
Redeeming Pedigree Data with an Interactive Error
Cleaning Visualisation

Martin Graham, Jessie Kennedy
Edinburgh Napier University

10 Colinton Road
Edinburgh, EH10 5DT, UK

+44 (0)131 455 2749

{m.graham, j.kennedy}@napier.ac.uk

Trevor Paterson, Andy Law
Roslin Institute, University of Edinburgh

Easter Bush
Midlothian, EH25 9RG, UK

+44 (0)131 651 9154

{trevor.paterson, andy.law}@roslin.ac.uk

ABSTRACT

We describe a visual data cleansing application for pedigree
genotype data, which is used to redeem otherwise unusable
pedigree data sets. Biologists and bioinformaticians dynamically
and iteratively mask pieces of information from a dirty data set
and graduate towards a usable cleaned version of the data, which
can then be saved and used in ongoing biological analyses.
Cleansing of such data is complicated over and above simple error
cleaning in that change or masking of the pedigree structure may
shift errors to new parts of the pedigree. Thus a branching history
of data manipulations is kept to allow users to restore the data and
visualisation to any of the previous states it has travelled through.

Categories and Subject Descriptors
H.5.2. [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces (GUI)

General Terms
Algorithms, Design, Human Factors

Keywords
Data wrangling, data cleansing, pedigree visualization

1. INTRODUCTION
Pedigree genotypes are datasets constructed from overlaying
genetic marker data collected from a set of individuals onto the
genealogy of that same set of individuals. With genetic
inheritance, it follows that the values of offspring at any given
marker should be inherited from their parents’ values for that
marker. However, this naïve assumption about data quality is
incorrect and errors abound in the data as offspring have values
that cannot be traced to one or both of their parents. The reasons
for these errors are many and varied, but the end result is that the
data is rendered unreliable and invariably useless for downstream
analyses. As such, there is a need to clean pedigree genotype data
so that biologists can effectively use it in their work.

2. RELATED WORK
A recent direction in visualisation research has been the
interactive visual transformation of data, which can include data
cleaning as one of the goals. Kandel et al’s [1] Wrangler is a

framework that allows users to visually specify transformations on
data sets to improve data quality, which has various advantages
over manual cleaning such as re-use of scripts and speed of
operation. Bilgic et al’s [2] more specific application attempts to
clean data in social networks i.e. merge instances that refer to the
same person (i.e. “j.smith” vs. “John Smith”) or, conversely, to
mark similar names as distinct entities. Our work is more in the
vein of this latter approach as we have a well-specified data
domain with a central overarching task – remove errors from the
data – with no requirement for any other data transformation.
The concepts of missing and erroneous data, though united under
the umbrella term of “uncertainty data” [3], can be seen as having
somewhat opposing attributes. Erroneous data is present and
definitely wrong, whereas missing data is absent and therefore we
cannot know if it is wrong or not. Existing research into specific
techniques for uncertainty visualisation [4] tends to concentrate on
how to communicate uncertainty parameters and provenance
information attached to data rather than data that is clearly wrong.

3. METHOD
3.1 Problem Description
Table 1. A small matrix of individuals vs. markers. Incorrect
states are highlighted in red.

 M1 M2 M3 M4 M5 Errors
I1 1
I2 3
I3 1
I4 1
I5 0
Errors 1 1 3 0 1 6

A small example data set is shown in Table 1 as a matrix of
individuals against markers, where each cell represents a genotype
- the value an individual for a particular marker. Markers can vary
in type, but the industry standard are SNP (Single Nucleotide
Polymorphism) markers, each of which consist of a single base-
pair represented by a pair of letters from the {G,T,C,A} set.
Adding up the errors in the columns and rows gives the errors per
individual and per marker for the data set. While this method of
representation gives an overview of the data set that is useful for
describing the problem, and indeed mirrors the solution found in
[5], it falls down when presented with real world data sets as it
cannot a) show the pedigree structure of the individuals or b)
handle in a visually compact representation the amounts of
markers present in real-world data sets. It is worth noting that
when this project started, the biologists envisaged future data sets
as having up to 10,000 markers – they recently received a data set
with 250,000 markers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI ‘12, May 21-25, 2012, Capri Island, Italy.
Copyright © 2012 ACM 978-1-4503-1287-5/12/05…$10.00.

