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ABSTRACT 

This study aims at investigating public perceptions towards the safety and security 

implications that will arise after the future introduction of flying cars in the traffic fleet.  In this 

context, we focus on individuals’ opinions about possible safety benefits and concerns as well as 

about policy measures that can potentially enhance the security of flying car.  Due to the emergent 

nature and lack of public exposure of this technology, individuals’ perceptions and opinions 

regarding flying cars might be subject to several layers of unobserved heterogeneity, such as shared 

unobserved variations across interrelated perceptions, grouped effects, and interactive effects 

between various sources of unobserved heterogeneity.  To explore individuals’ perceptions 

accounting, at the same time, for such heterogeneity patterns, grouped random parameters bivariate 

probit and correlated grouped random parameters binary probit models with heterogeneity in 

means are estimated.  In this context, data collected from an online survey of 584 individuals from 

the United States are statistically analyzed.  The estimation results revealed that a number of 

individual-specific socio-demographic, behavioral and driving attributes affect the perceptions 

towards the safety aspects of flying cars, along with the attitudes towards potential security 

interventions.  Despite the exploratory nature of the analysis, the findings of this study can provide 

manufacturers, policy-makers and regulating agencies with valuable information regarding the 

integration and acceptance challenges that may arise with the introduction of flying cars. 

 

Keywords: Flying cars; Safety; Security; Correlated grouped random parameters; Bivariate probit 

models; Heterogeneity in means 
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1. INTRODUCTION 

Over the last decades, the constant demand for lower and reliable travel times, enhanced 

safety and security and ubiquitous access to various transportation modes has led to the 

deployment of new transportation technologies and systems.  The latter typically aim to enhance 

the flexibility and sustainability of mobility patterns (such as the shared mobility systems – see 

also Schmöller et al., 2015; Bordagaray et al., 2016; Faghih-Imani et al., 2017), minimize the 

human error during the driving task (such as the autonomous vehicles –see also Fagnant and 

Kockelman, 2015; Lavieri et al., 2017; Talebian and Mishra, 2018), or both (such as the shared 

autonomous systems – see also Fagnant and Kockelman, 2016; Krueger et al., 2016; Menon et al., 

2019).  For all these technologies, the safety- or security-related implications constitute sources of 

implementation uncertainties that are commonly encountered by researchers, manufacturers and 

legislative entities (Bansal et al., 2016; Becker and Axhausen, 2017; Bansal and Kockelman, 2018; 

Xu and Fan, 2018; Sacks and Ortiz, 2018; Akyelken et al., 2018; Cui et al., 2018; De La Torre et 

al., 2018; Combs et al., 2019; Gkartzonikas and Gkritza. 2019). 

One common characteristic of the above-mentioned transportation systems stems from 

their operational dependence on ground transportation networks.  On the contrary, a newly 

emerging transportation mode, the flying car, has the potential to incorporate all the features of 

shared mobility and autonomous driving into a – spatially – dual operation: on the ground and in 

the air.  Having semi- or fully-autonomous capabilities for vertical take-off and landing, the 

operation of flying cars will not significantly differ from conventional personal vehicles during the 

on-ground operation, and from personal jets during the in-air operation.  With provisions for two 

to four passengers, flying cars are expected to accommodate trips on a distance up to 500 miles, 

requiring not more than 100 feet (in diameter) clearance zones at the trip origin and destination 
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(see Eker et al., 2019a; Eker et al., 2019b; Ahmed et al., 2019).  Recent developments and 

announcements have shown that flying cars are expected to be introduced in the automotive and 

aviation market between 2020 and 2025 (Becker, 2017; Oppitz and Tomsu, 2018).  Over the last 

few years, various startups (to name a few, Terrafugia, AeroMobil, PAL-V, Opener and Kitty 

Hawk) and well-established automobile and aviation manufacturing companies (e.g. Airbus, Audi, 

Rolls Royce, Aston Martin) have demonstrated their flying car prototypes and revealed their plans 

to introduce flying cars in the near future (Muoio, 2017; Airbus, 2018; Opener, 2018; Rocco, 

2018a; Rocco, 2018b; Rolls-Royce, 2018).   

The currently available design concepts have shown that an abundance of safety features 

and assistance systems will be available during the flying car operation, such as a rigid safety cage, 

passenger airbags, rear-view cameras and a full vehicle parachute.  Besides the technical features 

of flying cars, their operation in a dense urban environment may introduce challenges arising from 

their interactions with the built and physical environment.  To address such challenges, NASA has 

started investigating, at a system-wide level, the implications of an integrated mobility framework 

that will unrestrictedly allow the air transportation of passengers and cargo within and across urban 

metropolitan areas.  This framework, referred to as “Urban Air Mobility (UAM)” (see NASA, 

2017 for more information), involves collaboration among the industry, academia and Federal 

Aviation Administration (FAA) on the generation of operational standards, safety regulations, and 

environmental impact assessments.  To that end, various programs and initiatives are currently 

taking place across the globe, including simulations, conduct of test flights in a controlled 

environment and pilot deployment of air traffic management systems (Unmanned Airspace, 2018).  

In this context, NASA and Uber are currently collaborating to explore and evaluate technologies 

towards ensuring the smooth, safe and efficient operation of UAM, especially in dense urban 
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settings.  The identification of the most favorable operating conditions can, in turn, enable the 

development of industry standards, air traffic regulations and other legislative frameworks (NASA, 

2018a; NASA, 2018b).  

Considering the operational challenges of flying cars, especially in terms of safety and 

integration within the urban environment, the long-term establishment of flying cars is dependent 

on the public response to possible hazards that may be encountered by the users.  Specifically, 

perceptions towards the safety implications (e.g. interactions with other vehicles; loss of 

connectivity, navigation or communication with the management systems) or possible security 

barriers (e.g., navigation tracking by non-authorized entities) typically have strong influence on 

the decision-making process of users (Bartolini et al., 2017; Hohenberger et al., 2017; Masoud and 

Jayakrishnan, 2017).  Even though the development of operating regulations may attenuate 

possible public concerns to some extent, the complexities of the air mobility system may require 

a deep interchange between the regulating community and the potential users in order to enhance 

the public awareness and confidence on this new technology.  In this context, the capturing of the 

current public awareness and perceptions towards the safety- or security-related barriers may serve 

as a baseline not only for producing user-oriented regulations, but also for expediting the societal 

integration of flying cars and urban air mobility systems.  

In line with the aforementioned challenges, the goal of this study is to identify the key 

factors that affect the safety- and security-related public perceptions towards the operation of 

flying cars.  In this context, public attitudes towards the effectiveness of possible preventive 

measures and policy interventions targeted on the security enhancement during a flying car trip 

are also explored.  To that end, an online survey has been designed and distributed to individuals 

in order to gain opinions and perceptual attitudes related to flying cars’ operations. Due to the 
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absence of public exposure to the use of flying cars, the collected opinions might be affected by 

multiple layers of unobserved heterogeneity, rendering the subsequent statistical analysis a 

significant methodological challenge. To address the unobserved heterogeneity patterns 

underpinning the survey data, advanced bivariate and univariate modeling approaches are 

employed.  To model conceptually interrelated perceptions in a joint modeling framework, 

grouped random parameters bivariate probit models are estimated.  The latter can account for 

various econometric challenges such as unobserved heterogeneity across the survey responses, 

unbalanced panel effects and cross equation error term correlation.  The bivariate probit framework 

is leveraged for modeling individuals’ perceived concerns towards safety consequences of 

equipment failures and towards accidents on airway as well as concerns about security against 

hackers or terrorists and about personal information privacy.  The same framework is employed to 

statistically model individuals’ expectations towards the possible reduction of number and severity 

of crashes on the roadway after the introduction of flying cars.  As far as the possible security-

related measures are concerned, factors affecting individuals’ opinions towards several measures 

are identified through the estimation of correlated grouped random parameters binary probit 

models with heterogeneity in means.  The latter modeling approach can account for unobserved 

heterogeneity across the survey responses, unbalanced panel effects and unobserved heterogeneity 

interactions that can affect either the dependence structures (e.g., correlated random parameters) 

or the distributional characteristics (e.g., variations in the means) of random parameters. The 

results of the analysis show that individuals’ perceptions towards safety and security implications 

of flying cars are affected by a number of socio-demographic and behavioral characteristics as 

well as by their attitudinal propensity with respect to the general adoption and use of flying cars.
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2. DATA 

To identify individuals’ expectations and opinions regarding key characteristics of flying 

cars, a web-based survey was conducted in March 20171. Specifically, 34 graduate students and 

employees of the University at Buffalo, serving as survey-distributors, disseminated the survey to 

584 individuals within the United States. The number of responses collected through each of the 

distributors varied between 2 to 33, subsequently creating unbalanced panels in the dataset.   

To make the respondents more aware of the features and operational characteristics of 

flying cars, the survey questions were preceded by an information session; the latter included a 

concise description, multiple images, and video illustrations about the capabilities of flying cars 

on ground and in the air.  The survey questionnaire was oriented towards obtaining individuals’ 

perceptions on various aspects of flying cars’ adoption and operation as well as towards 

understanding individuals’ socio-demographic and behavioral background. Specifically, the first 

set of questions focused on individuals’ willingness to pay for a flying car under multiple scenarios 

of acquaintance cost.  Furthermore, patterns of individuals’ willingness to use a flying car were 

also explored considering various scenarios of trip characteristics, such as trip purpose, trip 

distance, and temporal characteristics of the trip.   

Another set of questions aimed at gaining information about the perceived benefits and 

concerns arising from the use of flying cars.  Possible benefits, for which individuals’ perceptions 

were captured, include fewer crashes and less severe crashes on the roadway, along with various 

other trip-, traffic-, cost-, and environment-specific benefits that may emerge after the introduction 

of flying cars.  To identify the successive levels of public response to various implications of flying 

                                                           
1 The survey was conducted using the online platform “SurveyMonkey”.  
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cars, all the expectation- or perception-related questions were formulated on the basis of a four-

point Likert scale.  Specifically, for the willingness-to-pay, willingness-to-use and benefit-related 

perceptions, the respondents assessed the likelihood of occurrence of each possible outcome as 

“very unlikely”, “somewhat unlikely”, “somewhat likely”, or “very likely”.   

