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Abstract—Nowadays home automation systems in-
tegrate many devices from security system, heating,
ventilation and air conditioning system, lighting system
or audio-video systems. Every time a new device is in-
stalled, problems with connecting it to other devices and
synchronization may appear. The technology trends are
to build more powerful and functional new autonomous
devices, rather than improve device synchronization,
data and functional distribution and adaptation to
changing environment. This paper highlights interoper-
ability problems in pervasive computing and presents a
solution for devices with limited processing capabilities
by use of an ontology for knowledge formulation and
semantic interoperability.

Index Terms—ontology, semantic interoperability,
knowledge representation.

I. INTRODUCTION

The number of electronic devices surrounding us
increases every day, many devices are already de-
ployed in the environment and are hidden from
peoples’ sight. Ongoing device miniaturization makes
it possible to manufacture smaller devices, therefore
more of them can be embedded in one space. A
network of many small devices requires a flexible
approach to pervasive configuration and management.

A well known problem in pervasive environments
is how to achieve interoperability between compo-
nents in the system. In distributed systems, there
are three classic interoperability levels: platform, pro-
gramming language and service interoperability [1].
Service interoperability divides further in to signa-
ture, protocol and semantic levels [1]. The signature
interoperability problems are associated with the syn-
tax of the interface of the service and are successfully
solved by popular language interface specifications
like CORBA’s IDL (Interface Definition Language)
[2] or WSDL (Web Service Definition Language)
[3]. Many network interoperability problems (at the
protocol level of interoperability) can be addressed
by Internet protocols, however these do not solve
interoperability problems on a semantic level [4].
When considering many multi-vendor devices and
components, solutions for semantic interoperability
based only on standards do not scale [5]; flexible and

updatable standards are needed.

A. Ontologies in Interoperability

An ontology is a representation of a set of con-
cepts, functions and relations between concepts [6].
Concepts are classes of entities existing in a do-
main, functions and relations are respectively one-
to-one and one-to-many properties existing in the
environment. An ontology, together with syntax and
semantics provides a language that is necessary for
proper communication. Building an ontology is a dif-
ficult task and because domains and language always
evolve it is impossible to state that the ontology
describes all possible concepts and relations in a
specific domain. Because an ontology can always
evolve and adapt to an ever-changing domain, it can
be a very flexible and up-to-date description of the
domain. Therefore an ontology can play the role of a
flexible standard and can be used to achieve semantic
interoperability.

It has been shown that interoperability can be
achieved by using an ontology in consumer elec-
tronics devices [7]. Another project, Sofia (Smart
Objects for Interactive Applications) [8], is targeted
to enable and maintain cross-industry interoperabil-
ity for smart spaces using a core ontology based
on Dolce [9] and domain ontologies. The approach
presented in this paper is an extension of both [7] and
Sofia concepts to create a pervasive environment with
interoperability at the semantic level and re-usable
knowledge representation based on an ontology. The
specific environment that this project is considering
is a network of very small, energy-frugal devices
with limited processing capability. Services that are
offered by these devices are simple, therefore it is
possible to represent them using an uncomplicated
knowledgebase drawn from an ontology.

B. Knowledge Representation and Ontology

In artificial intelligence (AI) domains a key to
building powerful and large systems is capturing
knowledge in a computer-readable form. Represent-
ing knowledge is a complex and time-consuming



task. Therefore knowledgebase construction remains
one of the biggest costs when constructing an AI
system [10]. Most complicated AI systems require
building a knowledgebase from scratch. An ontology
can offer a core structure for representing knowledge
and enables reuse of knowledgebases when designing
systems in similar domains. Neches [10] points out
that a knowledgebase should be constructed from
many levels of knowledge. These layers are increas-
ingly specialized, therefore layers’ division begins
with very general concepts, based on the ontological
model and finishes with very specialized and less
reusable knowledge [10]. Therefore a branch of an
ontology that is used for constructing knowledgebases
should consist of general (core), domain-specific and
device-specific concepts and relations. The knowl-
edgebase in a device or component should consist
only of necessary concepts, depending on a compo-
nent’s functions and domain as described in [7]. The
knowledgebase can be extended if new functionalities
or services appear. The most specialized part of
knowledgebase are instances and data associated with
a particular device or component.

C. Context-Aware Pervasive System

The solution for interoperability and knowledge
representation in the pervasive system presented in
this paper is based on building a knowledgebase
based on an ontology. It is important to fix the
ontology model, while the ontology content can be
changed when new classes and relationships appear.
The ontology can be modified by domain experts
and can be kept in a repository accessible by both
software and hardware manufacturers.

Because of the use of a common language
described by an ontology, the interoperability is
achieved on a semantic level [7]. Components from
the system use concepts that are provided by the
ontology, therefore understanding is achieved at a
high level of abstraction. This way it is possible
to build a context-aware system, that can represent
and share understanding of context. Context can be
associated with environment conditions, presence of
particular devices or people, or periods and events
associated with a calendar. Context-aware systems
benefit from well defined context, and as every device
or component understands how the context influences
its own domain, the system can produce emergent
behavior.

In pervasive computing a smart space is understood
as a cloud of devices existing and cooperating in
this space. In an architecture described in [7] all
configurations between devices are established auto-
matically, data and functionalities are distributed and
available for different devices to enable cooperation.
Devices can appear or disappear from a particular
space at any time, so devices have to be able to work
autonomously or form subnetworks called virtual

devices [7]. A device can participate in many virtual
devices; virtual devices are created for a particular
task and can be destroyed if a different configuration
is requested. A virtual device can be created by a
user request or some scheduled task. Devices can join
or leave a virtual device at any time; this operation
can influence the behavior of a virtual device. The
way a virtual device is formed is described in the
knowledgebase by use of a list of actions to perform.
Devices can use any protocol to form a virtual device,
the protocol specification is described in a device’s
knowledgebase. Therefore depending on configura-
tion, a device will have clear instructions how to react
to a message from a particular protocol.

II. KNOWLEDGEBASE STRUCTURE

A knowledgebase consists of layers of knowledge
(Figure 1). Layers are divided into T-Box and A-Box.
T-Box consists of class taxonomy and property defi-
nitions that we name in this paper ontology models,
like Dolce [9] or any other upper ontology, A-Box
contains instances corresponding to classes described
in T-Box.

Fig. 1. Layered structure of a knowledgebase.

The top level of the knowledgebase is a meta
model of the core ontology. The meta model of the
ontology has to be fixed, this project is following
the Sofia approach by choosing Dolce as a core
ontology. Dolce is an upper ontology that addresses
very general domains [9]. The next layer in Figure 1
is a domain ontology that is created for a specific
area. For example if the device is a sensor, its
domain ontology describes classes and properties that
are associated with sensor domains. This way the
knowledge of the surrounding world is narrowed to
the domain the device or component belongs to. The
next layer, Application specific ontology model, is a
model for instances that describes a device’s behavior,
capabilities and services that the device can provide.
In the last layer of the knowledgebase, categorized as
an A-Box, contains instances describing a particular
device according to rules provided by T-Box ontology
models. Similar devices will have similar T-Box part
of the knowledgebase, but different instances in A-



Box. T-Box can be automatically generated and used
when building A-Box for a particular device.

A. Resource Description Framework

The knowledgebase structure can be fixed using
RDF (Resource Description Framework) [11] triples.
RDF is a framework for representing information in
the World Wide Web. RDF can describe a simple
graph-based data model [11]. An RDF triple consists
of subject, predicate and object, where the subject and
predicate are resources defined by an URI (Uniform
Resource Identifier) while the object is a literal or
a resource. The structure of the knowledgebase will
consist of triples:

(Subject, Predicate, Object)

For example:

(apple tree, is− a, tree)

This triple uses predicate is-a to associate subject ap-
ple tree with object tree. Ontologies are designed by
domain experts and represent universal and domain-
specific truths.

For the purpose of the World Wide Web, ontologies
are represented by use of a markup scheme like XML.
Unfortunately XML adds complexity to database for-
mat by introducing tags that need to be interpreted.
XML is not designed for data storage or efficient
retrieval of data [12] the additional time to process
data exists due to parsing and text conversion [13].
For devices with a limited processing capability it is
important to keep any database structure as simple as
possible. Therefore the knowledgebase format is kept
to the simple three field structure of RDF.

RDF for World Wide Web can use many external
files of different ontologies, therefore it is not essen-
tial to define all concepts in one RDF file. In many
cases referencing by use of URL to external ontology
files is not necesarry. Devices from pervasive systems
usually have a well defined functionality and often do
not need to connect to the Internet. Therefore entries
in a knowledgebase need only reference other entries
in it.

The A-Box part of knowledgebase consists of
data necessary for the system to make decisions,
process requests, interpret messages, learn and react
to commands. A knowledgebase consists of six parts:

1) Device description: Description of the device
using the ontology. This part of the knowledgebase
will consist of two parts: a core ontology necessary
to characterize the device universally, and a domain
specific ontology describing entities and relations that
are restricted to one type of device (for example:
lighting, sensors, multimedia devices).

2) Device capabilities: The description of device
capabilities that are provided by the device manufac-
turer. For example, capabilities are simple tasks that
a device can physically perform. A simple lamp can

only turn on, turn off and dim to some level. It is
impossible for lamp to play music or accept coins
because these tasks are beyond a lamp’s physical
capabilities.

3) Context and users: The context describes the
actual situation of the whole system, or part of
it. Every device can understand contexts that are
described in its own knowledgebase. Contexts might
be night, lunch time, reading or watching tv and are
associated with environment conditions or actions
performed by users. Understanding context and acting
upon it is one of the most important tasks of the
proposed system. Context is a very broad concept
and customization for different users is important.
For example watching tv for Anna means that their
personal phone should be off, window blinds shut and
light dimmed. The same context can mean something
different to Tomas, he wants his phone in loud mode,
lights turned off, blinds closed. Devices participating
in one context can be the same but settings are dif-
ferent. Reasons for this are different preferences and
priorities for particular users. The system presented
in this paper, built on concepts from [7], does not
have formal central control, so contexts are saved on
devices that are required to perform some part of the
function required in a context. Therefore the context
watching tv for Anna in a lamp or in a TV specify
totally different actions.

4) Configuration and state: The information about
the state and configuration of a device is very im-
portant and should be accessible by the device. For
example, to work as a group, devices need to be
formed in a virtual device [7]. The configuration
holds information in which virtual devices the de-
vice participates and what is the current state of
the configuration. A device that is a part of a vir-
tual device should keep on functioning without any
breaks, if a new request arrives a device has to be
able to determine if it should drop its current task
and respond to the request, by checking its current
configuration settings. The state of a device is also
included in the knowledgebase. For example a lamp
can store information about its dim level or color in
the knowledgebase where it can be easily accessed.

5) Recipes: Recipes are used to describe a pro-
cedure for the behavior of every device. Recipes are
very detailed and specify the procedure that a device
has to follow for a given context. The idea is to
describe all important steps in a recipe, so the device
only has to read the recipe and act upon it. Recipes
are associated with context, people and request types.
Since devices forming a pervasive systems have lim-
ited resources, the number of requests, that a device
can serve, is also limited. Therefore a device can
decide itself if it can execute recipe or not. The
concept of a recipe is a main subject of this paper
and is described in the next section.