3.2 Interface Description
The interface to our data cleansing tool and its main constituent
components are shown in Figure 1, and described in more detail in
our previous work [6]. Unsurprisingly, given the possible size of
these data sets, and specifically the number of markers, the
interface uses aggregations over the marker and individual sets.
The histograms (a) show the distribution of errors per marker or
per individual, either upon load (the initial state as in the first two
histograms) or after user applied cleaning (the current state is
shown per individual in the third histogram). The histograms tend
to display a typical long tail effect, where most individuals and
markers have few or no errors, while a handful have many.
In the bottom half of the interface, a pedigree sandwich view (b)
[6] shows relationships between offspring and their parents in
each generation. The two tables (c) to the right of the sandwich
view give detailed information on errors for every individual and
marker in the data set, sub-dividing errors into types (to sire, dam,
and novel alleles). Missing data is subdivided into incomplete –
missing in the initial data set – and masked – data deliberately
hidden by the user to remove an error. Selecting a marker in the
table switches the application into single marker view, showing
only the errors and maskings for that particular marker. Individual
markers can also be masked through this table. A branching
history widget (d) allows restoration of previous states, essential
to an exploratory interaction with the data.
Additionally, at the top of the interface an info bar displays
statistics about the data including the count of genotypes currently
in error. These views are coordinated in a typical multiple view
fashion (the one exception being the initial histogram data view).
Two user-defined hues are used to convey a) erroneous and b)
masked/incomplete data - in the figures we consistently use red
for error and blue for masked/missing values. As the error
cleaning progresses, the amount of error hue in the interface
should decrease, to a target of disappearing altogether, whereas
the second hue will gradually come to the fore as more and more
data points are masked and flagged as unknown values.

3.3 Data Cleaning Operators
Error removal in pedigree genotype data means to mask erroneous
data points i.e. to change data from definitely wrong to an
unknown state. In essence, we say “we don’t know what it is, but
it’s definitely not that.” Whereas out-and-out errors are generally
fatal to any further downstream analyses, unknown data points
can be effectively handled by inferring across the lack of data;
algorithms used in pedigree genotype analysis can skip across the
missing points in the pedigree structure and attempt to match up
the data on either side. So, the aim isn’t to try and deduce what the
wrong data should be, but simply to remove the effect it has on
analyses. Generally there is enough correct information left after
error cleaning that getting the correct data for every point is not
necessary, and such an ideal often proves intractable in any case.
Masking can take the form of several operations:

1. Mask a marker
2. Mask an individual
3. Mask a genotype (marker/individual combo)
4. Break a child/parent relationship in the pedigree.

Markers may be removed or masked completely from analyses
with no side effect on other markers. However, individuals are
obviously related within a pedigree, and masking just one
individual can have a range of side-effects, and those side-effects
occur for every single marker that is layered on top of the
pedigree. In fact, the operation to break a pedigree relationship

was introduced to nullify pedigree errors which couldn’t be solved
with the initial three operations. Often, and especially for pedigree
errors, masking an individual or genotype just projects erroneous
information through the masked individual onto its relations. In an
obvious case, if a child is assigned to the wrong parent, then its
own children in turn have been linked to the wrong grandparent.
Of these four operators, one and four do not introduce further
errors into the system, but two and three do introduce this
possibility. All four operators may be carried out multiple times
before a recalculation of the current error state is performed.

3.4 Typical Error Removal
The user interface, as seen in Figure 1, is laid out such that the
tendency is for the user to first perform operations with the
histograms at the top of the application window and move down
to the pedigree sandwich component once troublesome markers
have been removed. The rationale here is that portions of the data
with typically large concentrations of error, such as bad markers,
be removed before masking individuals and individual genotypes.
After each masking or removal operation, the underlying error
checking algorithm can recalculate the new error states, which the
visualization then displays. Figure 2 shows a typical path through
the interface when cleaning a pedigree genotype, consisting of
four sub-tasks: mask bad markers, mask bad individuals (or break
their pedigree relationships), iteratively mask genotypes on a per
marker basis, and remove final sporadic errors.

