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Abstract—Satisfying the requirements of devices and users
of online video streaming services is a challenging task. It
requires not only managing the network Quality of Service but
also to exert real-time control, addressing the user’s Quality of
Experience (QoE) expectations. QoE management is an end-to-
end process that, due to the ever-increasing variety of video
services, has become too complex for conventional ‘reactive’
techniques. Herein, we review the most significant ‘predictive’
QoE management methods for video streaming services, showing
how different machine learning approaches may be used to
perform proactive control. We pinpoint a selection of the best
suited machine learning methods, highlighting advantages and
limitations in specific service conditions. The review leads to
lessons learned and guidelines to better address QoE require-
ments in complex video services.

Index Terms—Machine Learning, Quality of Experience Man-
agement, Video Streaming Services

I. INTRODUCTION

In the current complex and broad wireless environment,
satisfying the users’ and devices’ requirements arising from
digital services becomes fundamental [1]. In this situation,
being able to monitor applications, and act upon them when
improvements are required, is essential. Particularly crucial is
the case of video streaming services. New streaming protocols
increase bandwidth requirements and transmission complexity,
which are critical elements for service and network providers.
This task has traditionally been studied in the context of
network Quality-of-Service (QoS) management. However, due
to the variability in channel conditions, streaming over wire-
less networks incurs quality degradation even when there is
sufficient nominal capacity [2]. This degradation cannot be
assessed merely by means of QoS factors, which only reflect
the status of individual networks but do not comprehensively
capture the end-to-end features that affect the overall quality
delivered to the user. To address these elements, Quality of
Experience (QoE) management has been recognized as a much
more effective proposition [3].

Today, humans are quality meters [4], and their expecta-
tions, perceptions and needs carry a great value in the context
of digital service delivery [5]. QoE is defined as the degree
of delight or annoyance of the user of an application or
service, based on both objective and subjective psychological
measurements [6]. QoE has therefore multiple dimensions,
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Fig. 1: General block diagram to perform QoE management.

encompassing both objective (e.g., performance related) and
subjective (e.g., user related) aspects [7]. The overall goal of
QoE management is to optimize the end-user QoE (end-user
perspective), while making efficient use of network resources
(current and future ones) and maintaining a satisfied customer
base (provider perspective) [6]. Thus, successfully managing
QoE for any specific application requires understanding, iden-
tifying and monitoring the multiple factors (both subjective
and objective ones) that affect the quality, considering the
various actors in the service provisioning chain. This will lead
to QoE models that capture the parameters to be monitored and
ultimately, put in place effective QoE optimization strategies.

The QoE management process may be broken down into
three general steps (Figure 1): QoE modeling, QoE monitoring
and measurements, and QoE optimization and control. Tradi-
tionally, QoE management has been performed by means of
subjective evaluations and deterministic adaptation. Therefore,
a selected group of users would rate the received video
content (using the Mean Opinion Score scale [6]). From the
server side, the users’ feedback would be monitored and the
service would slowly be adapted to the users’ requirements.
Due to the time required by the subjective evaluations and
adaptations, this procedure can only be performed in an offline
manner. However, with the exponential increase in number
and variety of video streaming services, client devices and
network conditions require real-time, accurate and adaptable
QoE management. Thus, performing QoE management via
traditional methods becomes unfeasible. To solve this, in the
last years, several research lines have followed the paths of
artificial intelligence and Machine Learning (ML). ML allows
improving the accuracy of quality models [8], helping the
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monitoring process [9] or providing a fast optimization feed-
back loop for adaptive streaming applications [10]. However,
picking ML model best suited to the type of application and
situation is in itself an open research topic.

In this paper, we review the most significant prediction-
based approaches to improve the QoE management loop. We
split our analysis into the three components of Figure 1, to
comparatively analyze each of the approaches, pinpointing
major advantages as well as drawbacks. With this, we aim
to provide a set of guidelines and lessons learned from
our experience with predictive QoE management of video
streaming services.

The remainder of this paper is organized as follows. Sec-
tion II introduces machine learning, its main categories and
type of models. Section III presents the core contribution of
this paper, the review of machine learning-based approaches
that aim to tackle challenges the QoE management loop. While
Section III-A focuses on the approaches that apply machine
learning techniques to improve the prediction of video quality
models, Section III-B covers the state-of-the-art solutions on
predictive video quality optimization and control techniques.
Finally, Section III-C focuses on predictive models which
complement and enhance quality monitoring. In addition to the
state-of-the-art review, in this paper we provide a discussion
on pros and cons, technicalities and preferences on selecting
ML models depending on the situation, system and problem to
solve (Section IV). We provide final remarks and conclusions
in Section V.

II. MACHINE LEARNING TECHNIQUES

Machine learning (ML) is the field of computer science that
gives computers the ability to derive models directly from data,
without having to explicitly program them, making inference
and predictions from input samples [11]. ML is employed in a
range of computing tasks where designing and programming
explicit algorithms with good performance is difficult or
impossible. Example applications include email filtering, fraud
or intrusion detection, optical character recognition (OCR),
automatic ranking or classification, and computer vision, to
mention but a few.

ML approaches are classified in three broad categories,
depending on whether there is a learning signal or a feedback
available to a learning system. 1) in supervised learning (SL),
the model is presented with example inputs and their desired
outputs; the goal is to learn a general rule that maps the inputs
into the outputs. 2) in reinforcement learning (RL), the training
data (in form of rewards and punishments) is given only as
feedback to the programs actions in a dynamic environment,
such as when driving a vehicle or playing a game against an
opponent. 3) in unsupervised learning (UL), no labels are given
to the algorithm, leaving it on its own to find the structure
embedded in the input data. UL can be a goal in itself (e.g.,
discovering hidden patterns in data) or a means towards an end
(e.g., feature learning). Next, we provide further clarifications
on each of these categories and introduce the algorithms that
are used the most in QoE management.

A. Supervised Learning

A supervised ML model (SL-ML) is a function which maps
input-output pairs of data [11]. Formally, a dataset D consists
of a set of pairs {(x1,y1), (x2,y2), ..., (xn,yn)}. For each
specific pair i, xi is the vector of input features and yi is
the vector of outputs. The pairs contained in D are sampled
from an unknown distribution (e.g. a real system) in which
the exact function f : X → Y is unknown (and it cannot be
determined). X represents the input space, i.e. the union of
all possible vectors with input features (∪ni=1xi ⊂ X) and Y
represents the output space, i.e. the union of all possible vec-
tors with output features (∪ni=1yi ⊂ Y). The goal of the ML
algorithm is to find (based on the knowledge extracted from
D) a function f̂ : X → Y which is capable to approximate
(as accurately as possible) the functionality of the f function
(the unknown distribution of the real system). The process
of finding the f̂ function is usually referred to as training. In
general, for validation purposes, the dataset D is split into two
parts: one part (the training dataset) is used to find f̂ , while the
other part (the testing dataset) is used to measure how well the
f̂ function approximates f . Formalizing this mathematically,
this means that ∀(x,y) ∈ (X,Y), d(f̂(x),y) is minimized,
where d(·, ·) can be a suitable distance measure, such as root
mean square error or the PCC. The obtained f̂ function is, in
fact, the ML model trained in a supervised fashion [11].