To capture individuals’ concerns regarding the implications of flying cars, several 

questions focused on perceptions about safety- or security-related potential issues.  The latter 

include the safety consequences of equipment/system failure, accidents on the airway, security 

against hackers/terrorists and issues associated with personal information privacy (e.g., 

location/destination monitoring) after the emergence of flying cars in the traffic fleet.  Following 

a similar rating scale with the questions from the previous section, the respondents’ degree of 

concern was captured through a four-point Likert scale, with the possible options being “Not at all 

concerned”, “Slightly concerned”, “Moderately concerned”, and “Very concerned”.  Similarly, 

respondents provided their attitudinal stances towards possible preventive measures and policy 

interventions that can address various security issues arising from the operation of flying cars.   

The proposed measures and interventions include the use of existing FAA regulations for air traffic 

control, establishment of air-road police enforcement (with flying police cars), detailed profiling 

and background checking of flying car owners/operators, and establishment of no-fly zones for 

flying cars near sensitive locations (military bases, power/energy plants, governmental buildings, 

major transportation hubs, etc.). 

The subsequent set of questions aims at understanding individuals’ familiarity with 

emerging vehicle technologies in terms of level 1 and level 2 automation features (e.g., emergency 

automatic braking, adaptive cruise control, blind spot monitoring, etc.). The underlying purpose 

of this set of questions is to serve as a surrogate measure to understand individuals’ level of 
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exposure to emerging vehicle technologies, which in turn, may impact their perception towards 

flying cars.    

The last set of questions focused on individuals’ socio-economic and behavioral attributes.  

Specifically, the participants were questioned about their socio-economic background (e.g., 

marital status, educational status, income, gender, age, household characteristics), their driving 

past (e.g., driving experience and exposure, number and severity of accidents they were involved), 

as well as about their current behavioral patterns.  The latter refer to broad spectrum of habitual 

activities, including, for example, alcohol consumption, driving habits when approaching a traffic 

signal, driving style and preferences, attitudes towards speed limits. 

The collected sample consists of 58.5% of male respondents, compared to 49.2% in the 

U.S. nationally. The median age is 25 years compared to the national median of 37.8 years. In 

terms of educational attainment level, 74.38% of the respondents had a college degree or higher 

compared to 30.9% nationally. With regard to the household income level, 68.44% of the 

respondents are from households having annual income above $50,000 compared to 56.2% 

nationally. In addition, 10.44% of the respondents indicated that their current residences are 

located at city center areas, whereas 30.92% indicated urban areas outside of city centers. On the 

contrary, 48.58% and 10.06% respondents indicated that their residences are located at suburban 

and rural areas, respectively. For additional studies conducted based on the aforementioned survey 

data, please see Ahmed et al., 2019 and Eker et al., (2019a, 2019b). 

Table 1 presents the responses of individuals’ perceptions regarding the safety and security 

concerns of flying cars as well as regarding potential measures that may enhance the security of 

flying cars. The percentage corresponding to the “overall unlikely” outcome includes the 

individuals who selected the “very unlikely” or “somewhat unlikely” outcome.  Similar 
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aggregation was adopted for the “overall likely” outcome.  Furthermore, the percentage 

corresponding to the “overall concerned” outcome includes the individuals who selected the 

“moderately concerned” or “very concerned” outcome, whereas the “overall unconcerned” 

outcome is derived from the aggregation of the “not at all concerned” and “slightly concerned” 

outcomes. Table 2 provides descriptive statistics of key variables that were found to be statistically 

significant determinants of individuals’ perceptions and opinions in the statistical analysis.  Table 

1 shows that the majority of respondents expect that the introduction of flying cars will result in 

fewer and less severe crashes on the roadway (65.98% and 57.33% of the respondents, 

respectively).  On the other hand, the vast majority of the respondents are overall concerned for 

the safety consequences of equipment/system failure and the possibility of accident occurrence on 

the airway (84.43% and 82.18% of the respondents, respectively).  Similarly, the majority of the 

respondents are overall concerned with the level of security against hackers/terrorists and the 

emergence of issues relating to personal information privacy (e.g., location/destination 

monitoring), as indicated by 69.98% and 66.98% of the respondents, respectively.  Table 1 also 

shows that the respondents have highly favorable opinions towards various security measures.  

Specifically, the majority of the individuals believe that the use of FAA regulations for air traffic 

control, the establishment of air-road police enforcement, the detailed profiling and background 

checking of flying car owners/operators, and the establishment of no-fly zones near sensitive 

locations has the potential to increase the level of security against hackers/terrorists (61.02%, 

70.62%, 75.23%, and 79.03% of the respondents, respectively).  
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Table 1.  Distribution of respondents’ perceptions about safety- and security-related benefits and 
concerns as well as about the effectiveness of possible security measures. 

  Very 
unlikely 

Somewhat 
unlikely 

Overall 
unlikely 

Somewhat 
likely Very likely Overall 

likely 

Safety Benefits       

Fewer crashes on the roadway 12.03% 21.99% 34.02% 41.54% 24.44% 65.98% 
Less severe crashes on the 

roadway 17.67% 25.00% 42.67% 38.16% 19.17% 57.33% 

Security Measures       

Use existing FAA regulations for 
air traffic control 16.76% 22.22% 38.98% 41.62% 19.40% 61.02% 

Establish air-road police 
enforcement (with flying police 
cars) 

10.17% 19.21% 29.38% 42.56% 28.06% 70.62% 

Detailed profiling and 
background checking of flying 
car owners/operators 

9.57% 15.20% 24.77% 39.59% 35.65% 75.23% 

Establish no-fly zones for flying 
cars near sensitive locations 
(military bases, power/energy 
plants, governmental buildings, 
major transportation hubs, etc.) 

7.49% 13.48% 20.97% 30.71% 48.31% 79.03% 

  Not at all 
concerned 

Slightly 
concerned 

Overall 
unconcerned 

Moderately 
concerned 

Very 
concerned 

Overall 
concerned 

Safety Concerns       

Safety consequences of 
equipment/system failure 4.13% 11.44% 15.57% 25.14% 59.29% 84.43% 

Accidents on the airway 4.32% 13.51% 17.82% 25.89% 56.29% 82.18% 
Security Concerns       

Security against 
hackers/terrorists 6.75% 23.26% 30.02% 27.95% 42.03% 69.98% 

Personal information privacy 
(location/destination 
monitoring) 

10.38% 22.64% 33.02% 30.94% 36.04% 66.98% 
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Table 2.  Descriptive statistics of key variables 

Variable description Mean Std. 
Dev. Min. Max. 

Socio-demographics     
Gender indicator (1 if the respondent is male, 0 

otherwise) 0.585 — 0 1 

Inverse of square of the age of the respondent 0.002 0.001 0.0001 0.004 
Age indicator (1 if the respondent is younger than 25, 

0 otherwise) 0.500 — 0 1 

Age indicator (1 if the respondent is younger than 30, 
0 otherwise) 0.734 — 0 1 

Age indicator (1 if the respondent is older than 50, 0 
otherwise) 0.087 — 0 1 

Current living area indicator (1 if the respondent lives 
in rural area, 0 otherwise)  0.100 — 0 1 

Ethnicity indicator (1 if the respondent is Asian, 0 
otherwise)  0.180 — 0 1 

Ethnicity indicator (1 if the respondent is Caucasian, 0 
otherwise) 0.626 — 0 1 

Education indicator (1 if the respondent has a technical 
college degree or a college degree, 0 otherwise) 0.541 — 0 1 

Income indicator (1 if the respondent’s annual 
household income is less than $50,000, 0 otherwise) 0.296 — 0 1 

Income indicator (1 if the respondent’s annual 
household income is less than $75,000, 0 otherwise) 0.464 — 0 1 

Income indicator (1 if the respondent’s annual 
household income is between $50,000 and $150,000, 
0 otherwise) 

0.217 — 0 1 

Income indicator (1 if the respondent’s annual 
household income is greater than $100,000, 0 
otherwise) 

0.228 — 0 1 

No. of children indicator (1 if the respondent’s 
household has no child aged below 6 years, 0 
otherwise) 

0.931 — 0 1 

Opinions and preferences     
Familiarity with vehicle safety features indicator (1 if 

the respondent is not familiar with advanced safety 
features, 0 otherwise) 

0.126 — 0 1 

Familiarity with vehicle safety features indicator (1 if 
the respondent never owned a car with an advanced 
safety feature, 0 otherwise) 

0.456 — 0 1 

Aggressive driving indicator (1 if the respondent 
thinks that s/he normally drives not aggressively, 0 
otherwise) 

0.418 — 0 1 
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Aggressive driving indicator (1 if the respondent 
thinks that s/he normally drives very aggressively, 0 
otherwise) 

0.100 — 0 1 

Driving speed indicator (1 if the respondent normally 
drives faster than 65 mph on an interstate with a 65 
mph speed limit and little traffic, 0 otherwise) 

0.816 — 0 1 

Speed limit opinion indicator (1 if the respondent 
completely disagrees with the statement: “Speed 
limits on high speed freeways should only be 
suggestive”, 0 otherwise)   

0.094 — 0 1 

Speed limit opinion indicator (1 if the respondent is 
neutral with the statement: “Speed limits on high 
speed freeways should only be suggestive”, 0 
otherwise) 

0.383 — 0 1 

Speed limit opinion indicator (1 if the respondent 
completely agrees with the statement: “Speed limits 
on high speed freeways should only be suggestive”, 
0 otherwise) 

0.119 — 0 1 

Speed limit opinion indicator (1 if the respondent 
disagrees or completely disagrees with the 
statement: “Speed limits on high speed freeways 
should only be suggestive”, 0 otherwise)   

0.299 — 0 1 

Driver preference indicator (1 if the respondent 
generally prefers to drive herself/himself when there 
are more than two licensed drivers in a vehicle on a 
trip, 0 otherwise) 

0.462 — 0 1 

Driver preference indicator (1 if the respondent 
generally prefers to have the other driver drive when 
there are more than two licensed drivers in a vehicle 
on a trip, 0 otherwise) 

0.244 — 0 1 

Driver preference indicator (1 if the respondent is not 
sure about driving herself/himself when there are 
more than two licensed drivers in a vehicle on a trip, 
0 otherwise) 

0.294 — 0 1 

Accident history indicator (1 if the respondent has had 
at least one non-severe or severe accident in the last 
5 years, 0 otherwise) 

0.325 — 0 1 

Accident history indicator (1 if the respondent has had 
more than one non-severe accidents in the last 5 
years, 0 otherwise) 

0.093 — 0 1 

Driving experience indicator (1 if the respondent has a 
driving license for over 15 years, 0 otherwise) 0.208 — 0 1 

Annual mileage driven (in 1000 miles) 11.059 9.864 0 50 
Mileage indicator (1 if the respondent annually drives 

less than 5,000 miles, 0 otherwise) 0.264 — 0 1 
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Mileage indicator (1 if the respondent annually drives 
more than 10,000 miles, 0 otherwise) 0.417 — 0 1 

Mileage indicator (1 if the respondent annually drives 
more than 15,000 miles, 0 otherwise) 0.194 — 0 1 
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3. METHODOLOGICAL APPROACH 

To shed more light on the factors affecting individuals’ perceptions, the safety- and 

security-specific responses are statistically modeled. To that end, two major categories of discrete 

outcome approaches are employed: bivariate and univariate binary probit models. 

