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Gregarine apicomplexans are closely related to parasites such as Plasmodium,
Toxoplasma, and Cryptosporidium, which are causing severe health and
economic burdens. Colonizing only invertebrates and having no obvious medical
relevance, they are mostly ignored in ‘omics’ studies, although gregarines are the
most basal apicomplexans and therefore key players in the understanding of the
evolution of parasitism in the Apicomplexa from free-living ancestors. They be-
long to the largest exclusively parasitic phylum, but is this perception actually
true? The effects of gregarines on their hosts seem to cover the whole spectrum
of symbiosis from mutualistic to parasitic. We suggest future research directions
to understand the evolutionary role of gregarines, by elucidating their biology
and interaction with their hosts and the hosts’ microbiota.

Parasitism in the Apicomplexa

The phylum Apicomplexa contains unicellular parasites (currently more than 6000 named
species) and is well known for its notorious pathogens of humans and livestock, such as
Plasmodium (causative agent of malaria; mainly infecting humans, humanoids), Toxoplasma
(toxoplasmosis; humans, cats), Eimeria (eimeriosis; poultry, cattle, ruminants), Theileria
(theileriosis; cattle), Babesia (babesiosis; cattle, humans); Isospora (isosporiasis; humans),
Cyclospora (cyclosporiasis; dogs, humans), and Cryptosporidium (cryptosporidiosis; humans,
most livestock). These pathogens are of great public health concern and economic relevance,
and they affect millions of people each year [1]. They all have intracellular life stages with the
exception of Cryptosporidium [2], which has intracellular and extracytoplasmic stages [3,4].
Apicomplexans infect both invertebrates and vertebrates and have complex life cycles that dif-
fer considerably between the abovementioned groups [5] (Figure 1). Most of these life cycles
involve at least two host species (i.e., a heteroxenous life cycle) (see Glossary). The
apicomplexan clade is referred to in publications and textbooks as the largest phylum of
eukaryotes that consists of obligate parasitic (Box 1) species only; but is this assumption really
true for all apicomplexan species?

The Gregarines

Within the apicomplexans, gregarines are a unique subgroup that infects a wide range of fresh-
water, marine, and terrestrial invertebrates (almost exclusively). Different views concerning the
taxonomy of the gregarines are emerging [6,7], but comprehensive evidence for a reliable overall
taxonomic review is still missing. The latest review of eukaryotes still refers to the historic major
groups Archigregarinorida, Eugregarinorida, and Neogregarinorida, mainly based on habitat,
host range, and trophozoite morphology, to which is added the Cryptogregarinorida to accom-
modate Cryptosporidium [8] (Figure 1). Archigregarines are the most ancestral group, with a
mix of ancestral and derived features, occurring in marine habitats only. Eugregarines can be
found in marine, freshwater, and terrestrial habitats with large trophozoites that are morphologi-
cally different from the infective sporozoites. Neogregarines have reduced trophozoites and infect
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ally have beneficial effects on their hosts.
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only terrestrial, primarily insect, hosts. Archigregarines infect the intestines, while eugregarines are
found in the intestines, coeloms, and reproductive vesicles, and neogregarines infect mainly the
host tissues [9-11]. Apart from the vertebrate-infecting Cryptogregarinorida, the other three
groups can be found in most invertebrates that have been investigated so far, including commer-
cially important species and genera such as Apis mellifera (honey bee), Crassostrea spp.
(oysters), Litopenaeus spp. (shrimps) [12-14]. More than 95% of described species on earth
are invertebrates and therefore potential, but yet to be investigated, hosts for gregarines. With
the assumption that, for example, millions of arthropod species have not yet been described
[15], the sheer number of potential gregarine species lies in the millions [16,17] as gregarines
tend to be very host-specific (e.g., Psychodiella spp. and their respective sand fly hosts [18];
diverse eugregarine species in cockroaches [19]) or sometimes even host’s life-stage-specific
(different Gregarina species in life stages of the mealworm beetle [20]). The life cycles of grega-
rines differ significantly from most of the other apicomplexans as they generally utilize only one
host organism (monoxenous life cycle), but some exceptions do exist (e.g., Nematopsis spp.
infecting crustaceans using mollusks as intermediate hosts). Nematopsis is also the only genus
that has been reported from frog tadpoles [21], which is currently the first and only case of a
eugregarine infecting a vertebrate host. Sexual and asexual cycles are extracellular in the
single-host organism, which could be any invertebrate, setting the gregarines apart from the
apicomplexans infecting vertebrates (for review see [11]; Figure 2, Key Figure). Gregarines have
been identified in most invertebrate taxa [11], but intriguingly, they are yet to be discovered in
rotifers and nematodes. It is worth mentioning that gregarines do also play a part in hyperparasit-
ism. Gregarines infecting marine invertebrates are hosts to about 30 different species of
Microsporidia in seven genera [11]. In contrast, only a few species of hyperparasitic gregarines
have been reported. For example, the marine eugregarine Monocystella batis has been
described from a rhabdocoel turbellarian parasitizing the Crown of Thorns starfish [22], and the
terrestrial eugregarine Steinina ctenocephali infects the cat flea [23].
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Glossary