Depending on the nature of the output provided by the
approach, SL models are classified in two categories: 1) classi-
fication, where inputs are divided into two or more classes, and
the learner must produce a model that assigns unseen inputs to
one or more (multi-label classification) of these classes; and
2) regression, where the outputs are continuous rather than
discrete. In addition, depending on how easy it is to capture a
comprehensible relation between inputs and output, the models
are either white or black boxes. White boxes provide an
understanding of the model behind, while black boxes do not
offer such relation. Table I provides a description of the most
significant supervised learning approaches, focusing on the
ones which have been used in the state-of-the-art for QoE
Management.

One of the most known and simplest white boxes is linear
regression [12], which attempts to model the relationship
between a scalar (output) and one or more independent vari-
ables by means of a linear multidimensional model of the
input data. Decision trees learning uses a decision tree as
a predictive model which maps observations about an item
to conclusions about the item’s target value [13]. They are
classified according to the type of output provided. On the one
hand, tree models, where the target variable takes a value from
a finite set, are called classification trees. Leaves represent
class labels and branches, conjunctions of features that lead
to those class labels. On the other hand, decision trees, where
the target variable can take continuous values (typically real
numbers), are called regression trees. The performance of
regression and decision trees can be further improved by
means of an ensemble approach. Ensembles use multiple
learning algorithms to obtain better predictive performance
than could be obtained from any of the constituent learning
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TABLE I: Representative SL models (name, acronym, cate-
gories and short description) used for QoE management.

Name Acr. Output Box Description
Multiple Linear model relation:
Linear LR Regression White independent variables.
Regression to scalar (output).
Standard DT Classification Map observations
Decision White to target value
Trees RT Regression on binary tree.
Ensemble EDT Classification Multiple DT
Decision White to improve
Trees ERT Regression performance.
Gaussian Values prediction by
Process GPR Regression Black interpolation
Regression on a Gaussian distr.
Support SVM Classification Finding a hyperplane
Vector Black that optimally classify
Machines SVR Regression outputs.
Artificial Classification Estimate functions
Neural ANN Black dependent on
Networks Regression unknown inputs.

algorithms [14]. Unlike a statistical ensemble in statistical
mechanics, which is usually infinite, a ML ensemble refers
only to a concrete finite set of alternative models, but typically
allows for a much more flexible structure to exist among
those alternatives. Evaluating the prediction of an ensemble
typically requires more computation than for a single model.
Thus ensembles are mostly used as a way to compensate for
poor learning algorithms by performing extra computation. For
this reason, fast (less accurate) algorithms such as decision
trees are commonly used with ensembles.

While simpler, white boxes have also been demonstrated to
have limited predictive capacity or to be inflexible. Therefore,
the best classification and regression accuracy is typically
achieved by black-box models [15], which do not, however,
provide a clear explanation of the reasons as to how they have
come to a certain prediction. One prominent example is the
Gaussian Process Regression (or Kriging) [16]. This aims to
predict values by means of interpolation in which the inter-
polated values are modeled by a Gaussian process governed
by prior co-variances. Support Vector Machines (SVMs) [17])
use associated learning algorithms that analyze data used for
classification and regression analysis. Given a set of training
samples (belonging to one out of two categories), an SVM
training algorithm builds a model that assigns new samples
into categories, making a non-probabilistic binary linear classi-
fication. Finally, the artificial neural networks (ANNs) [18] are
a family of models inspired to biological neural networks, used
to estimate or approximate functions that can depend on a large
number of generally unknown inputs. ANNs are generally
presented as systems of interconnected nodes or ”neurons”.
The connections among these neurons have numeric weights
that are tuned based on various optimization methods, making
neural nets adaptive to inputs and capable of learning.

B. Reinforcement Learning

The Reinforcement Learning (RL) paradigm [11] takes
its inspiration form the field of behaviorist psychology. In
it, an agent, which does not possess a complete model of
the surrounding environment and, thus, does not know the

Fig. 2: Reinforment learning conceptual data flow

effects of an action, adopts a trial-and-error mechanism. By
trying different actions, the environment changes his state and
generates a reward information. The agent then dynamically
adapts its actions on the basis of the received state and reward,
attempting to maximize the reward of his actions (Figure 2).

We can formulate the RL problem as a 4-tuple Markov Deci-
sion Problem (MDP) [19], (S,As, Pa(st, st+1), Ra(st, st+1)).
In it, S is a finite state of states; As is a finite set of actions
available to the agent in state s ∈ S; Pa(st, st+1) is the
transition probability from state st to state st+1 when the agent
chooses action a ∈ Ast ; and Ra(st, st+1) is the immediate
reward that the agent gets when it chooses action a ∈ Ast and
the state changes from st to st+1. The transition probabilities
of the Markov chain depends on the learner’s action and on
the external environment. The success of every action a is
measured by a reward r.

The agent aims to optimize a policy π(s) (i.e., a function
that links every state to an action, and depends on the ex-
pected long-term reward of each action that the agent already
estimated). Learning to act in an environment makes the agent
to choose actions to maximize future rewards, defining, in this
way, the agent’s behavior in the environment. The long-term
reward is defined as the value of a state (V π(s)), i.e. the total
amount of reward an agent can expect to accumulate in the
future, starting from that state (V π(s) =

∑∞
τ=t γ

τ−tRτ ). The
variable γ ∈ [0, 1] is called discounting factor and R is the
immediate reward corresponding to an action. The long-term
reward is an exponentially weighted sum of the rewards that
will be obtained in the future evolution of the MDP.

RL methods are classified in model-based (RLMB) and
model-free (RLMF) (Table II). While an RLMB algorithm
depends on the knowledge of an explicit model of the envi-
ronment and of the agent, an RLMF algorithm lacks of such
specific model and evaluates the performance based on trial-
and-error learning.

In addition, the agent can estimate the value of a given
policy either by an On-policy or an Off-policy approach. In a
On-policy scenario, on the one hand, both the generation of the
data and the evaluation are performed using the same policy.
On the other hand, in an Off-line policy scenario, the policy
to be evaluated is different from the policy that generates the
data.