3.4.1 Mask bad markers with histograms
The top histogram, showing initial errors across the marker set,
has a slider that can be used to mask markers with excessively
high levels of error, and this exclusion is reflected in all the
components below it. This makes for a logical first step in the data
cleaning process – as stated earlier, markers are independent of
each other so removal of groups of whole markers does not
introduce new errors into the data. This step usually removes a
large proportion of the initially reported errors; in Figure 2 the
first step of removing just 11 markers from a set of 207 has halved
the number of reported errors.
The second histogram now shows the remaining markers from the
first histogram. The effect is akin to zooming in on the unfiltered
histogram portion from the first histogram. The third histogram
shows the distribution of current errors across the set of
individuals, and will change according to what markers are
currently omitted and which further masking operations are
performed in the other components. Here, the slider doesn’t mask

aa)) EErrrroorr HHiissttooggrraammss

bb)) PPeeddiiggrreeee VViieeww

cc))
EE rr rr oo rr TT aa bb ll ee ss

dd)) CClleeaanniinngg HHiissttoorryy

Figure 1. The main components of the pedigree data cleaning
application: a) histograms of error distribution, b) a pedigree
sandwich view, c) error tables, and d) a history function.

Figure 2. Workflow showing a typical path through the interface to clean an example pedigree genotype data set. (1) Bad markers
are removed first, followed by (2) bad individuals via masking and breaking of parental relationships in the pedigree. (3)
Remaining problem markers are iteratively dealt with in the single marker view. Finally (4) the “mask all remaining errors”
functionality is used (in this case twice) to purge sporadic errors. The result is a data set with zero errors that can then be saved.

Remove bad markers using
slider in first histogram (a).
Errors drop from 2,778 to
1,279.

Choose whether to mask the individuals or break their
parental relationships through the context menu in the
pedigree sandwich view.
Errors drop from 1,279 to 416.

Iterate through the worst markers in single marker
mode. Mask relevant genotypes and apply
recalculation. Use the history function if actions do
not have the intended effect.
Errors drop from 416 to 170.

Mask remaining sporadic errors.
Zero errors remain.

1.

2.
3.

4.

a
 b
 c

but offers a quick visual filter: greying out any individuals with
less than the slider’s threshold number of errors, and accentuating
the most problematic individuals in the pedigree display.

3.4.2 Mask bad individuals in sandwich view
Once the most error-ridden markers have been discarded then a
user can start cleaning individuals within the pedigree sandwich
view. The most error-ridden individuals in this view will have
deeper shades of the hue assigned to indicating error, but can be
further identified by either:
a) Using the grey cut-off slider in the individual histogram.
b) Sorting the individual error table by number of errors and

then selecting the top-most items in the list. This will
highlight the corresponding individuals.

c) Sorting the pedigree view itself by various error count
metrics within each generation and then within each family.

Once identified, selecting an individual brings up a context-
sensitive menu that allows a user to (un)mask individuals or
whole families and also to break/restore an individual’s parental
relationships. After a selection of pertinent maskings and broken
relationships has been made then a recalculation is performed by
selecting the option in the bar below the pedigree view. At step 2
in Figure 2, after two individual maskings and two relationship
removals, the errors have reduced further from 1,279 to 416.
Previously, recalculation was automatic after every user operation
but this caused slowdown when dealing with large data sets. Also,
nullifying parental relationships causes the structure of the
pedigree itself to change, which entails a change to the pedigree
visualisation. This was found to be disconcerting when not
specifically expected, so user feedback was to have recalculation
happen on demand by the user. In Figure 2, the screenshot at step
2 reveals that the two individuals who had paternity relationships
broken have been reassigned to “null sire” as a parent, and the
pedigree representation has changed accordingly.

3.4.3 Mask bad genotypes, marker by marker
Once bad markers and individuals have been dealt with, we need
to remove errors on a per marker basis. Sorting the marker table
by errors per marker allows efficient targeting of the most error-
ridden remaining markers. Selecting a marker here now switches
the pedigree viewer to “single marker” mode, where only errors
for that particular marker are shown, and the individuals can
display genotype values for that particular marker. This often
reveals blocks of error within the pedigree that can be tackled
using minimal and judicious genotype masking – for instance a
group of offspring all reporting errors can often all be solved by
masking just one of the parent genotypes. It is notable that the
masking is often not on data that is itself in error, but on a value
that causes error in offspring. Iteratively tackling the worst
remaining markers in this fashion gradually erodes the number of
remaining errors; in the example in Figure 3 we reduce the count
to around 170 by the end of this third step.

3.4.4 Final clean
There will usually remain a long tail of many markers with a few
errors each, and a “Mask Remaining Errors” function is available
to automatically mask these sporadic genotype errors. As
displacement of error is often caused by genotype masking, a new
set of errors is often the result of this function, so it may take
multiple invocations to purge the data set completely of errors.