3.1. Grouped Random Parameters Bivariate Probit Framework 

From a methodological standpoint, the individuals’ perceptions of the safety-related 

benefits or concerns may constitute major sources of systematic unobserved variations (Eker et al., 

2019b).  Such variations may be viewed as a result of common perceptual patterns across 

conceptually similar benefits or concerns.  For example, individuals may similarly perceive the 

benefits associated with fewer crashes on the roadway and the benefits associated with less severe 

crashes on the roadway.  Therefore, the presence of commonly shared unobserved variations across 

variables representing perceptions of – conceptually related – benefits or concerns may be highly 

likely.  Such unobserved variations are typically captured by the error terms corresponding to the 

specific dependent variables.  In case of interrelated dependent variables, there is a strong 

possibility for the error terms to be correlated (Sarwar et al., 2017a; Sarwar et al., 2017b; Pantangi 

et al., 2019; Fountas and Anastasopoulos, 2018).  To account for this possibility, the bivariate 

modeling framework is employed.  This framework allows for simultaneous modeling of two 

dependent variables that share similar or same unobserved characteristics, while accounting 

concurrently for the correlation of the relevant error terms (this type of correlation is typically 

referred to as contemporaneous or cross-equation error term correlation).   

For the statistical analysis of safety- and security-related perceptions, the bivariate 

modeling framework is coupled with the binary logit approach.  The latter is selected because the 
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four ordinal responses of the survey – dependent variables were merged into two discrete outcomes 

for modeling purposes.  Specifically, for the benefit-specific questions, the corresponding 

dependent variables have two discrete outcomes: “overall likely” and “overall unlikely”; similarly, 

the concern-specific dependent variables also have two discrete outcomes: “overall concerned” 

and “overall unconcerned”.  Despite the possibility of introducing aggregation bias, the 

consideration of two discrete outcomes allows for conceptually close perceptual states to be 

captured by a homogeneous outcome.  In this context, the bivariate probit model can be defined as 

(Sarwar et al., 2017a; Greene, 2016; Pantangi et al., 2019): 

,1 ,1 ,1 ,1 ,1 ,1 ,1

,2 ,2 ,2 ,2 ,2 ,2 ,2

, 1 0, 0
, 1 0, 0

i i i i i i i

i i i i i i i
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W w if W and w otherwise

ε
ε

= + = > =

= + = > =

X
X
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β
  (1) 

with the error terms being expressed as: 
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where, X represents a vector of explanatory variables that determine individuals’ safety- or 

security-related perceptions of flying cars, β denotes a vector of parameters with respect to X, wi,1 

and wi,2 represent the observed binary outcomes of the dependent variables, ε is a random error 

term specified to follow the standard normal distribution, and λ denotes the cross-equation 

correlation coefficient of the error terms.  The cumulative function of the bivariate normal 

distribution as well as the corresponding log-likelihood function are formulated as (Greene, 2016), 
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=
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∑ X X X X

X X X X

β β β β

β β β β
(4) 

Given the nature of the survey-based data collection, personal preferences and experience, 

limited awareness about new technologies, or other individual-specific behavioral patterns may 

not be captured introducing, thus, additional sources of underlying variations (Kang et al., 2013).  

To account for the effect of unobserved characteristics on the statistical analysis of the survey data 

(i.e., unobserved heterogeneity and its implications – see also Mannering and Bhat, 2014; Russo 

et al., 2014; Anastasopoulos, 2016; Mannering et al., 2016; Anastasopoulos et al., 2017; Fountas, 

2018; Mannering, 2018; Barbour et al., 2019; Sheela and Mannering, 2019), random parameters 

are introduced in the bivariate probit framework.  The random parameters allow for the parameter 

estimates to vary across the observational units according to a pre-specified distribution.  Even 

though the individual survey responses constitute the most disaggregate observational unit, the 

survey responses corresponding to the same survey distributor may share similar, yet systematic 

variations implying, thus, the possible presence of unbalanced panel effects.  To account for the 

latter, the parameters are specified to vary, not across the individual survey responses, but across 

groups of distributor-specific responses, leading, as such, to the estimation of grouped random 

parameters (Sarwar et al., 2017a; Sarwar et al., 2017c; Fountas et al., 2018a; Fountas et al., 2018c; 

Cai et al., 2018; Heydari et al., 2018; Pantangi et al., 2019).  Specifically, the grouped random 

parameters are formulated as (Fountas and Anastasopoulos, 2017; Sarwar et al., 2017a; 

Anastasopoulos et al. 2017; Fountas et al., 2018b, 2018c; Menon et al., 2019): 

k kv= +β β           (5) 



18 
 

where, β denotes the vector of parameters and vk denotes a random, distributor-specific term with 

zero mean and variance σ2.  As far as the distributional characteristics of the grouped random 

parameters are concerned, several common distributions (e.g., normal, log-normal, triangular, 

uniform, and Weibull) were explored; the normal distribution was found to provide the best 

statistical fit and, thus, was employed for model estimation.  

Due to the computationally demanding numerical integrations required for the estimation 

of the grouped random parameters within a bivariate probit context, a simulated likelihood 

estimation approach is employed.  With this approach, the numerical approximations for the 

parameter estimation are produced by an iterative process, which is based on Halton sequences 

(Halton, 1960).  It should be noted that 500 Halton draws were found to offer parameter stability 

in model estimation (Anastasopoulos, 2016; Amoh-Gyimah et al., 2017; Fountas et al., 2018c). 

In addition, to identify the magnitude of the effect of independent variables on individuals’ 

perceptions, (pseudo-) elasticities are also estimated.  The elasticities quantify the effect of 1% 

change of any continuous independent variable on the probability relating to the dependent 

variable, with their computation being defined as (Washington et al., 2011): 

,
,1 k k i

k k i
X

E X
β

β
σ

  
= −Φ  

  
        (6) 

To identify the effect on individuals’ perceptions, due to a change of any indicator variable 

from “0” to “1”, the pseudo-elasticity is computed as (Washington et al., 2011):  
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      (7) 
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3.2. Correlated Grouped Random Parameters Probit Model with Heterogeneity in Means 

In the context of a binary probit model formulation, the traditional probability model is 

defined as (Greene, 2017),  

               i i i i i i iY , y 1 if Y 0, and y 0 otherwise= + ε = > =Xβ                                       (8) 

where, X is a vector of explanatory variables that affect respondents’ opinions on potential 

measures to increase the security of flying car, β represents a vector of estimable parameters 

corresponding to X, y corresponds to integer binary outcome (zero or one), and ε is a normally 

distributed random error term (with mean equal to zero and variance equal to one). 

Similar to the bivariate probit model, to account for the effect of unobserved factors that 

can vary systematically across the responses, random parameters are estimated.  The generalized 

formulation of the random parameters can be defined as (Greene, 2017), 

i i i= Θ Γδβ β + Ζ +          (9) 

where β denotes the mean value of the random parameters vector, i denotes the observational unit 

of the analysis, Zi is a vector of explanatory variables that influence the mean of βi (Venkataraman 

et al., 2014; Seraneeprakarn et al., 2017; Xin et al., 2017), Θ is a vector of estimable parameters 

that determine the mean of the random parameter distribution (Behnood and Mannering, 2017a; 

Behnood and Mannering, 2017b), Г is the Cholesky matrix whose elements are used for the 

computation of standard deviations of the random parameters, and δ denotes a randomly 

distributed term with mean equal to zero and variance equal to one.  According to the generalized 

formulation of random parameters provided in Equation 9, the mean of the random parameter 

distribution is not treated as a constant value, but it can vary as a function of unique explanatory 
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variables.  The latter is particularly important, since it may capture possible heterogeneity effects 

that impose direct variations on the distributional characteristics of random parameters (i.e. 

heterogeneity in the means of random parameters), leading, in turn, to indirect variations in the 

effect of βs across the observations (Behnood and Mannering, 2017a; Behnood and Mannering, 

2017b).  

To account for possible correlations between the random parameters, an unrestrictive 

version of the Γ matrix is employed, in which the off-diagonal elements are specified as non-zero 

values (unlike with the conventional random parameters approach). These non-zero off-diagonal 

elements may indirectly capture possible correlation effects between the unobserved 

characteristics, which can subsequently introduce possible inter-dependencies between the random 

parameters (Greene, 2012, Fountas et al., 2018b; Fountas et al., 2018c).  Such inter-dependencies 

can be identified through the estimation of correlated random parameters (Mannering et al., 2016; 

Fountas et al., 2018b; Fountas et al., 2018c; Balusu et al., 2018).  To concurrently account for 

grouped effects across the distributor-specific responses as well as for unobserved heterogeneity 

correlation between the explanatory variables, the employed form of the Г matrix enables the 

estimation of correlated grouped random parameters.  Under such modeling consideration, a 

separate coefficient (β) is estimated for each distributor-specific group of survey responses.  

Therefore, all the survey responses associated with the same distributor are represented by a single 

random parameter coefficient (Sarwar et al., 2017a). 

The standard deviations of the correlated random parameters are computed using the 

diagonal and off-diagonal elements of the Γ matrix, as: 

 
2 2 2 2

, , 1 , 2 ,1...j k k k k k k kσ σ σ σ σ− −= + + + +
   (10) 
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where, σj denotes the standard deviation of the specific random parameter j, σk, k is the respective 

diagonal element of the Γ matrix and σk, k-1, σk, k-2 … σk,1 denote the below diagonal elements of the 

estimated Γ matrix.  The standard error and t-statistic corresponding to the standard deviation of 

each random parameter are computed by applying the following procedure (see Fountas et al., 

2018c, for further details).  The standard error can be computed as: 

 
jn

j

S
SE

N
σ

σ =   (11) 

where, 𝑆𝑆𝑆𝑆𝜎𝜎𝑗𝑗 is the standard error of the standard deviation (averaged across all observations), 𝑆𝑆𝜎𝜎𝑗𝑗𝑗𝑗 is 

the standard deviation of the observation-specific 𝜎𝜎𝑗𝑗𝑗𝑗 and N is the number of observations, which 

is the number of groups of distributor-specific responses, in this case. Then, the t-statistic is 

computed as, 

j

j
jt

SEσ
σ

σ
=

  
(12)

 

To gain deeper insights into the magnitude of the effect of each independent variable of 

the binary probit model, pseudo-elasticities are estimated.  In this study, pseudo-elasticities 

measure the effect of a unit change of a specific variable on the probability of an individual to 

select the “overall likely” outcome regarding the effectiveness of various security measures.  Since 

the vast majority of explanatory variables are indicator variables, the pseudo-elasticities will 

provide the effect on the dependent variable, due to a shift of the value of an independent variable 

from zero to one. 
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4. ANALYSIS RESULTS 

To identify the determinants of individuals’ perceptions towards the future use of flying 

cars, grouped random parameters bivariate probit models are estimated for pairs of safety- and 

security-related survey responses.  The selection of the dependent variables of the bivariate models 

is based on two criteria: (i) the possibility of conceptually interrelated safety- and security-specific 

perceptions; and (ii) the identification of statistically significant error term correlation between the 

dependent variables representing the aforementioned perceptions.2  Furthermore, to investigate the 

individuals’ opinions about the effectiveness of several security measures, correlated grouped 

random parameters probit models with heterogeneity in means were developed.  For model 

estimation, all possible variables and variable combinations were examined. Variables that were 

identified as statistically significant at 0.90 level of confidence or higher, are included in the model 

specifications. However, in cases where the mean of a random parameter was found to be 

statistically insignificant with the standard deviation being statistically significant, a chi-square 

distributed likelihood ratio test with two degrees of freedom (representing the mean and standard 

deviation of the random parameter’s density function) was conducted to evaluate the improvement 

in overall statistical fit of the model (Washington et al., 2011).  If the improvement was found to 

be statistically significant, the random parameters under consideration were included in the final 

model specifications.  For the grouped random parameters bivariate probit models, the statistical 

significance and the magnitude of the cross-equation correlation coefficients further substantiate 

the use of the bivariate modeling framework. With regard to the models estimated within the binary 

                                                           
2 Note that multivariate probit models were initially estimated in order to statistically investigate the cross-equation 

correlation of the error terms corresponding to the potential dependent variables of the bivariate models.  The results 
of the multivariate probit models showed that pairs of variables with significant conceptual similarity (e.g., variables 
reflecting safety benefits or security concern perceptions) lead to statistically significant and strong – in magnitude 
cross-equation error term correlation.  Therefore, these pairs of variables were used as dependent variables in the 
grouped random parameters bivariate probit models.  
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probit framework, all possible variable combinations were also examined to concurrently achieve 

the best statistical fit and identify statistically significant random parameters correlation, as well 

as heterogeneity in the means of the random parameters.  In cases when the best statistical fit didn’t 

result in correlated random parameters or statistically significant heterogeneity in means, the 

model specifications are presented as is.  

4.1. Perceptions on safety-related benefits and concerns arising from the use of flying cars 

Tables 3 and 4 present the estimation results and (pseudo-)elasticities of the bivariate model 

of individuals’ expectations about the potential of flying cars to result in fewer and less severe 

crashes on the roadway, respectively.  The estimation results and (pseudo-)elasticities of the 

bivariate model of individuals’ concerns about the safety consequences of equipment/system 

failure and accidents on the airway from the future use of flying cars are presented in Tables 5 and 

6, respectively. 
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Table 3.  Estimation results of the grouped random parameters bivariate probit model of crash-
related perceptions 

Variable Fewer crashes on 
the roadway 

Less severe 
crashes on the 

roadway 
  Coeff. t-stat Coeff. t-stat 

Socio-demographics      

Gender indicator (1 if the respondent is male, 0 otherwise) 0.165 2.04 — — 
Ethnicity indicator (1 if the respondent is Asian, 0 

otherwise)  0.533 2.82 0.523 2.58 

Education indicator (1 if the respondent has a technical 
college degree or a college degree, 0 otherwise) — — -0.098 -1.07 

Standard deviation of parameter distribution — — 0.313 4.38 
Income indicator (1 if the respondent’s annual household 

income is less than $50,000, 0 otherwise) — — -0.191 -1.44 

Standard deviation of parameter distribution — — 0.436 2.98 
Opinions and Preferences      

Familiarity with vehicle safety features indicator (1 if the 
respondent never owned a car with an advanced safety 
feature, 0 otherwise) 

— — -0.226 -2.70 

Driver preference indicator (1 if the respondent is not sure 
about driving herself/himself when there are more than 
two licensed drivers in a vehicle on a trip, 0 otherwise) 

0.027 0.22 — — 

Standard deviation of parameter distribution 0.424 3.63 — — 
Mileage indicator (1 if the respondent annually drives less 

than 5,000 miles, 0 otherwise) 0.558 4.03 0.550 3.15 

Mileage indicator (1 if the respondent annually drives 
more than 15,000 miles, 0 otherwise) 0.417 2.65 0.516 3.31 

Cross equation correlation (t-stat in parentheses) 0.965 (57.75)  
Number of survey distributors 34 
Number of respondents 456 
Log-likelihood at convergence -447.78 
Log-likelihood at zero -709.94 
Akaike information criterion (AIC) 925.60 
Aggregate distributional effect of random parameters across the respondents 
  Above zero Below zero 
Education indicator (1 if the respondent has a technical 

college degree or a college degree, 0 otherwise) 37.71% 62.29% 

Income indicator (1 if the respondent’s annual household 
income is less than $50,000, 0 otherwise) 33.07% 66.93% 

Driver preference indicator (1 if the respondent is not sure 
about driving herself/himself when there are more than 
two licensed drivers in a vehicle on a trip, 0 otherwise) 

52.54% 47.46% 
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Table 4.  (Pseudo-)elasticities of the explanatory variables included in the model of crash -related 
perceptions. 

Variable 

Fewer 
crashes on 

the 
roadway 

Less severe 
crashes on 

the 
roadway 

Socio-demographics   

Gender indicator (1 if the respondent is male, 0 otherwise) 0.065 — 
Ethnicity indicator (1 if the respondent is Asian, 0 otherwise)  0.157 0.163 
Education indicator (1 if the respondent has a technical college 

degree or a college degree, 0 otherwise) — -0.010 

Income indicator (1 if the respondent’s annual household income 
is less than $50,000, 0 otherwise) — -0.052 

Opinions and Preferences   

Familiarity with vehicle safety features indicator (1 if the 
respondent never owned a car with an advanced safety feature, 
0 otherwise) 

— -0.091 

Driver preference indicator (1 if the respondent is not sure about 
driving herself/himself when there are more than two licensed 
drivers in a vehicle on a trip, 0 otherwise) 

0.034 — 

Mileage indicator (1 if the respondent annually drives less than 
5,000 miles, 0 otherwise) 0.179 0.186 

Mileage indicator (1 if the respondent annually drives more than 
15,000 miles, 0 otherwise) 0.117 0.177 
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Table 5.  Estimation results of the grouped random parameters bivariate probit model of 
individuals’ concerns regarding the safety consequences of equipment/system failure and 
accidents on the airway 

Variable 

Safety 
consequences of 

equipment/system 
failure 

Accidents on the 
airway 

  Coeff. t-stat Coeff. t-stat 
Constant 0.896 3.88 1.092 8.30 
Socio-demographics     

Inverse of square of the age of the respondent -154.723 -1.78 — — 
Current living area indicator (1 if the respondent lives in rural 

area, 0 otherwise)  — — 0.051 0.23 

Standard deviation of parameter distribution — — 0.901 3.35 
Income indicator (1 if the respondent’s annual household 

income is less than $50,000, 0 otherwise) — — 0.296 1.06 

Standard deviation of parameter distribution — — 0.707 2.86 
Income indicator (1 if the respondent’s annual household 

income is between $50,000 and $150,000, 0 otherwise) 0.415 3.22 — — 

Opinions and Preferences     

Familiarity with vehicle safety features indicator (1 if the 
respondent never owned a car with an advanced safety 
feature, 0 otherwise) 

0.051 0.35 — — 

Standard deviation of parameter distribution 0.230 2.77 — — 
Aggressive driving indicator (1 if the respondent thinks that 

s/he normally drives very aggressively, 0 otherwise) — — 0.216 1.13 

Standard deviation of parameter distribution — — 0.532 3.03 
Driving speed indicator (1 if the respondent normally drives 

faster than 65 mph on an interstate with a 65 mph speed 
limit and little traffic, 0 otherwise) 

0.230 1.33 — — 

Standard deviation of parameter distribution 0.128 2.18 — — 
Speed limit opinion indicator (1 if the respondent completely 

disagrees with the statement: “Speed limits on high speed 
freeways should only be suggestive”, 0 otherwise)   

— — -0.407 -1.73 

Driver preference indicator (1 if the respondent generally 
prefers to drive herself/himself when there are more than 
two licensed drivers in a vehicle on a trip, 0 otherwise) 

— — -0.328 -2.91 

Cross equation correlation (t-stat in parentheses) 0.971 (45.91)  
Number of survey distributors 34 
Number of respondents 472 
Log-likelihood at convergence -327.64 
Log-likelihood at zero -490.47 
Akaike information criterion (AIC) 689.3 
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Aggregate distributional effect of random parameters across the respondents 
  Above zero Below zero 
Current living area indicator (1 if the respondent lives in rural 

area, 0 otherwise) 52.26% 47.74% 

Income indicator (1 if the respondent’s annual household 
income is less than $50,000, 0 otherwise) 66.23% 33.77% 

Familiarity with vehicle safety features indicator (1 if the 
respondent never owned a car with an advanced safety 
feature, 0 otherwise) 

58.77% 41.23% 

Aggressive driving indicator (1 if the respondent thinks that 
s/he normally drives very aggressively, 0 otherwise) 65.76% 34.24% 

Driving speed indicator (1 if the respondent normally drives 
faster than 65 mph on an interstate with a 65 mph speed 
limit and little traffic, 0 otherwise) 

96.38% 3.62% 
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Table 6.  (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 
concerns regarding the safety consequences of equipment/system failure and accidents on the 
airway 

Variable 

Safety 
consequences of 

equipment/system 
failure 

Accidents on 
the airway 

Socio-demographics    

Inverse of square of the age of the respondent -0.001 — 
Current living area indicator (1 if the respondent lives in rural 

area, 0 otherwise)  — 0.004 

Income indicator (1 if the respondent’s annual household income 
is less than $50,000, 0 otherwise) — 0.044 

Income indicator (1 if the respondent’s annual household income 
is between $50,000 and $150,000, 0 otherwise) 0.086 — 

Opinions and Preferences   

Familiarity with vehicle safety features indicator (1 if the 
respondent never owned a car with an advanced safety feature, 
0 otherwise) 

-0.001 — 

Aggressive driving indicator (1 if the respondent thinks that s/he 
normally drives very aggressively, 0 otherwise) — 0.001 

Driving speed indicator (1 if the respondent normally drives 
faster than 65 mph on an interstate with a 65 mph speed limit 
and little traffic, 0 otherwise) 

0.016 — 

Speed limit opinion indicator (1 if the respondent completely 
disagrees with the statement: “Speed limits on high speed 
freeways should only be suggestive”, 0 otherwise)   

— -0.139 

Driver preference indicator (1 if the respondent generally prefers 
to drive herself/himself when there are more than two licensed 
drivers in a vehicle on a trip, 0 otherwise) 

— -0.076 
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A number of socio-demographic characteristics are found to affect individuals’ perceptions 

regarding the safety benefits and concerns that may arise with the introduction of flying cars.  For 

example, male respondents are more likely (by 0.065, as shown by its pseudo-elasticity in Table 

4) to expect a decrease in the number of crashes on the roadway with the introduction of flying 

cars.  Similarly, Asian respondents are more likely (by 0.157 and 0.163, respectively) to expect an 

improvement in the number and severity of accidents on the roadway after the future introduction 

of flying cars. As far as the respondents’ age is concerned, older people tend to be more concerned 

about the safety consequences of equipment/system failure.  This finding demonstrates the 

perceptions of elderly travelers, who are either not well aware of the features of emerging 

transportation technologies, or are considerably biased against the technical uncertainties relating 

to the future operation of flying cars.  The majority (62.29%, as shown in Table 3) of respondents 

with a technical college or college degree does not acknowledge the potential of flying cars to 

result in less severe crashes on the roadway; whereas, about one third (37.71%) of respondents 

with a technical college or college degree expect less severe crashes on the roadways.  The living 

area of the respondents has a mixed effect on their opinion about possible safety benefits.  

Specifically, 52.26% of the respondents (as shown in Table 5) who live in rural areas are more 

concerned about the accidents on the airway; whereas, 47.74% of the same category of respondents 

are less concerned about it.  This finding may capture the air traffic-related perceptions of the 

individuals who live in rural areas.  The likely lower exposure of such individuals in intensive air 

traffic patterns, which may involve interactions with the built environment in the case of flying 

cars, may render them less concerned about the mid-air collision that can result from the emergence 

of flying car.  The income level of individuals’ households is another statistically significant 

determinant, as shown in Table 3.  In particular, 33.07% of individuals from lower income 
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households are more likely to anticipate less severe crashes on the roadway, whereas the remaining 

66.93% of the respondents are less likely to expect such a safety benefit. Similarly, the majority 

of the respondents (66.23%, as indicated in Table 5) from lower income households are more 

concerned about the possibility of accidents on the airway.  Interestingly, individuals from medium 

to high income households are more likely (by 0.086, as shown in Table 6) to be concerned about 

equipment failure.  These findings can be useful for manufacturing companies to develop training, 

simulation and testing programs and, as such, disseminate the technical details and potential 

benefits of flying cars to an appropriately targeted audience.   

As far as the familiarity with advanced transportation technologies is concerned, 

individuals who never owned a car with advanced safety features have mixed concerns regarding 

the safety features of the flying cars.  The consequences of equipment/system failure are found to 

be a more likely concern for the majority (58.77%, as shown in Table 5) of these respondents; 

whereas, for the rest of the respondents (41.23%, as shown in Table 5), the equipment failure is a 

less likely concern.  This finding shows that the familiarity with the advanced technologies 

constitutes an influential factor of public perceptions, with less familiar individuals being 

intuitively more concerned about the safety implications of flying cars. 

Moving to the behavioral and attitudinal determinants, 65.76% of the individuals (as 

indicated in Table 5) who perceive themselves as very aggressive drivers are more concerned about 

accidents on the airway with the future use of flying cars.  Concerns about safety consequences of 

equipment/system failure slightly vary across drivers with self-reported speeding behavior (e.g., 

drivers who normally drive faster than 65 mph on an interstate with speed limit of 65 mph and 

little traffic).  For the vast majority (96.38%, as shown in Table 5) of these respondents, the self-

reported speeding behavior increases the likelihood of concerns about safety consequences.  On 
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the contrary, individuals who completely disagree with the concept of having freeway speed limit 

as a suggestive measure are less likely (by -0.139, as shown in Table 6) to be concerned about 

accidents on the airway.  As expected, the self-consciousness of these respondents in conjunction 

with the prevailing uncertainty regarding the operating conditions of flying cars (e.g., pilot-assisted 

operation versus fully autonomous operation) may be leading to more reserved perceptions of the 

safety implications of flying cars. 

Another source of perceptual variations arises from individuals with varying willingness 

to drive in shared trips (e.g., drivers who are not sure about driving themselves when other licensed 

drivers are also present in a vehicle).  The majority (52.54%, as shown in Table 3) of these 

individuals are more likely to expect fewer crashes with the use of flying cars, while the opposite 

is observed for the remaining 47.46%.  On the other hand, the respondents who prefer to drive 

themselves, when there are more than two licensed drivers in a vehicle, are less likely (by -0.076, 

as shown by its pseudo-elasticity in Table 6) to consider the possibility of accidents on the airway 

as a concerning factor. Higher driving confidence may downgrade concerns about possible 

conflicts on the airway, since either the manual or autonomous operation of flying cars may be 

perceived as risk-free by the specific group of individuals. 

Driving exposure has also influential effect in shaping individuals’ opinions about the 

safety benefits and concerns of flying cars.  Specifically, individuals with greater annual mileage 

(more than 15,000 miles per year) are more likely (by 0.117 and 0.177, respectively, as shown by 

the elasticities in Table 4) to expect fewer and less severe crashes on the roadway after the future 

introduction of flying cars.  Similarly, individuals with low annual mileage (less than 5,000 miles 

per year) are more likely to expect fewer and less severe crashes on the roadway (by 0.179 and 

0.186, respectively).  Both findings possibly capture the effect of habitual driving patterns on 
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individuals’ perceptions, since the experience of frequent car-users may lead to greater awareness 

and acknowledgment of the safety features of the emerging transportation technologies.  Car-users 

with limited driving experience may similarly perceive the safety benefits of flying cars, especially 

those who extensively use new transportation systems for commuting, such as millennials (Polzin 

et al., 2014; Garikapati et al., 2016).  

4.2. Perceptions and opinions on security-related concerns and measures 

Tables 7 and 8 present the estimation results and (pseudo-)elasticities, respectively, of the 

bivariate model of individuals’ concerns about security against hackers/terrorists and personal 

information privacy (location/destination monitoring) with the use of flying cars.  The estimation 

results and (pseudo-) elasticities of the binary probit model of individuals’ opinions on the use of 

existing FAA regulations for air traffic control are presented in Tables 9 and 10, respectively.  

Tables 11 and 12 present the estimation results and (pseudo-) elasticities, respectively, of the 

binary probit model of individuals’ perceptions towards the effectiveness of establishing air-road 

police enforcement (with flying police cars).  Tables 13 and 14 present the estimation results and 

(pseudo-) elasticities, respectively, of the binary probit model of individuals’ perceptions towards 

the detailed profiling and background checking of flying car owners/operators. Finally, the 

estimation results and elasticities of the binary probit model of individuals’ opinions on 

establishing no-fly zones for flying cars near sensitive locations (military bases, power/energy 

plants, governmental buildings, major transportation hubs, etc.) are presented in Tables 15 and 16, 

respectively.  
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Table 7.  Estimation results of the grouped random parameters bivariate probit model of 
individuals’ concerns regarding security against hackers/terrorists and personal information 
privacy (Location/destination monitoring) 

Variable Security against 
hackers/terrorists 

Personal information 
privacy 

(Location/destination 
monitoring) 

  Coeff. t-stat Coeff. t-stat 

Constant — — 0.687 4.37 

Socio-demographics     

Age indicator (1 if the respondent is younger than 25, 0 
otherwise) 0.270 2.51 — — 

Gender indicator (1 if the respondent is male, 0 
otherwise) 0.162 1.31 — — 

Standard deviation of parameter distribution 0.227 3.49 — — 
Ethnicity indicator (1 if the respondent is Caucasian, 0 

otherwise) — — -0.359 -3.12 

Education indicator (1 if the respondent has a technical 
college degree or a college degree, 0 otherwise) — — -0.211 -1.70 

Standard deviation of parameter distribution — — 0.239 3.30 

Opinions and Preferences     

Familiarity with vehicle safety features indicator (1 if the 
respondent is not familiar with advanced safety 
features, 0 otherwise) 

0.317 1.51 — — 

Standard deviation of parameter distribution 0.962 3.61 — — 
Speed limit opinion indicator (1 if the respondent 

disagrees or completely disagrees with the statement: 
“Speed limits on high speed freeways should only be 
suggestive”, 0 otherwise)   

— — -0.305 -2.89 

Driver preference indicator (1 if the respondent is not 
sure about driving herself/himself when there are more 
than two licensed drivers in a vehicle on a trip, 0 
otherwise) 

0.442 2.81 0.439 2.47 

Mileage indicator (1 if the respondent annually drives 
more than 15,000 miles, 0 otherwise) 0.229 1.72 — — 

Cross equation correlation (t-stat in parentheses) 0.928 (43.21) 
Number of survey distributors 34 
Number of respondents 464 
Log-likelihood at convergence -451.40 
Log-likelihood at zero -668.30 
Akaike information criterion (AIC) 930.8 
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Aggregate distributional effect of random parameters across the respondents 
  Above zero Below zero 
Gender indicator (1 if the respondent is male, 0 

otherwise) 76.23% 23.77% 

Education indicator (1 if the respondent has a technical 
college degree or a college degree, 0 otherwise) 18.87% 81.13% 

Familiarity with vehicle safety features indicator (1 if the 
respondent is not familiar with advanced safety 
features, 0 otherwise) 

62.91% 37.09% 
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Table 8.  (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 
concerns regarding security against hackers/terrorists and personal information privacy 
(Location/destination monitoring) 

Variable Security against 
hackers/terrorists 

Personal information 
privacy 

(Location/destination 
monitoring) 

Socio-demographics   

Age indicator (1 if the respondent is younger than 25, 0 
otherwise) 0.078 — 

Gender indicator (1 if the respondent is male, 0 
otherwise) 0.034 — 

Ethnicity indicator (1 if the respondent is Caucasian, 0 
otherwise) — -0.129 

Education indicator (1 if the respondent has a technical 
college degree or a college degree, 0 otherwise) — -0.094 

Opinions and Preferences   

Familiarity with vehicle safety features indicator (1 if the 
respondent is not familiar with advanced safety 
features, 0 otherwise) 

0.113 — 

Speed limit opinion indicator (1 if the respondent 
disagrees or completely disagrees with the statement: 
“Speed limits on high speed freeways should only be 
suggestive”, 0 otherwise)   

— -0.186 

Driver preference indicator (1 if the respondent is not 
sure about driving herself/himself when there are more 
than two licensed drivers in a vehicle on a trip, 0 
otherwise) 

0.143 0.101 

Mileage indicator (1 if the respondent annually drives 
more than 15,000 miles, 0 otherwise) 0.126 — 
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Table 9.  Estimation results of the grouped random parameters binary probit model with 
heterogeneity in means of individuals’ perceptions towards the use of existing FAA regulations 
for air traffic control to improve security against hackers/terrorists. 
Variable Coeff. t-stat 
Socio-demographics     
Age indicator (1 if the respondent is younger than 30, 0 otherwise) 0.542 3.39 
Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) 0.433 1.68 

Standard deviation of parameter distribution 1.462 4.12 
Income indicator (1 if the respondent’s annual household income is 

between $50,000 and $150,000, 0 otherwise) 0.391 2.66 

Opinions and Preferences   

Driving speed indicator (1 if the respondent normally drives faster than 
65 mph on an interstate with a 65 mph speed limit and little traffic, 0 
otherwise) 

-0.468 -2.40 

Driver preference indicator (1 if the respondent is not sure about driving 
herself/himself when there are more than two licensed drivers in a 
vehicle on a trip, 0 otherwise) 

0.487 3.12 

Accident history indicator (1 if the respondent has had more than one 
non-severe accidents in the last 5 years, 0 otherwise) -0.457 -1.86 

Annual mileage driven (in 1000 miles) -0.016 -1.44 
Standard deviation of parameter distribution 0.012 2.35 

Heterogeneity in means   

Annual mileage driven (in 1000 miles): Education indicator (1 if the 
respondent has a college degree or post graduate degree, 0 otherwise) 0.027 2.46 

Number of survey distributors 34 
Number of respondents 451 
Log likelihood function       -268.72 
Log-likelihood at zero -355.06 
Akaike information criterion (AIC) 557.40 
Aggregate distributional effect of random parameters across the respondents 

  Above 
zero 

Below 
zero 

Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) 61.64% 38.36% 
Annual mileage driven (in 1000 miles) 9.12% 90.88% 
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Table 10.  (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 
perceptions towards the use of existing FAA regulations for air traffic control to improve security 
against hackers/terrorists. 

Variable   

Socio-demographics  
Age indicator (1 if the respondent is younger than 30, 0 otherwise) 0.173 
Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) 0.082 
Income indicator (1 if the respondent’s annual household income is between 

$50,000 and $150,000, 0 otherwise) 0.130 

Opinions and Preferences  
Driving speed indicator (1 if the respondent normally drives faster than 65 

mph on an interstate with a 65 mph speed limit and little traffic, 0 otherwise) -0.142 

Driver preference indicator (1 if the respondent is not sure (varies) about 
driving herself/himself when there are more than two licensed drivers in a 
vehicle on a trip, 0 otherwise) 

0.152 

Accident history indicator (1 if the respondent has had more than one non-
severe accidents in the last 5 years, 0 otherwise) -0.086 

Annual mileage driven (in 1000 miles) -0.0001 
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Table 11.  Estimation results of the correlated grouped random parameters binary probit model 
with heterogeneity in means of individuals’ perceptions towards establishing air-road police 
enforcement (with flying police cars) to improve security against hackers/terrorists. 

Variable Coeff. t-stat 

Constant 0.958 7.51 
Socio-demographics   

Education indicator (1 if the respondent has a technical 
college degree or a college degree, 0 otherwise) 0.137 0.78 

Standard deviation of parameter distribution 0.519 24.23 
Income indicator (1 if the respondent’s annual household 

income is less than $75,000, 0 otherwise) -0.394 -1.86 

Opinions and Preferences   

Familiarity with vehicle safety features indicator (1 if the 
respondent never owned a car with an advanced safety 
feature, 0 otherwise) 

-0.329 -1.79 

Aggressive driving indicator (1 if the respondent thinks that 
s/he normally drives not aggressively, 0 otherwise) 0.407 1.80 

Speed limit opinion indicator (1 if the respondent 
completely agrees with the statement: “Speed limits on 
high speed freeways should only be suggestive”, 0 
otherwise) 

-0.426 -1.96 

Accident history indicator (1 if the respondent has had at 
least one non-severe or severe accident in the last 5 years, 
0 otherwise) 

-0.410 -2.43 

Standard deviation of parameter distribution 0.581 4.05 
Heterogeneity in means   

Education indicator: Mileage indicator (1 if the respondent 
annually drives greater than 10,000 miles, 0 otherwise) -0.434 -2.04 

Number of survey distributors 34 
Number of respondents 446 
Log likelihood function       -241.33 
Log-likelihood at zero -321.53 
Akaike information criterion (AIC) 504.7 
Aggregate distributional effect of random parameters across the respondents 

  Above zero Below zero 
Education indicator (1 if the respondent has a technical 

college degree or a college degree, 0 otherwise) 60.41% 39.59% 

Accident history indicator (1 if the respondent has had at 
least one non-severe or severe accident in the last 5 years, 
0 otherwise) 

24.02% 75.98% 
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Elements of the Cholesky Matrix [t-stats in brackets], and correlation coefficients (in 
parentheses) for the random parameters 
 Accident history 

indicator 
Education 
indicator 

Accident history indicator 0.581 [4.05]  
(1.000) 

-0.306 [-2.68]  
(-0.589) 

Education indicator -0.306 [-2.68]  
(-0.589) 

0.419 [3.85]  
(1.000) 
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Table 12.  (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 
perceptions towards establishing air-road police enforcement (with flying police cars) to improve 
security against hackers/terrorists. 

Variable   

Socio-demographics  
Education indicator (1 if the respondent has a technical college degree or a college 

degree, 0 otherwise) -0.040 

Income indicator (1 if the respondent’s annual household income is less than $75,000, 
0 otherwise) -0.088 

Opinions and Preferences  
Familiarity with vehicle safety features indicator (1 if the respondent never owned a 

car with an advanced safety feature, 0 otherwise) -0.092 

Aggressive driving indicator (1 if the respondent thinks that s/he normally drives not 
aggressively, 0 otherwise) 0.123 

Speed limit opinion indicator (1 if the respondent completely agrees with the 
statement: “Speed limits on high speed freeways should only be suggestive”, 0 
otherwise) 

-0.121 

Accident history indicator (1 if the respondent has had at least one non-severe or severe 
accident in the last 5 years, 0 otherwise) -0.110 
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Table 13.  Estimation results of the correlated grouped random parameters binary probit model of 
individuals’ perceptions towards detail profiling and background checking of flying car 
owners/operators to improve security against hackers/terrorists. 
Variable Coeff. t-stat 
Constant 0.719 8.38 
Socio-demographics   

Age indicator (1 if the respondent is older than 50, 0 otherwise) -0.428 -1.87 
Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) 0.540 2.48 
Income indicator (1 if the respondent’s annual household income is 

greater than $100,000, 0 otherwise) 0.280 1.28 

Standard deviation of parameter distribution 0.776 26.26 
Opinions and Preferences   

Mileage indicator (1 if the respondent annually drives less than 5,000 
miles, 0 otherwise) -0.026 -0.12 

Standard deviation of parameter distribution 0.551 2.54 
Number of survey distributors 34 
Number of respondents 466 
Log likelihood function       -239.62 
Log-likelihood at zero -300.02 
Akaike information criterion (AIC) 495.2 
Aggregate distributional effect of random parameters across the respondents 

  Above zero Below zero 
Income indicator (1 if the respondent’s annual household income is 

greater than $100,000, 0 otherwise) 64.09% 35.91% 

Mileage indicator (1 if the respondent annually drives less than 5,000 
miles, 0 otherwise) 48.12% 51.88% 

Elements of the Cholesky Matrix [t-stats in brackets], and correlation coefficients (in 
parentheses) for the random parameters 
 Mileage 

indicator  
Income 

indicator 

Mileage indicator 0.551 [2.54] 
(1.000) 

0.622 [2.86] 
(0.801) 

Income indicator 0.622 [2.86] 
(0.801) 

0.464 [2.33] 
(1.000) 
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Table 14.  (Pseudo-) elasticities of the explanatory variables included in the model of individuals’ 
perceptions towards detail profiling and background checking of flying car owners/operators to 
improve security against hackers/terrorists. 

Variable   

Socio-demographics  
Age indicator (1 if the respondent is older than 50, 0 otherwise) -0.138 
Ethnicity indicator (1 if the respondent is Asian, 0 otherwise) 0.128 
Income indicator (1 if the respondent’s annual household income is greater than 

$100,000, 0 otherwise) 0.018 

Opinions and Preferences  
Mileage indicator (1 if the respondent annually drives less than 5,000 miles, 0 

otherwise) 0.002 
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Table 15.  Estimation results of the correlated grouped random parameters binary probit model of 
individuals’ perceptions towards establishing no-fly zones for flying cars near sensitive locations 
(military bases, power/energy plants, governmental buildings, major transportation hubs, etc.). 
Variable Coeff. t-stat 
Constant 1.235 2.37 
Socio-demographics   

Age indicator (1 if the respondent is younger than 30, 0 otherwise) -0.937 -2.09 
Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise) -0.154 -0.87 

Standard deviation of parameter distribution 0.522 3.32 
No. of children indicator (1 if the respondent’s household has no child 

aged below 6 years, 0 otherwise) 0.839 2.64 

Standard deviation of parameter distribution 0.605 23.86 
Opinions and Preferences   

Driving experience indicator (1 if the respondent has a driving license 
for over 15 years, 0 otherwise) -1.034 -2.08 

Driver preference indicator (1 if the respondent generally prefers to 
have the other driver drive when there are more than two licensed 
drivers in a vehicle on a trip, 0 otherwise) 

-0.499 -2.68 

Speed limit opinion indicator (1 if the respondent is neutral with the 
statement: “Speed limits on high speed freeways should only be 
suggestive”, 0 otherwise) 

0.318 1.69 

Number of survey distributors 34 
Number of respondents 485 
Log likelihood function       -215.86 
Log-likelihood at zero -274.27 
Akaike information criterion (AIC) 451.7 
Aggregate distributional effect of random parameters across the respondents 

  Above zero Below zero 
Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise) 38.40% 61.60% 
No. of children indicator (1 if the respondent’s household has no 

child aged below 6 years, 0 otherwise) 91.72% 8.28% 

Elements of the Cholesky Matrix [t-stats in brackets], and correlation coefficients (in 
parentheses) for the random parameters 

 Ethnicity 
indicator  

No. of 
children 
indicator 

Ethnicity indicator  0.522 [3.32] 
(1.000) 

-0.561 [-4.12] 
(-0.926) 

No. of children indicator -0.561 [-4.12] 
(-0.926) 

0.228 [2.80] 
(1.000) 
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Table 16.  (Pseudo-)elasticities of the explanatory variables included in the model of individuals’ 
perceptions towards establishing no-fly zones for flying cars near sensitive locations (military 
bases, power/energy plants, governmental buildings, major transportation hubs, etc.).

Variable   

Socio-demographics  
Age indicator (1 if the respondent is younger than 30, 0 otherwise) -0.170 
Ethnicity indicator (1 if the respondent is Caucasian, 0 otherwise) -0.014 
No. of children indicator (1 if the respondent’s household has no child aged below 

6 years, 0 otherwise) 0.199 

Opinions and Preferences  

Driving experience indicator (1 if the respondent has a driving license for over 
15 years, 0 otherwise) -0.279 

Driver preference indicator (1 if the respondent generally prefers to have the other 
driver drive when there are more than two licensed drivers in a vehicle on a trip, 
0 otherwise) 

-0.124 

Speed limit opinion indicator (1 if the respondent is neutral with the statement: 
“Speed limits on high speed freeways should only be suggestive”, 0 otherwise) 0.068 
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A number of sociodemographic characteristics are found to affect individuals’ security- 

specific perceptions.  Table 7 shows that 76.23% of the male respondents are concerned about 

security against hackers/terrorists after the introduction of flying cars, while the opposite is 

observed for the remaining 23.77%.  With regard to the variables reflecting the age of the 

respondents, respondents who are younger than 25 years old are more likely to be concerned (by 

0.078, as indicated by the (pseudo-)elasticities in Table 8) about security against hackers/terrorists.  

Similarly, individuals younger than 30 years old are more likely to believe (by 0.173, as indicated 

in Table 10) that the use of existing FAA regulations for air traffic control can improve flying cars’ 

security against hackers/terrorists.  Interestingly, the same group of individuals are less likely to 

believe (by -0.170, as indicated in Table 16) that the establishment of no-fly zones near sensitive 

locations can improve security.  As far as older individuals are concerned, respondents who are 

older than 50 are less likely (by -0.138, as indicated by the (pseudo-)elasticities in Table 14) to 

anticipate security enhancement against hackers/terrorists with detailed profiling and background 

checking of flying car owners/operators.  Similar to their perceptions on the safety-related 

implications of flying cars, older individuals may be over-reserved against the technological 

features that can breach their privacy and, hence, may not be easily convinced about the 

effectiveness of passive security measures, such as the background checking.   

The majority (61.64%, as indicated in Table 9) of the Asian individuals are more likely to 

be in favor of using the existing FAA regulations for air traffic control, while the opposite is 

observed for the remaining 38.36%.  In line with the previous finding, Asian individuals are also 

more likely (by 0.128, as indicated by the (pseudo-) elasticities in Table 14) to expect that the 

detailed profiling and background checking of flying car owners/operators can enhance security 

against hackers/terrorists.  As far as Caucasian individuals are concerned, they are less likely (by 
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-0.129, as indicated in Table 8) to perceive personal information privacy as a concern.  However, 

the majority (61.60%, as shown in Table 15) of these individuals do not perceive establishment of 

no-fly zones as a credible security measure; whereas the remaining 38.40% believe the opposite.  

Focusing on the effect of the educational background, the vast majority (81.13%, as shown 

in Table 7) of the respondents who have a technical college degree or a college degree are less 

likely to be concerned about personal information privacy (location/destination monitoring) with 

the future introduction of flying cars; whereas the opposite is observed for the remaining 18.87%.  

The majority (60.41%, as indicated in Table 11) of the respondents from same educational 

background are more likely to believe that the establishment of air-road police enforcement has 

the potential to improve security against hackers/terrorists.  The opposite effect is observed for the 

remaining 39.59% of the individuals.  Note that this explanatory variable also produced 

statistically significant heterogeneity in means.  Specifically, the high annual mileage indicator 

(greater than 10,000 miles) is found to decrease the mean of the random parameter relating to the 

education indicator, which, in turn, leads to a lower likelihood of expectations for security 

enhancement.  The driving experience gained by greater annual mileage may make the individuals 

more aware about possible technical challenges that need to be overcome for the combination of 

the on-ground and in-air enforcement.  As such, greater annual mileage imposes an additional layer 

of heterogeneity on the perceptions of well-educated individuals as well as a more balanced 

distribution of favorable and non-favorable perceptions towards the effectiveness of air-road police 

enforcement.  

The household income level of individuals constitutes another significant determinant of 

security-related perceptions.  For example, individuals from low and medium income households 

(i.e., with annual household income less than $75,000) are less likely (by -0.088, as indicated in 
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Table 12) to believe that establishing air-road police enforcement is going to improve security 

against hackers/terrorists.  On the contrary, individuals from medium to high income households 

(i.e., with annual household income between $50,000 and $150,000) are more likely (by 0.130, as 

indicated in Table 10) to believe that use of existing FAA regulations for air traffic control would 

improve security.  In line with this finding, 64.09% individuals from high income households (i.e., 

with annual household income greater than $100,000) are more likely to believe that detail 

profiling and background checking of flying car owners/operators would improve security against 

hackers/terrorists; whereas the opposite is observed for the rest 35.91% as indicated in Table 13.  

Overall, members of low income households appear to be more skeptical against the effectiveness 

of possible security measures.  Their non-favorable perceptions regarding the security implications 

of flying cars are in line with their low willingness to use the flying cars and their low expectations 

about the mobility benefits that will arise after the introduction of flying cars (see also Eker et al., 

2019a; Eker et al., 2019b).  The majority of respondents from medium to high income households 

seem more inclined to endorse various security measures.  This trend is expected, since such 

individuals are considered as more likely to use the flying cars (see also Eker et al., 2019a), and 

generally more likely to adopt emerging transportation technologies (see also Alemi et al., 2018). 

It was also observed that 91.72% of respondents from households having no children aged below 

6 years old are more likely to believe that establishing no-fly zone for flying cars near sensitive 

locations is going to improve security; whereas the remaining 8.28% respondents believe the 

opposite, as indicated in Table 7.  This finding may refer to the subdued skepticism towards 

security issues as well as optimistic outlook towards potential security measures of individuals 

from such households, arising from the absence of young child – which is one of the most 

vulnerable population groups with regard to any security issues.    



48 
 

As far as the familiarity with advanced transportation technologies is concerned, 62.91% 

of the respondents who are not familiar with the use of vehicle safety features are intuitively more 

concerned about the security against hackers/terrorists, while the opposite is observed for the 

remaining 37.09%, as indicated in Table 7. Individuals who never owned a car with advanced 

safety features are less likely (by -0.092 as shown in Table 12) to expect improvements in security 

with the establishment of air-road police enforcement.  In line with earlier research findings (see 

also Eker et al., 2019b), the non-familiarity of individuals with existing, yet advanced 

transportation technologies may inflate their skepticism against implications of flying cars with 

significant uncertainties, especially in the context of safety and security. 