Online and offline RL are related to the availability or not
of the training set. An online RL algorithm does not have any
offline pre-training processing and learns the policy online. An
offline RL algorithm uses a training dataset for computing the
policy.

Common RLMF methods are Q-learning, SARSA (State-
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TABLE II: Representative RL classes and methods used in
QoE optimization and control.

RL Method Acronym Class Description
Markov MDP RLMB MDP model learning
Decision and solving concurrently
Process
Q-learning QL RLMF Off-Policy algorithm for

temporal difference learning
of an MDP

State-action SARSA RLMF On-policy algorithm for
-reward-state temporal difference learning
-action of an MDP.
Post decision state PDS RLMF Off-policy algorithm for

temporal difference learning
to reduce RL complexity

Action-Reward-State-Action), and PDS (Post decision state).
Both Q-learning and SARSA are RLMF algorithms used to
find an optimal action-selection policy for any given (finite)
MDP. They are different in the way they estimate the value
of their policy, being Q-learning an off-policy model and
SARSA an on-policy model. In addition, SARSA takes into
account the control policy by which the agent is moving,
and incorporates that into its update of action values, where
Q-learning simply assumes that an optimal policy is being
followed. Post decision states (PDSs) variables [20] are used
as a tool for the reduction of dynamic programming algorithm
complexity. PDSs have been used for reducing the complexity
of the learning agent in RL online algorithm applied to the
problem of adaptation strategy for DASH clients [21]. The
general idea is that introducing intermediate states through
PDS variables in the transition between temporally adjacent
steps can reduce the convergence time to the optimal solution.

C. Unsupervised Learning

Unsupervised Learning (UL) is the ML task of infer-
ring a function to describe hidden structure from unlabeled
data [11]. Since the training samples given to the learner are
not benchmarked (i.e., they are unlabeled), it is not possible
to evaluate the accuracy of the structure. A central case of
unsupervised learning is the problem of density estimation
in statistics, though unsupervised learning encompasses many
other problems (and solutions) involving summarizing and
explaining key features of the data. Due to not requiring labels
for training, unsupervised learning suites the best cases in
which the target is unknown or when scalability is essential.

Given the broad variety of UL methods, Table III aims to
summarize the most used methods in QoE management that
we will name in the following Sections. UL methods can
be classified according to their purpose. Cluster analysis or
clustering is the task of grouping a set of objects together
in such a manner that the objects within a group (cluster)
are more similar among one another than to the ones in other
groups. Cluster analysis itself is not one specific algorithm, but
the general task to be solved. It can be achieved by various
algorithms that differ significantly in their notion of what
constitutes a cluster and how to efficiently find them. For
example, K-means clustering aims to partition observations
into clusters in which each observation belongs to the cluster

TABLE III: Representative UL and UDL models used in QoE
management.

Type Name Acronym Description
Clustering K-Means CKM Clusters on central vector.

Hierarchical CHI Clusters on their distance.
Distribution CDI Clusters on prob.distribution.

ANN Hebbian HNN Neurons weights adaptation.
Generative GAN 2 ANN contest.

Latent Expectation EM Maximum likelihood
Variable -Maximization iteration.
Learning Moments MM Moments derivation.

Principal PCA Orthogonal transform. of
Component of possibly correlated into
Analysis linearly uncorrelated variables.

Deep Restricted Probability distribution
Learning Boltzmann RBM over its set

Machines of inputs

with the nearest mean, serving as a prototype of the cluster.
Hierarchical clustering, is based on the core idea of objects
are more related to nearby objects than to objects farther
away. Thus, these algorithms group objects in clusters based
on their distance and a cluster can be described largely by
the maximum distance needed to connect parts of the cluster.
At different distances, different clusters are formed, which
can be represented using a dendrogram. Therefore, these
algorithms do not provide a single partitioning of the dataset
but provide an extensive hierarchy of clusters that merge with
one another at certain distance. Another example of clustering
is the distribution-based approach. Clusters are defined by
the objects that most likely belong to the same distribution.
Clustering techniques have shown outstanding capabilities to
classify video content for prediction purposes, as we see in
Section III-C.

Certain types of ANNs can be considered belonging to the
UL category. Based on Hebb’s Theory [22], Hebb’s principle
can be described as the method of determining how to alter
the weights between model neurons. The weight between two
neurons increases if the two neurons activate simultaneously,
and reduces if they activate separately. Nodes that tend to
be either both positive or both negative at the same time
have strong positive weights, while those that tend to be
opposite have strong negative weights. The theory attempts to
explain associative or Hebbian learning, in which simultaneous
activation of cells leads to pronounced increases in synaptic
strength between those cells. It also provides a biological basis
for error-free learning methods for education and memory
rehabilitation. Goodfellow et al. [23] introduced the Generative
adversarial networks (GANs), a type of artificial intelligence
algorithms that implement a system of two neural networks
contesting with each other in a zero-sum game framework.
GANs have been used to produce samples of photo-realistic
images for visualization purposes or for pattern generation in
2D and 3D videos.

Latent Variable is a statistical model that relates a set of
observable variables (so-called manifest variables) to a set
of latent variables. It is assumed that the responses on the
manifest variables are the result of an individual’s position
on the latent variable(s), and that the manifest variables have
nothing in common after controlling for the latent variable
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(local independence). Different types of the latent variable
models have appeared. A first example is the Expectation–
Maximization (EM) algorithm, which iterates to find maxi-
mum likelihood or maximum a posteriori (MAP) estimates
of input parameters in statistical models, where the model
depends on unobserved latent variables [11]. The method
of moments (MM) is a method of estimation of population
parameters by means of derivations that relate the population
moments (i.e., the expected values of powers of the random
variable under consideration) to the parameters of interest [24].
Finally, one of the most known and used methods is the
Principal Component Analysis (PCA) [25]. PCA uses an
orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components.

It is possible to enhance the UL performance by combining
the models with Deep Learning (DL) techniques [26], which
attempt to model high-level abstractions in data by using a
deep graph with multiple processing layers (multiple linear
and non-linear transformations). The combined action of UL
and DL (UDL) becomes a very powerful tool for quality
prediction and monitoring. One example of such approaches
are the Restricted Boltzmann Machines (RBMs) [27]. RBMs
are generative stochastic ANNs that can learn a probability
distribution over its set of inputs by means of only inter-layer
connections. It distributes its neurons in two layers. The visible
layer corresponds to the input features. In the hidden layer,
hidden features are automatically extracted by the RBM model
from the input data. Every visible neuron is thus connected to
every hidden network and has an associated weight that is
modeled according to the input (visible features).