3.4.5 Export
The final step in the data cleaning process is to save the error-free
versions of the data as separate pedigree and genotype data files.

A log file of markers, individuals, genotypes and relationships
that have been masked is also saved to the same directory.

4. CONCLUSION
Pedigree genotype data sets are often riddled with error, many of
which depend on and are propagated by inheritance patterns
within the pedigree structure. However, data cleaning solutions
for these data sets have not focused on using a pedigree-centric
resolution nor used aggregate views such as histograms to ease
data cleaning efforts on the part of the user. Our system allows
users to methodically remove erroneous data from such data sets
starting with large blocks of error down to individual genotypes.
The pedigree view provides users the ability to see errors in the
context of the pedigree structure, enabling them to make informed
decisions about which masking operations would be best suited to
remove given areas of error. A history function and associated
view allows actions to be undone, encouraging an exploratory
“what-if?” approach to error removal within these datasets.
The obvious question is why attempt interactive cleaning if we
can clean the data set automatically? The answer is that an expert
biologist can often spot places in the pedigree where a single
operation can carry out the effect of many operations elsewhere in
the structure, and also decide which operation makes sense in a
given context and will not propagate errors. Also, if someone is to
fundamentally change a dataset then they really need to know and
understand what they’ve done to it beyond press a button. All of
which is beyond a current automatic masking function.

5. ACKNOWLEDGMENTS
We would like to thank the UK BBSRC (Biotechnology and
Biological Sciences Research Council) for funding this project.

6. REFERENCES
[1] Kandel, S., Paepcke, A., Hellerstein, J. and Heer, J. 2011.

Wrangler: Interactive Visual Specification of Data
Transformation Scripts. In Proceedings of the ACM Human
Factors in Computing Systems (Vancouver, Canada, May 07-
12, 2011). CHI '11. ACM, 3363-3372. DOI=
http://doi.acm.org/10.1145/1978942.1979444.

[2] Bilgic, M., Licamele, L., Getoor, L. and Shneiderman, B.
2006. D-Dupe: An Interactive Tool for Entity Resolution in
Social Networks. In Proceedings of the IEEE Symposium on
Visual Analytics Science and Technology (Baltimore, USA,
October 31 - November 02, 2006). VAST '06. IEEE, 43-50.
DOI= http://dx.doi.org/10.1109/VAST.2006.261429.

[3] Griethe, H. and Schumann, H. 2006. The Visualization of
Uncertain Data: Methods and Problems. In Proceedings of
the Simulation und Visualisierung 2006 (Magdeburg,
Germany, March 02-03, 2006). SimVis '06. SCS, 143-156.

[4] Sanyal, J., Zhang, S., Bhattacharya, G., Amburn, P. and
Moorhead, R. J. 2009. A User Study to Compare Four
Uncertainty Visualization Methods for 1D and 2D Datasets.
IEEE T. Vis. Comput. Gr. 15, 6 (November 2009), 1209-
1218. DOI= http://dx.doi.org/10.1109/TVCG.2009.114

[5] Paterson, T. and Law, A. 2011. GenotypeChecker: An
interactive tool for checking the inheritance consistency of
genotyped pedigrees. Animal Genetics. 42, 5(2011), 560-562.
DOI= http://dx.doi.org/10.1111/j.1365-2052.2011.02183.x.

[6] Graham, M., Kennedy, J., Paterson, T. and Law, A. 2011.
Visualising Errors in Animal Pedigree Genotype Data.
Comput. Graph. Forum. 30, 3 (June 2011), 1011-1020. DOI=
http://dx.doi.org/10.1111/j.1467-8659.2011.01950.x.

http://dx.doi.org/10.1109/VAST.2006.261429�
http://dx.doi.org/10.1109/TVCG.2009.114�
http://dx.doi.org/10.1111/j.1365-2052.2011.02183.x�
http://dx.doi.org/10.1111/j.1467-8659.2011.01950.x�

	1. INTRODUCTION
	2. RELATED WORK
	3. METHOD
	3.1 Problem Description
	Interface Description
	3.3 Data Cleaning Operators
	3.4 Typical Error Removal
	3.4.1 Mask bad markers with histograms
	3.4.2 Mask bad individuals in sandwich view
	3.4.3 Mask bad genotypes, marker by marker
	3.4.4 Final clean
	3.4.5 Export

	4. CONCLUSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES

