previous states, essential 
to an exploratory interaction with the data. 
Additionally, at the top of the interface an info bar displays 
statistics about the data including the count of genotypes currently 
in error. These views are coordinated in a typical multiple view 
fashion (the one exception being the initial histogram data view). 
Two user-defined hues are used to convey a) erroneous and b) 
masked/incomplete data - in the figures we consistently use red 
for error and blue for masked/missing values. As the error 
cleaning progresses, the amount of error hue in the interface 
should decrease, to a target of disappearing altogether, whereas 
the second hue will gradually come to the fore as more and more 
data points are masked and flagged as unknown values. 

3.3 Data Cleaning Operators 
Error removal in pedigree genotype data means to mask erroneous 
data points i.e. to change data from definitely wrong to an 
unknown state. In essence, we say “we don’t know what it is, but 
it’s definitely not that.” Whereas out-and-out errors are generally 
fatal to any further downstream analyses, unknown data points 
can be effectively handled by inferring across the lack of data; 
algorithms used in pedigree genotype analysis can skip across the 
missing points in the pedigree structure and attempt to match up 
the data on either side. So, the aim isn’t to try and deduce what the 
wrong data should be, but simply to remove the effect it has on 
analyses. Generally there is enough correct information left after 
error cleaning that getting the correct data for every point is not 
necessary, and such an ideal often proves intractable in any case. 
Masking can take the form of several operations: 

1. Mask a marker 
2. Mask an individual 
3. Mask a genotype (marker/individual combo) 
4. Break a child/parent relationship in the pedigree. 

Markers may be removed or masked completely from analyses 
with no side effect on other markers. However, individuals are 
obviously related within a pedigree, and masking just one 
individual can have a range of side-effects, and those side-effects 
occur for every single marker that is layered on top of the 
pedigree. In fact, the operation to break a pedigree relationship 

was introduced to nullify pedigree errors which couldn’t be solved 
with the initial three operations. Often, and especially for pedigree 
errors, masking an individual or genotype just projects erroneous 
information through the masked individual onto its relations. In an 
obvious case, if a child is assigned to the wrong parent, then its 
own children in turn have been linked to the wrong grandparent. 
Of these four operators, one and four do not introduce further 
errors into the system, but two and three do introduce this 
possibility. All four operators may be carried out multiple times 
before a recalculation of the current error state is performed. 

3.4 Typical Error Removal 
The user interface, as seen in Figure 1, is laid out such that the 
tendency is for the user to first perform operations with the 
histograms at the top of the application window and move down 
to the pedigree sandwich component once troublesome markers 
have been removed. The rationale here is that portions of the data 
with typically large concentrations of error, such as bad markers, 
be removed before masking individuals and individual genotypes. 
After each masking or removal operation, the underlying error 
checking algorithm can recalculate the new error states, which the 
visualization then displays. Figure 2 shows a typical path through 
the interface when cleaning a pedigree genotype, consisting of 
four sub-tasks: mask bad markers, mask bad individuals (or break 
their pedigree relationships), iteratively mask genotypes on a per 
marker basis, and remove final sporadic errors. 

3.4.1 Mask bad markers with histograms 
The top histogram, showing initial errors across the marker set, 
has a slider that can be used to mask markers with excessively 
high levels of error, and this exclusion is reflected in all the 
components below it. This makes for a logical first step in the data 
cleaning process – as stated earlier, markers are independent of 
each other so removal of groups of whole markers does not 
introduce new errors into the data. This step usually removes a 
large proportion of the initially reported errors; in Figure 2 the 
first step of removing just 11 markers from a set of 207 has halved 
the number of reported errors. 
The second histogram now shows the remaining markers from the 
first histogram. The effect is akin to zooming in on the unfiltered 
histogram portion from the first histogram. The third histogram 
shows the distribution of current errors across the set of 
individuals, and will change according to what markers are 
currently omitted and which further masking operations are 
performed in the other components. Here, the slider doesn’t mask 
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Figure 1. The main components of the pedigree data cleaning 
application: a) histograms of error distribution, b) a pedigree 
sandwich view, c) error tables, and d) a history function. 



 

 
 

 
  

Figure 2. Workflow showing a typical path through the interface to clean an example pedigree genotype data set. (1) Bad markers 
are removed first, followed by (2) bad individuals via masking and breaking of parental relationships in the pedigree. (3) 
Remaining problem markers are iteratively dealt with in the single marker view. Finally (4) the “mask all remaining errors” 
functionality is used (in this case twice) to purge sporadic errors. The result is a data set with zero errors that can then be saved. 

Remove bad markers using 
slider in first histogram (a).  
Errors drop from 2,778 to 
1,279. 

Choose whether to mask the individuals or break their 
parental relationships through the context menu in the 
pedigree sandwich view. 
Errors drop from 1,279 to 416. 

Iterate through the worst markers in single marker 
mode. Mask relevant genotypes and apply 
recalculation. Use the history function if  actions do 
not have the intended effect. 
Errors drop from 416 to 170. 

Mask remaining sporadic errors. 
Zero errors remain. 
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but offers a quick visual filter: greying out any individuals with 
less than the slider’s threshold number of errors, and accentuating 
the most problematic individuals in the pedigree display. 

3.4.2 Mask bad individuals in sandwich view 
Once the most error-ridden markers have been discarded then a 
user can start cleaning individuals within the pedigree sandwich 
view. The most error-ridden individuals in this view will have 
deeper shades of the hue assigned to indicating error, but can be 
further identified by either: 
a) Using the grey cut-off slider in the individual histogram. 
b) Sorting the individual error table by number of errors and 

then selecting the top-most items in the list. This will 
highlight the corresponding individuals. 

c) Sorting the pedigree view itself by various error count 
metrics within each generation and then within each family. 

Once identified, selecting an individual brings up a context-
sensitive menu that allows a user to (un)mask individuals or 
whole families and also to break/restore an individual’s parental 
relationships. After a selection of pertinent maskings and broken 
relationships has been made then a recalculation is performed by 
selecting the option in the bar below the pedigree view. At step 2 
in Figure 2, after two individual maskings and two relationship 
removals, the errors have reduced further from 1,279 to 416. 
Previously, recalculation was automatic after every user operation 
but this caused slowdown when dealing with large data sets. Also, 
nullifying parental relationships causes the structure of the 
pedigree itself to change, which entails a change to the pedigree 
visualisation. This was found to be disconcerting when not 
specifically expected, so user feedback was to have recalculation 
happen on demand by the user. In Figure 2, the screenshot at step 
2 reveals that the two individuals who had paternity relationships 
broken have been reassigned to “null sire” as a parent, and the 
pedigree representation has changed accordingly. 

3.4.3 Mask bad genotypes, marker by marker 
Once bad markers and individuals have been dealt with, we need 
to remove errors on a per marker basis. Sorting the marker table 
by errors per marker allows efficient targeting of the most error-
ridden remaining markers. Selecting a marker here now switches 
the pedigree viewer to “single marker” mode, where only errors 
for that particular marker are shown, and the individuals can 
display genotype values for that particular marker. This often 
reveals blocks of error within the pedigree that can be tackled 
using minimal and judicious genotype masking – for instance a 
group of offspring all reporting errors can often all be solved by 
masking just one of the parent genotypes. It is notable that the 
masking is often not on data that is itself in error, but on a value 
that causes error in offspring. Iteratively tackling the worst 
remaining markers in this fashion gradually erodes the number of 
remaining errors; in the example in Figure 3 we reduce the count 
to around 170 by the end of this third step. 

3.4.4 Final clean 
There will usually remain a long tail of many markers with a few 
errors each, and a “Mask Remaining Errors” function is available 
to automatically mask these sporadic genotype errors. As 
displacement of error is often caused by genotype masking, a new 
set of errors is often the result of this function, so it may take 
multiple invocations to purge the data set completely of errors.  

3.4.5 Export 
The final step in the data cleaning process is to save the error-free 
versions of the data as separate pedigree and genotype data files. 

A log file of markers, individuals, genotypes and relationships 
that have been masked is also saved to the same directory. 

4. CONCLUSION 
Pedigree genotype data sets are often riddled with error, many of 
which depend on and are propagated by inheritance patterns 
within the pedigree structure. However, data cleaning solutions 
for these data sets have not focused on using a pedigree-centric 
resolution nor used aggregate views such as histograms to ease 
data cleaning efforts on the part of the user. Our system allows 
users to methodically remove erroneous data from such data sets 
starting with large blocks of error down to individual genotypes. 
The pedigree view provides users the ability to see errors in the 
context of the pedigree structure, enabling them to make informed 
decisions about which masking operations would be best suited to 
remove given areas of error. A history function and associated 
view allows actions to be undone, encouraging an exploratory 
“what-if?” approach to error removal within these datasets. 
The obvious question is why attempt interactive cleaning if we 
can clean the data set automatically? The answer is that an expert 
biologist can often spot places in the pedigree where a single 
operation can carry out the effect of many operations elsewhere in 
the structure, and also decide which operation makes sense in a 
given context and will not propagate errors. Also, if someone is to 
fundamentally change a dataset then they really need to know and 
understand what they’ve done to it beyond press a button. All of 
which is beyond a current automatic masking function. 
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