III. PREDICTIVE VIDEO QOE MANAGEMENT

This Section provides an extensive analysis of the state-
of-the-art on predictive QoE management. In order to give
a comprehensive overview, we have classified the predictive
approaches according to the specific aspect of the QoE man-
agement loop that they aim to solve. Using Figure 1 as the
reference, we have upgraded the QoE management loop to
include the predictive nature (Figure 3).

In the remainder of this Section, the different aspect-related
approaches are presented. While Section III-A deals with
approaches using prediction for QoE modeling, Section III-B
focuses on predictive QoE optimization and, Section III-C
discusses the usage of ML to enhance the QoE monitoring.

A. Client-based Predictive QoE models

The purpose of video QoE models is to assess the degree of
degradation of the received video data as fast as possible (in
real-time or near real-time) and, in the most accurate manner
(i.e. most in-line with the human perception of the service).
From the accuracy point of view, the legitimate judges of
visual quality are the humans, whose opinion can be gathered
through subjective analyses [6]. The subjects of such tests
are presented stimuli (i.e. impaired video sequences), which
they rate typically using the Mean Opinion Score (MOS) [28].
This type of analysis is, however, incompatible with real-time
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assessment, due to its time-consuming nature. Thus, in the last
years, a great effort has been put on to developing a number
of new objective quality metrics which could provide a valid
alternative to subjective evaluation.

Objective metrics are classified, according to the material
they require in order to perform the assessment, into three
categories, namely Full Reference (FR), Reduced Reference
(RR) and No Reference (NR) [29]. FR metrics, which perform
a frame-to-frame comparison between the original and the
received (impaired) data, have shown the best performance
in terms of accuracy to human perception. Examples of such
metrics are the Structural Similarities (SSIM) [30] or the Video
Quality Model (VQM) [31]. Yet, these metrics require access
to the original material and, they tend to be very computation-
ally heavy. Thus, they are unfit for real-time evaluation and
better suited for benchmarking purposes. RR and NR metrics,
on the other hand, perform their assessment only based on
the received material and the network conditions. Therefore,
they are the most adequate solution, at least in terms of time-
liness and computation efficiency, even allowing deployment
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in thin devices, such as smart phones [32], [33]. However,
conventional RR and specially NR are not able to provide
a sufficiently accurate assessment across the broad range of
video conditions (e.g., video types, encoding algorithms, frame
rate, bitrate, etc.). Research threads such as [34] or [32] have
shown very low correlation of simple RR and NR techniques
with the human perception of video services.

Per contra, ML tools have demonstrated to provide the
required enhancement of the quality assessment in real-time
client based metrics. Figure 4 presents a simplified block
diagram of the working principles of this type of prediction
based quality assessment algorithms [62]. At service launch,
the service provider will already have a representative video
type set (e.g., sport, action movies, cartoons, and so forth);
thus an initial prediction model can be constructed (and made
available to the client side). When a completely new video
type is added, the prediction model will be less accurate. Yet,
over the time the model will be updated based on new types
and, what is more important, the chances of getting new video
types will rapidly diminish. The server performs the updates
of the model in an offline manner, meaning that it runs a
process in the background in which the ML model is trained
with the available video samples and new models (f̂server) are
uploaded to the clients (on a continuous or periodic basis). On
the other end of the transmission link, the video client employs
the ML model trained by the server, to generate its prediction-
based quality metric (Qp). During a streaming session, the
client characterizes the incoming video in terms of the features
required as input to the model, matching this information
against the prediction model to generate the quality estimation.
Given the functioning mechanism of the prediction system,
i.e. training based on prior information saved in the server,
SL models will be used the ML class selected, as we will see
when discussing the different approaches. Only in the cases
when the benchmark was not available, it would be possible
to use UL or UDL techniques to enhance the accuracy of the
assessment.

The performance of the predictive quality assessment model
depends on several characteristics. First, as we introduced in
the previous Section, different kinds of ML approaches have
their own advantages and disadvantages. This circumstance
makes them better or worse fitted to model the problem at
hand. For example, while a Fast Forward neural network seems
to be the best option to model a system with all the ground
truth data, it becomes unfit for a scalable solution (where
the training samples need to be labeled before generating the
model). The second characteristic is the utilized benchmark.
This includes two things: a) the ground truth quality used (in
the case of a SL approach); and b) the quality measurement
used to assess the accuracy of the model. Third, selecting the
features that better characterize the video streams, are effective
in the ML training process (in the server) and, ultimately,
generate an accurate quality metric (in the clients) is an
important decision. In order to keep the calculation of the
input features as fast and simple as possible, the predictive
QoE models tend to use low-complexity NR features (which
can be calculated in real time and with only the client material
provided) to input to their models.

With all these performance characteristics in mind, the
remaining of this Section reviews the most significant learning
based approaches that have appeared in the last 15 years,
starting from the first one introduced in 2002 [8]. In Table IV
each of the approaches main characteristics as well as their
performance evaluation are summarized. To provide a con-
structive order, the analysis both in the table and the text is
performed chronologically.

In the last fifteen years, several researchers have explored
the machine learning path in order to improve both the
generality and accuracy of their client-based video quality
models. Already in 2002, Gastaldo et al. introduced one of
the first methods to estimate the video quality using artificial
neural networks [8]. They proposed the use of circular back-
propagation networks (based on bitstream layer parameters) in
order to mimic the users perception of compressed MPEG2
videos. Their approach showed promising results on a 12-
video dataset from the motion picture expert group (MPEG).
Their study focused on video distortions deriving merely from
compression. Also in 2002, Mohamed et al. [36] explored
the capabilities of random neural networks for constructing a
video quality metric capable of continuous quality monitoring
and measuring. They used both bitstream parameters (bitrate,
frame rate and ratio of encoded intra to inter macroblocks) and
network conditions (packet loss and burst size) as input to the
network, and tested on a single low resolution video sequence.
They obtained promising results. Yet, since only one video was
used, their algorithm was not considering content, implying a
lack of generality.

Also working on compressed videos, Le Callet et al. [39]
employed an interesting convolutional neural network as a
Reduced Reference (RR) method to allow a continuous-time
quality estimation and scoring of the video. Their method (as
any RR metric) requires the transmission of features extracted
from the original video together with the video under scrutiny.
El Khatabi et al. [41] also used Neural Networks (Multilayer
Perceptron) to predict subjective quality in QCIF and CIF
compressed videos. Their inputs consisted on a set of 8 pixel
features, making their approach independent from encoding.
Their approach was only proven reliable for compression
degradation. In addition, they do not report quantitative levels
of accuracy.

In [42], the authors investigated and modeled impairment
visibility in HD H.264/AVC encoded video sequences using
decision trees. In their paper, they report that it is possible
to predict the visibility of different impairments just by a
limited number of parameters extracted from the bitstream (39
parameters in total).