Bacteriome: the combined genomes
of all bacterial species that exist on or
inside a living organism.
Heteroxenous: refers to the life cycle of
a parasite that involves at least two
different host species.

Microbiome: the combined genomes
of all microbes [bacteria (bacteriome),
eukaryotic microbes/protozoa
(eukaryome), fungi (mycobiome) and
viruses (virome)] that exist on or inside a
living organism.

Microbiota: the microbial taxa that
exist in a specific environment (e.g., the
human gut).

Monoxenous: refers to the life cycle of
a parasite that has only a single host.
Mutualism: interaction between two or
more different organisms, where each of
them benefits from this relationship.
Parasitism: a relationship between two
different organisms in which one benefits
at the expense of the other.
Symbiosis: interaction between two or
more different organisms existing in
close physical association.

Genus Order Subclass Class Intermediate hosts Definitive hosts
Gregarina Eugregarinorida insects
Mattesia Neogregarinorida . insects
—— Gregarinasina - - -
Cryptogregarinorida mammals, birds, reptiles, fishes
) - — . none - -
Selenidium Archigregarinorida Conoidasida polychaetes, sipunculids
Siedleckia Blastogregarinea polychaetes
. L - vertebrates
B Eimeriorina Coccidia -
vertebrates felines
Nephromyces Nephromycida none tunicates
vertebrates ticks
Piroplasmorida Aconoidasida -
vertebrates ticks
Haemospororida vertebrates mosquitoes
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Figure 1. Simplified Phylogeny of Apicomplexans, Their Taxonomy, and Host Associations. The class Aconoidasida is comprised of the subclasses
Haemospororida (e.g., Plasmodium), Piroplasmorida (e.g., Babesia, Theileria), and Nephromycida (e.g., Nephromyces). Three subclasses are also contained in the
Conoidasida, the Coccidia (e.g., Eimeria, Toxoplasma), Gregarinasina (e.g., Selenidium, Gregarina, Mattesia, Cryptosporidium), and Blastogregarinea (e.g., Siedleckia).
The Gregarinasina are the most basal in the apicomplexan tree. Most of the gregarines exemplified here by the genera Gregarina, Selenidium, and Mattesia are
monoxenous, infecting only one invertebrate host. Cryptosporidium is also monoxenous, but it infects vertebrates. The position of the monoxenous, polychaete-
infecting, Blastogregarinea (e.g., Siedleckia) is also basal, but not yet fully resolved. In the Coccidia, Eimeria is monoxenous, infecting vertebrates, while Toxoplasma is
heteroxenous, using vertebrates as intermediate hosts and primarily felines as their final hosts. The Nephromycida are branching off at the base; they are monoxenous
and infect only ascidians, predominantly of the genus Molgula. Babesia and Theileria represent the Piroplasmorida. They are both heteroxenous with different
vertebrates as intermediate hosts, but both use ticks as their final hosts. The Haemospororida are heteroxenous with, for example, Plasmodium infecting humans as
intermediate hosts and the mosquito as the final host. Colours in the schematic phylogenetic tree represent the spectrum from extracellular (light orange) to intracellular
(red) parasitism.

2 Trendsin Parasitology, Month 2019, Vol. xx, No. xx



Trends in Parasitology Ce“
REVIEWS

Box 1. What Is Parasitism?

With the ongoing debate of what parasitism actually is [56], and if all parasites are harmful, we could provide a plethora of
definitions of parasitism that range from anything that lives in and nourishes from another organism [65] to all varieties of
interspecific associations in a gradient of interdependence [66]. In a way, it depends on how specific terms to describe
these interspecific relationships are used. On the one hand you can say that commensalism, mutualism, and parasitism
are forms of symbiosis according to the definition of de Bary [67]. On the other hand parasitism could be used as the overall
term describing an interspecific relationship without any implication of pathogenicity or benefit to one or both partners in
that relationship [68], which would make the terms parasitism and symbiosis interchangeable. The determination of any
specific cut-off points for the terms mutualism, commensalism, and parasitism in their classical sense is difficult, as their
boundaries are plastic, within a gradient between the two most extreme forms [66]. We have used the term parasitism here
as the parasite causing some form of harm to its host organism in order to tackle a major gap in the understanding of the
evolution of parasitism in a major parasitic clade of public health concern. With the advancement of new techniques and
the necessity of universal drug targets for devastating diseases, the opportunity arises now for scientists to join forces to
address current shortcomings using our recommended approaches for a comprehensive understanding of the evolution
of parasitism in the apicomplexans.

Evidence of the Huge Diversity of Gregarines in Various Habitats

Recent metagenomic (metabarcoding) studies exploring the eukaryotic diversity in marine and
terrestrial ecosystems have shown high diversity and dominance of apicomplexan parasites,
specifically infecting invertebrates [24,25]. These observations support previous claims of high
gregarine diversity, with millions of new species still to be discovered, making it one of the most
diverse groups of eukaryotes [16,17]. For example, Mahe et al. [24] used a combination of
metabarcoding and phylogeny-aware cleaning steps on samples from neotropical rainforests,
demonstrating that gregarines were the predominant species (~80%) in soil. The high gregarine
abundance was not a surprise, based on the extreme diversity of invertebrates (especially insects)
in these areas. The authors suggested that gregarine infections could be a major limiting factor for
host population growth that could otherwise become locally abundant/dominant [24], contribut-
ing to the high animal (invertebrate) diversity in these forests. While this is a valid assumption, it

Key Figure
The Symbiotic Spectrum towards Intracellular Parasitism in Apicomplexans
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Figure 2. The cartoon depicts the major roles of organisms closely related to or within the apicomplexans on a spectrum from free-living to intracellular parasitism (green to
red colouring of the spectrum). Colpodella is a free-living, heterotrophic species closely related to the apicomplexans and a voracious predator of other free-living single-
celled eukaryotes. Vitrella is the closest known green, and Chromera is the closest known brown phototrophic relative to apicomplexans; both are associated with corals.
As discussed, gregarines, exemplified here as Gregarina spp., cover a wide symbiotic spectrum, from mutualists, via commensals to parasites, and thus appear as
intermediates in this spectrum. Cryptosporidium, now considered a gregarine, expands the spectrum as this organism is an intracellular and extracytoplasmic parasite,
and lastly Plasmodium as the ultimate intracellular parasite.
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does not fundamentally explain the high gregarine diversity in comparison to the number of
arthropods. Due to the host-specificity of gregarines [19], it is expected that a different gregarine
species resides within each arthropod species, and the huge diversity and number of gregarine
species reflect the successful coevolution of gregarines and their hosts [26]. Thus, an alternative
explanation of these results is that gregarines are not all parasitic, but that some are rather part
of the host’s natural flora (microbiota), not causing any severe harm, and potentially contributing
to the host’s fithess. Therefore, in our opinion, gregarines represent the whole spectrum of
symbiosis, between the boundaries of mutualism and parasitism, representing the stepwise
adaptations of the (intracellular) parasitic life style of the crown apicomplexans (Figure 2).

What Is the Actual Life Strategy of Gregarines?

Gregarine infections are generally considered benign, unless the numbers of gregarines become
large enough to impede passage of food through the host’s gut [27,28]. Several reports have
discussed potential negative effects of the presence of gregarines in host organisms, including
reduced longevity and growth, increased mortality, and nutrient deficiency (see Table S1 in the
supplemental information online). Most of these reports are focused on terrestrial invertebrates,
while hardly anything is known about aquatic invertebrates except for some ascidians [28],
bivalves such as oysters [29], or scallops [30] and crustaceans [14]. The effects range from
high mortalities in ascidians [28] to negligible effects in bivalves [30]. In vitro experiments in insects
have suggested that the number of gregarines can affect, for example, the overall flight perfor-
mance and mating success of dragonflies [31], increase adult mortality and inhibit ovarian and
fat body development in the western corn rootworm [32], mortality of immature sand fly stages
and a negative effect on the survival of adult males and females [33]. Due to these negative effects
on hosts that can be either disease vectors or pests, the potential of gregarines as biological con-
trol agents has been discussed [33,34], but their usefulness is often questioned by the authors. It
has also been shown that gregarines can have positive effects (Table S1) on their host’s develop-
ment, fitness, and longevity [35]. Sumner [36] suggested that gregarines are even essential for the
growth of mealworm beetle larvae. Bollatti and Ceballos [37] showed that pseudoscorpions sur-
vived longer when they carried high gregarine loads, compared to the group with low gregarine
loads, but overall, they suggested a commensalistic relationship. According to a study by
Kaunisto et al. [38], homozygous individuals of damselflies harboured more parasites, posing
potentially strong selection pressure against inbreeding and homozygosity. There are many
studies where no effect was reported. Klingenberg et al. [27] showed that even high loads of
gregarines in the midguts of water striders had no effect on growth and development time,
even under different rearing conditions. Another study found that gregarines had no effect on
field crickets’ weight, longevity, and fecundity, when fed ad libitum [39]. Significant effects were
present, though, when the field crickets were reared under suboptimal diets [39]. The rare de-
scription of a gregarine in a tadpole did report that there were no signs of disease or the impair-
ment of fitness or function due to the infection [21]. Gregarine infections do not necessarily occur
in isolation. Fellous and Koella [40], for example, looked at the detrimental effect of a coinfection
by two organisms (gregarine and microsporidium). They showed that it was not a fixed parame-
ter, but dependent on the epidemiological context and the quality of the host’s habitat.

Overall, we can claim that gregarines do cover the whole range of symbiotic relationships from
mutualistic to parasitic within their hosts (Figure 2). Switching between the various forms of
symbiotic relationships could be an option, depending on (extreme) environmental conditions
or certain cues from the host organism. Little is known about these shifts, but there are examples
of viruses and bacteria on an evolutionary level [41], as well as annelid and crayfish, where
the host—-symbiont cleaning relationship shifts due to a changing environment [42]. The
question remains why a few gregarines cause harm to, or have positive effects on, their hosts
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(see above), while (most) others seem to have none, and what does this mean from an evolution-
ary perspective?

Gregarines Can Elevate Our Understanding of Parasitism and Its Evolution in the
Apicomplexa

Recent phylogenetic studies have shown that gregarines, in particular the archigregarine group,
have a distinctive position, forming the paraphyletic stem-group of gregarines and potentially all
apicomplexans [9]. Still, most of the available phylogenies are based on 18S rRNA gene
sequences only. While the genomes of some of the crown apicomplexans (e.g., Plasmodium,
Toxoplasma), Cryptosporidium, as well as photosynthetic close relatives (e.g., Chromera, Vitrella)
have been published [43], there is close to no genomic information available for the gregarine
apicomplexans apart from a draft genome survey of the mosquito-inhabiting Ascogregarina
taiwanensis [44], and an expressed sequence tag study of the gametocyst development in
Gregarina niphandrodes from the mealworm beetle [45]. Consequently, most of the knowledge
on cellular characteristics of gregarines stems from ultrastructural studies based on transmission
and scanning electron microscopy [9,11]. So far, studies on gregarines are lacking aspects
considering their genetic make-up to better understand their biology, fit and role within
apicomplexans. The importance of these data has been shown in the newly discovered
‘corallicolids’, a basally branching apicomplexan lineage in corals [46]. The authors sequenced
the apicoplast (the nonphotosynthetic plastid in the apicomplexans) genome and revealed the
lack of genes encoding photosystem proteins, but the conservation of proteins for chlorophyll
synthesis, making them evolutionary intermediates between their free-living and parasitic relatives
[46]. There is evidence for an apicoplast on the cellular level for at least the archigregarines
[47,48], but no data are available yet on the molecular level for comparison.

While this is another step in the understanding of the transition from phototrophy to parasitism
(Figure 2), we need to survey the gregarines using a combination of ‘omics’ (genomics,
transcriptomics, proteomics) approaches on species from all three major orders, the archi-,
eu- and neogregarines to cover the whole spectrum of gregarine diversity in order to be able to
trail the evolutionary steps in parasitism throughout the apicomplexans. It will be important to de-
termine if, and potentially how, gregarines with different life strategies (mutualistic to parasitic)
have adapted their biology according to their host-niche and perceived role. As Cryptosporidium
has just recently been considered to belong to the gregarines taxonomically, it might be the ‘go
to’ model system to adopt key approaches in future gregarine research (Box 2).

Exploring the host’s microflora and the potential interactions between the microbiome and the
gregarines will be another way to understand how they influence the host’s gut and subsequently

Box 2. Cryptosporidium Status Quo

While we are discussing whether gregarines are true parasites in its classical sense here, we have to mention Cryptosporidium,
as this parasite has recently been suggested to be a gregarine [6,69]. The debate about the relationship between
Cryptosporidium and the gregarines has not been settled yet, and the current phylogenetic placement of the Crypto-
sporidia has two important implications: (i) parasitism of vertebrates in the apicomplexans might have evolved twice
(Figure 1), and (i) if this proves to be true, Cryptosporidium could be used as a model system to elucidate the biology
of gregarines. There have been rapid advancements in the methodological approaches [3] for the study of the para-
sites, including the development of an in vitro cell culturing system in cell lines [63] and organoids [70,71] along with
the development of genetic tools such as CRISPR/Cas9 [72] and small interfering RNA (siRNA) [73]. In addition, there
are several ‘omics’ methods that have been introduced including in vitro transcriptomics [74,75], proteomics [63,76],
metabolomics [60], and state-of-the art microscopy techniques [63], including immunomicroscopy [63,77], to under-
stand the invasion strategies and host-parasite interactions. These methods, though completely absent in the field of
gregarine research at the moment, should be easily transferrable and would allow the exploration of the symbiotic
state of gregarines.
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the host’s fithess. Many microbial eukaryotes, including Candida albicans [49], Entamoeba
histolytica [50], Giardia lamblia [51], Cryptosporidium [52], Tritrichomonas [53], and even more
extensively Blastocystis [54,55], have shown a distinct bacteriome, and potentially positive
influence [53], when one of the aforementioned eukaryotes was present (for review see [56]).
These eukaryotic microorganisms are known to cause diseases when the host becomes
immunocompromised, or if there are significant alterations in the host’s microbiome. It has
been suggested that these ‘pathogenic’ microorganisms could play an important role in shaping
the microflora, especially in the gut, and thus sustaining a host-microbiome balance [56]. For
instance, in humans, it has been observed that healthier individuals often harbour greater micro-
bial diversity [57,58], which was further correlated with the presence of microbial eukaryotic res-
idents [55,56]. Consistent with these observations, a connection between the host microbiome
and the prevalence of gregarines could also be possible. Invertebrates that harbour gregarine
species could have a more diverse microbiome, which might be shaped by the presence of the
gregarines, and future studies should explore this hypothesis. This would not only be a way to
explain the presence of gregarines in aimost every invertebrate species, but also their high infes-
tation rates in some hosts. Conversely, could the host’s microbiome drive the pathogenicity of
gregarines in their hosts?

Concluding Remarks

In summary, there is a clear association between gregarines and their hosts, leaning towards
a codependent relationship. Despite being quite neglected when it comes to elucidating the
evolution of parasitism in the Apicomplexa, gregarines form one of the most diverse groups of
eukaryotes and have an important position within the apicomplexan tree that will provide further
understanding of the evolution of parasitism within this clade. In our opinion, there is an urgent
need to utilize new methods to explore the genetic and cellular composition of gregarines to
identify properties that would allow the understanding of their relationship with, and selection
of, their hosts. The first priority will be to produce both genomic and transcriptomic data of diverse
members of the three orders of gregarines encompassing the whole spectrum of symbiosis
(highlighted in Table S1, e.g., Hoplorhynchus sp. in Boreal bluet with positive effects on host
and in Twelve-spotted skimmer with negative effects on host) and compare them with already
existing data from other apicomplexan parasites (especially Cryptosporidium species [59])
and free-living apicomplexan relatives such as Chromera and Vitrella spp. [43]. These studies
would identify the presence (if any) of factors related to the symbiotic adaptations of
gregarines (see Outstanding Questions). Follow-up studies using host gut metagenomics and
metatranscriptomics complemented with proteomics and metabolomics [3,60] to explore both
the host specificity and the microbiome of invertebrates harbouring these gregarine species
[61,62] would further elucidate the relationship and the roles of gregarines within their hosts
(see Outstanding Questions). Due to their unique host specificity, the major goal would be the
development of in vitro culturing systems based on invertebrate tissues. One of the go-to
candidate hosts would be the mealworm, since Gregarina spp. have mutualistic, commensalistic,
and parasitic effects on this host (Table S1). A long-term goal would be the development of an
in vitro and axenic (animal- and tissue-free) culturing system [63,64] that would further permit
the exploration of the basic cell and developmental biology of gregarines. Despite their impor-
tance, research on gregarines is progressing very slowly, and it will require researchers from
various disciplines to come together and provide their expertise in expanding our knowledge
on the evolution of parasitism in these microbes.
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Outstanding Questions

Why are gregarines the dominant
endosymbiotic species in invertebrate
hosts? What is their relationship with
their host, and how can they influence
the invertebrate biodiversity?

What triggers the host specificity
in gregarine species? How do
gregarines detect that they are in the
right host to start the excystation
process? Is the release of sporozoites
a random process, or is there any
form of control of the host’s fitness
involved? Could randomness explain
the pathogenic effects of certain
gregarine species in specific hosts,
while being uninfluential in others?

Is there interplay between gregarines
and intestinal microbiota within the
host? Do gregarines influence its
composition and diversity, or vice
versa, and how does this occur?

Are gregarines the missing piece of
the puzzle in our understanding
of the evolution of parasitism in
apicomplexans? If parasitism of
vertebrates in apicomplexans did
not evolve twice, is it possible that
gregarines have been overlooked in
vertebrate parasite surveys?

Is Cryptosporidium an actual gregarine,
or are the current morphological and
genomic evidence misguiding us?
Would its phylogenetic position and
relationships reshuffle when establishing
rigorous and comprehensive
phylogenomics analyses comprising
various gregarine sequences and
Cryptosporidium spp. data?
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