Moving to the behavioral and attitudinal characteristics, respondents who perceive 

themselves as nonaggressive drivers are found to be more supportive (by 0.123, as shown in Table 

12) of establishing air-road police enforcement.  This finding may capture underlying behavioral 

patterns of the specific individuals, primarily with respect to their response against various aspects 

of traffic enforcement (see also Fountas et al., 2019).  Drivers with self-reported speeding behavior 

(e.g., drivers who normally drive faster than 65 mph on an interstate with speed limit of 65 mph 

and little traffic) are less likely (by -0.142, as shown in Table 10) to expect that the use of existing 

FAA regulations will improve security. 

Furthermore, individuals who do not endorse the suggestive role of speed limits are less 

concerned (by -0.186, as shown in Table 8) about personal information and privacy issues after 

the introduction of flying cars. In contrast, the respondents that stand in favor of the suggestive 

speed limits are less likely (by -0.121, as shown in Table 12) to expect security improvements with 

the establishment of air-road police enforcement.  In addition, respondents who are neutral with 

the suggestive role of speed limits are more likely (by 0.068, as shown in Table 16) to anticipate 
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improvements in security after the establishment of no-fly zones near sensitive locations.  Overall, 

individuals’ perceptions on the role of speed limit may again pick up their attitudinal perspectives 

regarding the traffic enforcement, with the latter possibly driving their expectations for the safety 

implications of flying cars.  For example, individuals supporting the suggestive speed limits may 

have more critical viewpoints on the effectiveness of traffic enforcement, which may be reflected 

on their expectations about the security potential of the air-road enforcement.  

Another source of perceptual variations arises from individuals with skepticism to drive in 

shared trips (e.g., drivers who are not sure about driving when other licensed drivers are also 

present in a vehicle).  These individuals are more likely (by 0.143 and 0.101, as shown in Table 8) 

to be concerned about security against hackers/terrorists and privacy issues after the introduction 

of flying cars, respectively.  Respondents from the same group are more likely (by 0.152, as shown 

in Table 10) to anticipate that the existing FAA regulations for air traffic control will improve 

security against hackers/terrorists.  Moreover, respondents who prefer to have someone else drive 

in a similar scenario are less likely (by -0.124, as shown in Table 16) to expect improvements in 

security with the establishment of no-fly zones for flying cars near sensitive locations.  These 

results show that the lack of driving confidence stemming from individuals’ skepticism to drive 

may inflate possible concerns about the security performance of flying cars.  Taking into account 

the causal relationship between driving confidence and risk perception (see also Sundström, 2011, 

Fountas et al., 2019), this finding is intuitive and may be applicable to the entire perceptual 

spectrum of this group of individuals.  

Respondents who were involved in more-than-one non-severe accidents over the last 5 

years are less likely (by -0.086, as shown in Table 10) to expect that the existing FAA regulations 

for air traffic control will improve security against hackers/terrorists.  Similarly, 75.98% of the 
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respondents who were involved in at least one non-severe or severe accident over the last 5 years 

are less likely to expect that the air-road police enforcement will improve security against 

hackers/terrorists (as shown in Table 11), while the opposite is observed for the remaining 24.02%.  

The undesirable circumstances arising from a previous accident experience may escalate 

individuals’ skeptical perceptions towards intrusive, yet preventive security measures.  

Furthermore, individuals with high annual mileage (more than 15,000 miles per year) are more 

likely (by 0.126, as shown in Table 8) to be concerned about security against hackers/terrorists 

from the future use of flying cars. Similarly, respondents who have had a driving license for over 

15 years are less likely (by -0.279, as shown in Table 16) to expect improved security through 

establishing no-fly zones for flying cars near sensitive locations.  

The annual mileage constitutes a significant source of unobserved heterogeneity in the 

model of individuals’ perceptions about the use of the existing FAA air traffic regulations.  

Specifically, for 90.88% of the responses (as indicated in Table 9), the variable reflecting the 

annual mileage driven, decreases the individuals’ likelihood to expect that the existing FAA 

regulations for air traffic control will improve security against hackers/terrorists.  Apart from 

heterogeneity in the model parameters, the annual mileage driven resulted in statistically 

significant heterogeneity in means.  The high education indicator (college or post-graduate degree) 

is found to increase the mean of the random parameter distribution of the annual mileage, which, 

in turn, results in an increase in the likelihood of favorable expectations towards the use of FAA 

regulations.  In other words, well-educated and experienced drivers may still have mixed, but more 

balanced attitudinal perspectives towards the effectiveness of FAA air traffic regulations.  On the 

contrary, 51.88% of the individuals with low annual mileage (less than 5,000 miles per year) are 

less likely to believe that the detailed profiling and background checking of flying car 
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owners/operators will improve security against hackers/terrorists, while the opposite is observed 

for the remaining 48.12%.  Despite their mixed perceptions, less experienced drivers may expect 

the imposition of more intrusive measures as a warrant for their security during the flying car trips. 

Focusing on the interactive effect of unobserved characteristics, education indicator 

(reflecting technical college degree or college degree) and the accident history indicator (reflecting 

involvement in at least one accident over the last 5 years) produced correlated random parameters 

in the model of individuals’ perceptions towards the establishment of air-road police enforcement. 

The correlation coefficient is negative (-0.589, as shown in Table 11), indicating that the 

commonly shared unobserved characteristics captured by these two random parameters have 

heterogeneous effect on individuals’ perceptions.  In the model of individuals’ perception towards 

detail profiling and background checking, the income indicator (reflecting annual household 

income above $100,000) and the mileage indicator (reflecting annual driving mileage less than 

5,000 miles) both resulted in correlated random parameters with a positive correlation coefficient 

(0.801, as shown in Table 13).  The latter implies that the effect of the unobserved characteristics 

captured by the aforementioned random parameters on individuals’ perspective is homogeneous. 

The ethnicity indicator (reflecting Caucasian respondents) and the number of children indicator 

(reflecting respondents from households with no children aged less than 6 years old) also resulted 

in correlated random parameters in the model of individuals’ perception towards establishing no-

fly zones for flying cars near sensitive locations.  In this case, the correlation coefficient is negative 

(-0.926, as indicated in table 15), demonstrating a heterogeneous effect on perceptual mechanism 

of Caucasian individuals from households with no children less than 6 years old. 
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5. SUMMARY AND CONCLUSION 

Unlike with the high commercial readiness of flying cars, the implications of their safety 

and security features on public perception are still highly uncertain.  Once flying cars start to 

penetrate the surface and air transportation networks, various operational and regulating policies 

are expected to take effect.  The effectiveness of such policies will be primarily determined by 

their potential to fulfill public expectations and to ensure the commercial viability of this new 

technology.  In this context, this paper aims at identifying – at an exploratory level – various 

nuances of public perception towards the safety benefits as well as the safety and security concerns 

that may arise after the emergence of flying cars.  To that end, an online survey was conducted 

and socio-demographic information as well as opinions and preferences regarding flying cars were 

gained from 584 individuals. 

Due to the emerging nature of this technology, the opinions and expectations towards the 

implications of flying cars may be significantly affected by complex patterns of unobserved 

heterogeneity.  To tackle this issue, several layers of unobserved heterogeneity were accounted for 

in the statistical analysis of survey responses, namely: (i) commonly shared unobserved variations 

across conceptually interrelated perceptions; (ii) unobserved heterogeneity variations and 

interactions across panel-specific responses; and (iii) heterogeneity in the means of random 

parameters.  To determine the factors affecting perceived safety benefits as well as safety- and 

security-related concerns, the grouped random parameters bivariate probit modeling framework 

was employed.  To identify the factors affecting respondents’ opinions regarding measures that 

can possibly enhance security in the operation of flying cars, various correlated grouped random 

parameters binary probit models with heterogeneity in means were estimated. 



53 
 

The results of the statistical analysis show that a number of socio-demographic and 

attitudinal characteristics, behavioral traits, and driving habits may influence the respondents’ 

opinions towards safety- and security-related perceptions.  Overall, the results showed that 

younger respondents seem to be more welcoming towards the safety benefits of flying cars and to 

possible security-related measures, as opposed to older individuals who were consistently found 

concerned about various safety and security issues.  Education and income level were repeatedly 

identified as sources of unobserved heterogeneity resulting in random parameters and, hence, 

mixed perceptual patterns.  It should be noted that the education level was found to produce highly 

heterogeneous effects, not only across the survey responses, but also across the means of random 

parameters.  Asian respondents stand generally more favorably towards the safety benefits of 

flying cars and the suggested security countermeasures.  Lack of familiarity with advanced vehicle 

features is found to increase individuals’ skepticism towards the safety and security performance 

of flying cars.  In addition, several driving-related opinions and behavioral patterns are also found 

to affect individuals’ perceptions.  Specifically, the driving experience, as reflected by the annual 

mileage driven, constitutes an additional source of perceptual variations introducing heterogeneity 

in the effect of explanatory variables across the responses as well as heterogeneity in the means of 

random parameters.  The estimation of correlated grouped random parameters also enabled the 

identification of various inter-dependencies in the perceptual mechanisms of Caucasian 

individuals, medium-or well-educated individuals, medium or high income individuals, 

individuals with accident history, individuals with low annual driving mileage, and individuals 

from households without children.  

Despite the several challenges arising from the uncertainty accompanying public 

perceptions, the findings of this study highlight the major role of safety and security, as sources of 
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concern for individuals that are seemingly less appealed by emerging transportation technologies.  

Such groups may include older individuals, low-income individuals and individuals with accident 

experience.  However, the integration of flying cars in the existing transportation network can be 

ensured only if the public confidence on safety and security of flying cars is broadly consolidated, 

including the groups of less favorable, yet potential travelers.  The key perceptions of the latter, as 

reflected by the findings of this study, can assist in the formation of partnerships between 

legislative entities, manufacturers and service providers with specific focus on enhancing public 

confidence through outreach campaigns or traveler-centered regulating policies. 
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