Narwaria et al [44] evaluated the performance of Support
Vector Regression on two video databases against eight dif-
ferent visual quality predictors. The results show a significant
improvement in prediction accuracy.

Khan et al [9] proposed a linear regression model based
on bitstream and network characteristics. They presented very
strong correlation values for videos subjected to a simulated
(NS2) UMTS scenario. To our knowledge, this is the first
approach that tested with simulated impaired videos instead
of the synthetic solutions. Konuk et al [47] also made use of
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TABLE IV: Comparative table of using ML (SL and UL) for video quality prediction. Approaches are organized chronologically.

Approach ML Tech. Input Feat. BM Eval. Performance Distort. App.
Gastaldo Circular Bitstream: 24 MOS 12 MPEG-2 LCC ≥ 0.95 Compr. MPEG-2
et al. [8] Backprop. (low motion)
(2002) Neural

Networks [35](SL)
Mohamed Random bistream: 3 MOS 1 video High correlation Compr.& H.263
et al. [36] Neural Network: 2 (94 cond.) Trans.
(2002) Network [37](SL) (synth.)
Le Callet Convol. [38]& Frame-based: 4 DMOS 17 MPEG-2 LCC ≥ 0.92 Compr. MPEG-2
et al. [39] Time-delay [40] (4 seq.)
(2006) Neural

Networks (SL)
El Khattabi Multilayer Frame-based:8 MOS 9 QCIF Same quality Compr. H.263
et al [41] Perceptron 11CIF interval
(2011) (MLP) [11](SL)
Staehlens Decision Bitstream: 39 MOS 8 H.264/AVC PCC ≥ 0.85 Compr.& H.264/AVC
et al [42] Trees (SL) (48 imp. scen.) Trans.
(2012) (Synth.)
Narwaria Support Singular DMOS LIVE [43] PCCLIV E ≥ 0.75 Compr.& CIF, QCIG,
et al. [44] Vector value MOS EPFL [45] PCCEPFL ≥ 0.9 Trans. MPEG-2
(2012) Regression Descomposition (synth.) MPEG-4

(SVR)(SL) (per block) [46]
Khan Linear& Bistream: 2 MOS LIVE [43] PCCLIV E ≥ 0.7 Compr.& H.264
et al. [9] Logarithmic Network:2 6 H.264/AVC PCCNS2 ≥ 0.93 Trans.
(2012) Regression (SL) (48 UMTS) (sim.)
Konuk Polynomial Frame-based: 2 DMOS LIVE [43] PCC ≥ 0.8 Compr.& H.264
et al. [47] Linear Bitstream:1 Trans.
(2013) Regression (SL) Network: 1 (PLR) (synth.)
Staelens Genetic Bitstream: 34 (8) MOS 8 H.264/AVC PLCC ≥ 0.88 Compr. H.264/AVC
et al. [48] programming
(2013) based symbolic

regression [49](SL)
Zhu Multilayer Frame-based: 6 MOS IRCCyN [50] LCC ≥ 0.75 Compr.& MPEG-2 &
et al. [51] Neural DCT transfom extr. HDTV Pool [52] Trans. H.264
(2015) Networks [53] Temporal polling LIVE mobile [43] (synth.)

(SL) LIVE [43]
Sogaard Support Codec, I-Frame, MOS LIVE [43] PLCC ≥ 0.9 Compr.& MPEG-2 &
et al. [54] Vector Quantization and Trans. H.264/AVC
(2015) Regression (SL) PSNR pred. (synth)
Shahid (SL) Feedforward Bistream:52 (43) PSNR 30 HEVC [55] PCCPSNR ≥ 0.98 Compr. HEVC
et al. [56] Neural VQM PCCV QM ≥0.94
(2015) Networks [53](SL)
Pandremmenou Least Absolute Bitstream: 46 MOS 16 H.264/AVC PCCMOS ≥ 0.9 Compr.& H.264/AVC
et al. [57] Shrinkage and (13,15,12) SSIM (4 orig.) PCCSSIM ≥ 0.99 Trans.
(2015) Selection Operator VQM PCCV QM ≥ 0.88 (synth.)

(LASSO) [58](SL)
Huang Elastic Pixel level, MOS LIVE [43](train) SRCC ≥ 0.9 Compr. HEVC
et al [59] Net [60](SL) quantiz. SJTU(test)
(2017) PSNR pred.
Torres Vega 9 ML models Frame:6 VQM LIMP [61] PCCERT ≥ 0.98 Compr.& H.264/MPEG-4
et al. [62] (LR,RT,ERT, Bitstream:3 Trans.
(2017) SVR,NN,...)(SL) Network:1 (emul.)
Torres Vega Restricted Frame:4 VQM ReTRiEVED [63] PCCRET ≥ 0.85 Compr.& MPEG-2&
et al. [64] Boltzmann Bitstream:4 LIMP [61] PCCLIMP ≥ 0.88 Trans. H.264/MPEG4
(2017) Machines(RBM)(UL) (emul.)

linear regression tools based on independent features extracted
from spatial and temporal quantities derived from the video
packet losses, bit rate, and spatio-temporal complexity. They
report correlations higher than 0.8 on the LIVE Video quality
database [43].

Staelens et al. [48] presented an NR video quality estimation
method which uses a symbolic regression framework trained
on a large set of parameters extracted from the codec. They
obtained very high correlation with subjective tests for H.264
compressed streams.

Zhu et al. [51] proposed the use of neural networks and
features extracted from the analysis of Discrete Cosine Trans-
form (DCT) coefficients of each decoded frame from a video

sequence to predict its quality. Their approach showed good
correlation results in compressed videos of four different well-
known datasets. However, the complexity of the approach
makes it unsuitable for real-time deployments. Similar princi-
ples were proposed in [54] by using features extracted from
specific codecs (MPEG or H.264/AVC), the analysis of DCT
coefficients, the estimation of the quantization level used in
the I-frames to measure quality of videos distorted through
the compression process. They show higher correlation to
subjective studies than some state-of-the-art metrics (FR, RR
and NR) making this a very promising solution for H.264/AVC
compressed streams.

Shahid et al. [56] proposed a model combining different
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Fig. 5: General block diagram to perform prediction for opti-
mization and control of the video QoE management process.

bitstream-layer features using an Artificial Neural Network to
estimate the quality. They tested their method on compressed
videos and benchmarked against PSNR. Pandremmenou et
al. [57] employed the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regression method for assessing the
accuracy of bitstream parameters to full reference metrics
and subjective analysis in videos affected by compression and
synthetic impairments.