B. Recipes

Recipes in a knowledgebase are sequential and rep-
resent steps that a device should follow in a particular
virtual device. Every recipe has a header to describe
the recipe’s type, context and other conditions that
are guarding access to this recipe. The recipe shown
in Figure 2 consists of n steps. Steps contain actions
that need to be performed in this particular step. If
the device fails to finish a step, the recipe is dropped.

Fig. 2. Recipe structure.

Recipes are described using ontology terms, so
the concept of a recipe has to be present in the
ontology model. Classes and properties associated
with a structure of a recipe are described in the T-
box part of the knowledgebase in Application specific
ontology model layers are shown in Figure 1.

Fig. 3. An ontological view of the concept of a recipe in T-box.

A simple example of an ontological model to rep-
resent recipes combined with Dolce and Sofia models
is presented in Figure 3. This model is representing
recipes and steps as a subclass of Dolce processes.
Property hasStart associates recipe with a first step
from this recipe, and property hasNext creates a
sequence of steps in a recipe.

Let’s consider a lamp and a switch that can co-
operate when grouped in one virtual device. The
mechanism to group and configure these devices
requires one device to start a configuration by sending
a search message. When a device receives a search
message it checks if it desires to participate in a
virtual device that the message propagates and if
it has a recipe that it can use in this particular
configuration. If so, the recipe is executed, informa-
tion about the configuration is saved; device sends

an acknowledgment massage back and acts upon
the instructions provided by this recipe. If a switch
initiates a virtual device with a lamp, lamp has to
have a recipe that describes, in detail, how to act
upon a particular request. A recipe consist of header,
that describes a recipe and steps that device has to
perform. The header consist of recipe type, service
and context that recipe is associated with. A recipe
can be associated with a person and customized for
this person.

Fig. 4. Example of a recipe in knowledgebase, expressed in RDF
triples.

An example of a recipe for a lamp expressed
in RDF format is shown in Figure 4. The recipe1
consists of a header and four steps. Steps in a recipe
represents a sequence of actions that the device has
to perform. If a device reach the end of a recipe, a
task is finished.

A device that interprets a knowledgebase needs to
be extended with a Semantic Interpretation compo-
nent (Figure 5) and use a communication link to
receive and send messages necessary to establish
virtual devices and cooperate with other devices.
To influence a device’s functionality, the Semantic
Interpretation component uses the Device Interface
component.

Fig. 5. Device’s architecture.

The addition of components specified in Figure 5
and a device specific knowledgebase enables seman-
tic interoperability between devices in a smart space.
Recipes are used to inform a device what exact steps



it should undertake in a particular context or when
receiving data from different devices. Since devices
may have many recipe , choice on which recipe to
run is made by the device using the content of the
received message. If there are more than one recipes
that are usable in a certain situation, the the message
content is used to further refine a recipe choice. This
is done by matching RDF triples of the recipe to fields
of the message. This way we can make conditional
choices on which recipe to run and there by achieve
different device behavior.

III. IMPLEMENTATION

The smart lighting system chosen to illustrate a
context-aware distributed system consists of a light
switch, different kinds of light sources and sensors
(Figure 6). The switch has a User Interface (UI) and
it can accept requests from the user. Light sources are
different types of lamps, with different light emission
source types. There can be many sensors present
in the space: light sensors, motion sensors, devices
recognizing users’ identity (for example RFID read-
ers) and any other sensors that can be beneficial for
the system. As shown on Figure 6 the system has
no central control. The request comes from the UI
embedded in light switch, but this does not make the
light switch a controller, it takes the role of a request
center. All messages sent in the system are broadcast
messages, every device receives the message and
decides if it should accept or discard it.

Fig. 6. The lighting system architecture.

Any device that can increase or reduce light level
in the room may consider itself as a provider of a
lighting service. Therefore lamps are not the only
source of the illumination in a space but also window
blinds that can block light from outside or a mirror
that reflects exterior light onto the ceiling are also
light sources. The idea is to integrate and engage all
of those elements of the system that can influence
illumination in a particular space. Applying this ap-
proach can save energy by using natural light, rather
than using only light sources.

The simulation was implemented in JCSP (Com-
municating Sequential Processes for Java) [14]. This
language supports concurrent programming, it is use-
ful when simulating devices running simultaneously.
Devices are presented as CSP processes and commu-
nication links are implemented using CSP channels.

Use of JCSP enables simulating a network of many
devices running in parallel and communicating by
sending messages.

Fig. 7. Proposed scenario.

The scenario chosen to describe the system is
presented on Figure 7, which shows a model of a
room that is used as an office. The space is equipped
with a light switch with UI, ceiling lamps, lamp on
a desk, automatic blinds on the window, mirror used
to reflect daylight to illuminate the room, light and
motion sensors. The user is the center of attention and
can set preferences manually in the UI. The user can
set lights manually or choose a context available in
a particular space. When the user indicates a need to
control light levels or the context changes, the switch
performs a search for devices that provide service:
lighting for this user. All the lamps, blinds and mirror
responds to this request, because all of them are able
to provide light for the space.

The other task that the proposed set-up can perform
is to keep the light at the same level in the whole
room, when the outside light conditions change. This
configuration uses communication between light and
sensors to use as much natural light as it is possible,
while attaining a stable level of light in the room.

IV. RESULTS AND CONCLUSIONS

A complex system consisting of sensors and ac-
tuators was designed and implemented. The system
controlling a space consists of autonomous devices
collaborating to achieve lighting conditions desired
by the user. There are sixteen ceiling lamps, two
light sensors, light switch, mirror and user defined
contexts. The context plays a crucial role in the
system, as it influences behavior of devices to suit
different users needs.

The simulation is run on PC with Intel Core2 CPU
6300@1.86GHz, 1GB RAM and Windows XP OS.
Java code with JCSP libraries is run to simulate de-
vices working in parallel, knowledgebases are binary
files containing RDF triples.

There are two available contexts in the system:
reading and meeting, devices have different recipes
for different contexts.A lamp in a simulation con-
sists of Semantic Interoperability and Communication



components, device functionality and knowledgebase
binary file. A lamp has 214 triples in its knowledge-
base and 5 recipes that are responsible for different
actions. During configuration of a virtual device for
context reading, the knowledgebase in the lamp is
accessed 305 times and local memory, used to keep
temporary data, is accessed 806 times.

The simulated scenario consisting on 20 devices
runs 148 Java threads. Average number of messages
sent per configuration is 53 and messages received by
a device is 954. All messages are broadcast, every
device receives all messages, but most of them are
dropped and do not trigger any actions.

The simulation presented in this paper runs in real
time in a users perception. The goal of this simulation
is is to show functional behavior of a distributed
system using RDF based recipes. The numbers men-
tioned here should be treated as a reference. we do
not attempt to to compare these numbers to another
implementation.

The simulation is a proof of concept that a per-
vasive system can be constructed out of autonomous
devices without any central control. Recipes are de-
scribed in previous sections and in [7] can made in
RDF format and influence the device’s functionality
and behavior. The interoperability is achieved at a
semantic level by the use of ontologies. Ontologies
are also used to construct a knowledgebase that can
be reused or transferred and understood in different
devices.

V. FURTHER WORK

Recipes are built according to a model taken from
common ontology, therefore devices can process any
recipe following these rules. The next step in devel-
oping the architecture is to include an extension that
allows new recipes to be added to existing knowl-
edgebase in devices from newly installed devices.
Adding recipes enables updatability, both forward and
backward. When a new device is added to a network,
it can update existing devices with a recipe that will
guide devices how to use a new device or component.

The adaptation to a changing environment, set of
devices in a network and user’s needs can be done
by adding a new recipe to a knowledgebase. More
sophisticated technique can update and adapt recipes
themselves, learning to adjust devices behavior de-
pending on situation and improving recipes that are
in device’s memory.
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