The impairments derived from compressing videos into
HEVC is the focus of the NR metric presented by Huang et
al. [59]. They proposed to model Elastic Nets [60] with pixel
level features to assess the perceived degradation when HEVC
compression. They trained their network on the LIVE [43],
testing it on the SJTU videoset. They obtained a 90% spear-
man correlation to subjectvie studies. They show a very
promising approach for pinpointing the degradation inflicted
on videos by the HEVC videos.

In our previous work [62], [64] we proposed to use a
set of 8 NR features (on the pixel, the bitstream and the
network) to explore the capabilities of a broad range of
machine learning models. In [62] we put to test 9 models
(ranging from linear regression to support vector machines)
and assessed the performance of our NR predictive method
benchmarking against VQM [31] in a network impaired video
set. We obtained accuracies close to 100% with ensemble
regression trees. In addition, in [64] we used unsupervised
learning techniques, namely restricted Boltzmann machines,
to predict the degradation of videos inflicted by networks. We
obtained an accuracy higher than 80% while not requiring
a ground truth to train our model (given the unsupervised
essence of the approach).

B. Video Quality Optimization and Control

Another fundamental element of the QoE management loop
is the control and optimization of quality. This element of con-
trol is present in multiple streaming techniques, especially the
ones based on adaptive streaming. Adaptive video streaming
is a well-known concept adopted in several video streaming
services. The main function of an adaptive video streaming
service is to provide the same content as a set of video streams
encoded with different parameters (e.g. bitrate, resolution).
The client can dynamically adapt to the video stream that best

Available online: http://medialab.sjtu.edu.cn/resources/resources
subdataset.html

matches the available network resources (network bandwidth)
in order to maximize the user QoE. A conventional approach to
adaptive video streaming makes use of deterministic heuristics
to dynamically adapt the required quality on the basis of
the perceived network and device state. Such approaches are
designed to fit specific network configurations. For this reason,
these approaches do not fit a large set of applications running
on different network condition.

Per contra, predictive-based adaptation algorithms can pre-
vent buffer underflow on the client device (e.g., on the
decoder), which would otherwise lead to unrecoverable QoE
impairments. This method would require the client to rely on
intelligent models that can anticipate butter starvation events
and act proactively.

ML can be employed to develop proactive QoE control
loops, as depicted in Figure 5. Both server and client adopt
predictive tools. While the client agent uses its tool to sense the
received quality and provide a feedback loop, the server agent
employs this feedback to perform the required adjustments to
the streaming service. Given the required real-time adaptability
to new conditions and the feedback loop, RL methods are best
suited to perform the control tasks.

RL methods have recently been proposed for adaptive con-
trol of video streaming bitrates with the objective of improving
the quality of experience, by selecting the video representation
that maximizes the overall user’s QoE. In the RL paradigm,
this objective is achieved by maximizing the long term reward.
Table V shows a summary of works that exploit RL for
controlling QoE in video streaming applications.

An approach based on RL and providing a flexible solution
to the problem of adaptive streaming was proposed in [65].
The main contribution of this research is the proposal of a
QoE estimation function incorporating the subjectively per-
ceived quality, the duration and frequency of playback freeze.
The framework considers an adaptive streaming application
over HTTP. A frame size distribution was computed for the
simulation of the proposed method.

A dynamic learning behavior on how to respond to the
network condition was presented by Claeys et al. in [66].
In particular, an adaptive RL strategy based on Q-learning
was proposed. The technique exploits the knowledge of a set
of video quality parameters (current video quality, oscillation
in quality during playout, buffer starvation) for a tunable
reward function and for the evaluation of different aspects
of QoE. The experimental evaluation was conducted using
NS-3, comparing the RL method with Microsoft ISS Smooth
Streaming service (MSS). Their results showed a nearly 11%
improvement of the proposed quality metric of the RL imple-
mentation with respect to the reference streaming service in a
simulated environment.

The same authors proposed an improved solution in [10].
There, a frequency adjusted Q-learning approach was intro-
duced for improving the QoE in strongly variable environ-
ments. This was done by means of an initialization phase of
the Q-Tables aiming at adding a preliminary knowledge of

The Network Simulator ns-3. http://nsnam.org
https://www.iis.net/downloads/microsoft/smooth-streaming
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TABLE V: RL for video quality of experience control. Approaches are listed chronologically.

Approach ML Technique Quality Eval. set Video streams Experimental setup Performance Application
Menkovski SARSA QoE Model Simulated 1: Variabl Simulation Not available HTTP
et al. [65] (RL) source Bitrate (Matlab) Adaptive
(2013) (VBR) Streaming
Claeys Q-learning QoE model Big 7: Constant Simulation 11% HAS
et al. [66] (RL) Buck Bitrate (NS3) improv.
(2013) Bunny (1) (CBR)
Claeys Q-learning QoE model Big 7:Constant Simulation 18% HAS
et al. [10] (RL) Buck Bitrate (NS-3) improv.
(2014) Bunny(1) (CBR)
Petrangeli Multi-agent QoE model Big 7: Constant Simulation 60% HAS
et al. [67] Q-learning Buck Bitrate (NS-3) improv.
(2014) (RL) Bunny (1) (CBR) MSS
Torres Vega Q-learning Quality Shields 10:Constant Lab Max. DASH
et al. [68] (RL) Bitrate (1, LIVE [43]) Bitrate test quality
(2015) (CBR) selection
Chiarotti Post SSIM EvalVid 9:Constant Simulation Not available DASH
et al. [21] decision CIF (5) [69] Bitrate (Matlab)
(2016) state (RL) (CBR)
Yu MDP QoE model Big 4: Variable Simulation 27% DASH
et al. [70] (RL) Buck Bitrate (Matlab) improv.
(2017) Bunny (1) (VBR)

the adaptive streaming over HTTP behavior. The simulation
was again conducted using NS-3 and benchmarked against the
Microsoft ISS Smooth Streaming Service. The results showed
an improvement from 11% to 18% of the proposed quality
metric of the RL implementation with respect to the reference
streaming service.

Petrangeli et al. [67] built on the two previous approaches
to propose a Multi-agent Q-learning video streaming player.
A proxy is in charge of facilitating the coordination among
clients. The algorithm not only learns and adapts its policy
depending on the network conditions but also does so in a fair
manner without any explicit communication among agents.
They evaluated their approach in NS-3 benchmarking both
against MSS and against the one agent Q-learning variant [10].
Their algorithm achieves 60% and 48% improvement on
fairness compared to the MSS and the one agent Q-learning
variant respectively.

With the inspiration of the work performed by both Claeys
and Petrangeli, in [68] we proposed a Q-learning algorithm for
Android wireless devices. Thus, we could study the RL based
adaptive streaming beyond simulated conditions, on real-world
devices. Our results showed the great potential of using RL
in lightweighted devices as well as pinpointing at the most
affecting impairments for adaptive streaming services.

An online adaptation logic for Dynamic Adaptive Streaming
over HTTP (DASH) [71] clients was introduced by Chiariotti
et al. [21]. In it, each client chooses a streaming adaptation
process that maximizes the long-term expected reward. A
Markov Decision Process (MDP) optimization was used for
modeling the selection of the optimal stream representation.
The expected reward for an action is defined as a combination
of the decoded quality, the quality fluctuations, and the re-
buffering events triggered during the playback. Each client se-
lects the representation that maximizes the long-term expected
reward. In particular, the research presented in [21] aims at
addressing the problem of large quality variation and playback
underflow buffer at the receiver which affects the quality of
experience of the final user. The proposed MDP model and

learning technique resulted in a fast-learning technique with
respect to previous methods such as [10].

Yu et al. [70] introduced a method for adapting variable
bitrate video streaming in [70]. The bitrates of incoming
segments are sent in advance to the client carried by the
media presentation description XML document of DASH
standard [71]. The adaptation problem tries to maximize the
global QoE by dividing this problem in sub-optimal problems
to meet the real time constraints.

C. Predictive Server-based Monitoring Methods

In addition to predictive modeling and optimization, mon-
itoring the services (from the server side), classifying and
understanding the behavioral patterns of different videos is
a fundamental part of the management loop. Making use of
a good and accurate monitoring tool will heavily influence
the performance of the models and control loops. This task
has traditionally been performed by means of static, adaptive
techniques, such as setting quality thresholds. By means of
ML tools, the monitoring and classification capabilities of the
server can be improved considerably.

Figure 6 presents a simplified block diagram of how a
predictive monitoring tool is to be deployed and used in the
video streaming set-up that already introduced in the previous
two Sections. The video streaming server is connected to
the client through the network and in the client a real-time
assessment model (same or similar to the examples described
in Section III-A)is running. This assessment is included in the
feedback loop that goes back to the video server. The ML
Video Monitoring tool, classifies the incoming information
based on the prior history of the system, the video content
types available, etc. The output of this monitoring tool (a
classification, feature extraction, etc.) can be used to improve
the prediction model in the client (Section III-A) and to
optimize and control the management loop (Section III-B).

ML tools employed to perform the monitoring have to be
very powerful classifiers. As such SL Classification and UL are
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TABLE VI: ML-based approaches to enhance the monitoring
in the Server. The approaches appear in alphabetical order.

Approach ML technique Input param Purpose
Menkovski Decision Bitstream Determine
et al. [72] Trees feats. acceptability
(2010) (SL) of videos
Malekmohamadi K-means& Spatio- Classify
et al. [73] Discriminant Temp.& 3D videos
(2012) Analysis (UL) Depth for quality
Khan K-means Content Cluster
et al. [9] (UL) Descriptors video
(2012) content
Wang K-means Frame Extract
et al. [74] (UL) level features for
(2014) video quality
Jiang K-Means Technical Isolate
et al. [75] (UL) Quality unreliable
(2016) (TQ) MOS
Konuk K-Means Spatio- Cluster
et al. [76] (UL) Temporal Video
(2016) Feat. Content

the best suited techniques. Table VI shows the most significant
predictive monitoring approaches developed in the last 10
years. Unlike the previous two cases, in this Table we have
focused on what each of the approaches aims to achieve, as the
performance can only be evaluated by means of the accuracy
of the client model that the system uses the clustering for.

Predictive monitoring techniques have focused their atten-
tion on classification for two different tasks: 1) enhancement
of the prediction capabilities of QoE models deployed in the
client; 2) direct classification of users’ behavioral patterns.

In general, the clustering technique K-Means is the most
used technique to enhance the prediction capabilities of QoE
models. Malekmohamadi et al. [73] proposed to use the com-
bined action of K-means and discriminant analysis to classify
3D videos according to their depth’s spatial and temporal
information. Then, for each of the generated categories, a
parametric equation adjusted the quality index. They showed
good performance for a small dataset of 3D videos. Khan

et al. [9] pre-classified the videos based on their content
descriptors to then apply linear regression to the categories. In
a similar approach, Konuk et al. [76] proposed to use K-means
to cluster video content according to bitstream and spatio-
temporal content descriptors. Finally, Wang et al. in [74],
also employed k-means to extract video features that would
afterwards be used to measure quality.

Regarding the behavioral prediction task, already in 2010
Menkovski et al [72] made use of binary decision trees to
determine if after the effect of the networks, the videos were
within the acceptability range (if the users would find them
acceptable). In order to classify the impaired videos, they
measured the impact of the network on bitstream parameters.
Jiang et al. went one step further on the subjective assess-
ment classification. In [75], they propose to use clustering
(K-Means) to differentiate between unreliable and reliable
participants in a subjective study. In their approach, reliability
was defined in terms of criteria such as consistency of rating
and ability to distinguish between qualitative differences in
level of impairments. Their results showed that clustering a
data set that is augmented with unreliable pseudo-participants
can provide a new and improved perspective on individual
differences in video QoE assessment.

IV. DISCUSSION: WHICH MACHINE LEARNING METHOD IS
BEST FITTED?

In the previous Section we have analyzed the different pre-
dictive approaches, classifying them according to the element
of the QoE management loop they focused on. Based on the
surveyed state-of-the-art and the problem they aim to solve,
we have hinted at the type of ML better suited to solve each
problem.

Predictive client-based video quality modeling (Sec-
tion III-A) is mostly performed by means of SL metrics, due
to the fact that it heavily benefits from offline training and
benchmarking. In a extreme case, when either the benchmark
is missing or the solution is not scalable, it is possible to use
UDL (such as [64]).

The control loop (Section III-B) requires real-time feedback
updates. Thus, RL is the best solution. These techniques enable
video and network real-time adaptation, such as the one needed
by adaptive streaming and MPEG-DASH solutions.

Finally, predictive monitoring (Section III-C) benefits from
classification, grouping and pattern recognition techniques.
Therefore, UL or Classification SL are the solutions of choice,
due to the fact that these techniques allow for fast classification
of the videodata according to its characteristics.

In addition to the problem to solve, the dataset’s composi-
tion, size and characteristics will heavily influence the choice
in terms of type of ML class and particular approach. Two
golden rules are to be kept in mind for selecting the ML model
to apply:

1) Understand your dataset, its strengths and weaknesses.
When trying to solve a QoE management problem
by means of prediction, it is often declared that the
more data is available for training, the better and more
accurate the predictive model will be, regardless of the
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performance. General block diagram to perform prediction while monitoring the quality.

model under-scrutiny. This is a wrong assumption since
each predictive model learns in a different manner. This
means that what may be a strength of a model could
represent the weakness of another.

2) The model, the simpler the better. As shown in this
paper, the current state-of-the-art shows a tendency to se-
lect the most complicated models to perform prediction.
This, while providing the “fanciest” solution, can fall
onto a dangerous path, in which it becomes very difficult
to visualize and control what the model does with the
input data. This means not understanding why the model
works with certain samples (or predicted qualities) but
fails to provide an accurate assessment with others. In
contrast, using simpler but accurate models (whenever
the dataset allows) brings with it easier ways to spot
the reasons behind inaccuracies and to provide hints to
solve issues.

Based on these two guidelines, Figure 7 aims to illustrate
the reasoning to be followed in order to select the ML method.
When a historic dataset is available, the first step is to see what
it looks like, which type of video characteristics are present
and the type of benchmark that was used. In the worst-case
scenario in which no dataset is available and, there is no easy
manner to generate a training set (for example, if there is no
prior knowledge of the system or lack of accessibility), the
only possible option is online learning, i.e. RL. Within the
broad range of RL methods, the selection should be done
according to the second rule (the simpler the better), but
always taking into account the purpose (the output to predict)
and the relation of the output to the possible inputs, i.e., how

easy it is to model the target given the input features. If it is
possible to find some correlation (even if reduced) between the
inputs and target output (such as in the case of video quality
prediction based on bitrates and network delays), it is best to
start from a simple model (such as Q-Learning or SARSA).
Then, based on the performance, the recommendation is to
gradually increase the model’s complexity and to adjust the
input parameters until satisfactory results are achieved. The
outputs and input conditions obtained from the RL process,
could, in turn, be used as the starting dataset to solve other
prediction problems.

Considering the cases in which a prior dataset is available,
either from historic data or collected by means of RL, SL
models offer a good trade-off between simplicity and accuracy.
The nature of the benchmark (whether discrete or continuous)
will lead to either classification or regression approaches.
Again, depending on the ease to model the target output given
the inputs (i.e., if it is possible to correlate certain behavioral
patterns of the inputs to the output), the idea is to start
from simple models (white boxes, such as linear regression,
regression or decision trees). White boxes have shown very
good performance in the literature (Section III-A [47], [62]).
If the predictions were still far from the set targets, the inputs
could be tuned, and more complicated approaches (black
boxes) could be tried out.

If a suitable benchmark is not available, it is best to first
ponder whether it would be feasible to create a benchmark,
for at least a portion of the training set (either by means
of subjective evaluation or RL) and, if the solution would
be scalable. This means that by generating the benchmark
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for a certain portion of the training set, it would possible
to extrapolate the ground-truth of not benchmarked data be-
longing to the same system (the remaining portion of the
dataset or new samples generated after training). Creating
the benchmark, would allow the usage of SL techniques that
tend to be easier to tune. Alternatively, UL techniques enable
clustering and classification of the data, which is very useful
for understanding the effect of impairments on the videos and
assessing whether the provided quality can reach acceptable
levels. It is also possible to combine UL with Deep Learning,
which has already shown promising performance when aiming
to predict quality in the absence of benchmarks, as we showed
in [64]. The UL outputs could in turn be used to understand the
nature and behavioral patterns of the inputs, which is necessary
to construct better suited models.

V. CONCLUSION

Quality of Experience management has enormous potential
in the context of real-time assessment, monitoring and control
of video streaming services. Yet, conventionally this is per-
formed through reactive control and is based on static models.
This defeats the very purpose of user-centric management.
In this article, we have reviewed proactive QoE manage-
ment techniques, with particular emphasis on prediction-based
methods founded on machine learning. This avenue has been
explored only recently, with studies dating no longer than
fifteen years. We identify the key challenges and research lines,
capturing progress in the areas of QoE modeling, monitoring,
and control. For each case, we consider the best suited ML
approaches, providing guidelines to match QoE components
to ML options.

What emerges is not only a wealth of new possibilities
enabled by intelligent methods, but also a substantial immatu-
rity of the tools and platforms available. The lack of large-
scale datasets and benchmarks represents a major research
and development hurdle, as it is often difficult to carry
out comparative studies and reach generalized conclusions.
This explains why considerable efforts are still ongoing to
pursue a combined QoS/QoE management in large-scale video
streaming services.
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[67] S. Petrangeli, M. Claeys, S. Latré, J. Famaey, and F. D. Turck, “A multi-
agent Q-Learning-based framework for achieving fairness in HTTP
Adaptive Streaming,” in NOMS. Krakow, Poland: IEEE, May 2014,
pp. 1–9.

[68] M. Torres Vega, D. C. Mocanu, R. Barresi, G. Fortino, and A. Liotta,
“Cognitive streaming on android devices,” in in proc. of the 1st.
IEEE/IFIP IM 2015 International Workshop on Cognitive Network &
Service Management, Ottawa, Canada, May 2015.

[69] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid - a framework for video
transmission and quality evaluation,” in In Proc. of the 13th Interna-
tional Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2003, pp. 255–272.

[70] L. Yu, T. Tillo, and J. Xiao, “Qoe-driven dynamic adaptive video
streaming strategy with future information,” IEEE Transactions on
Broadcasting, vol. 63, no. 3, pp. 523–534, Sept 2017.

[71] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE Multimedia, vol. 18, no. 4, pp. 62–67, 2011.

[72] V. Menkovski, G. Exarchakos, and A. Liotta, “Machine learning ap-
proach for quality of experience aware networks,” in Proc. 2nd Int.
Conf. INCOS, Nov 2010, pp. 461–466.

[73] H. Malekmohamadi, W. A. C. Fernando, and A. M. Kondoz, “Automatic
QOE Prediction in Stereoscopic Videos,” in 2012 IEEE International
Conference on Multimedia and Expo Workshops, Melbourne, Australia,
July 2012, pp. 581–586.

[74] J. Xu, P. Ye, Y. Liu, and D. Doermann, “No-reference video quality
assessment via feature learning,” in 2014 IEEE International Conference
on Image Processing (ICIP), Oct 2014, pp. 491–495.

[75] J. Jiang, P. Spachos, M. H. Chignell, and L. Zucherman, “Assessing
unreliability in OTT video qoe subjective evaluations using clustering
with idealized data,” in DMIAF. IEEE, 2016, pp. 235–239.

[76] B. Konuk, E. Zerman, G. Nur, and G. B. Akar, “Video content analysis
method for audiovisual quality assessment,” in 2016 Eighth International
Conference on Quality of Multimedia Experience (QoMEX), Lisbon,
Portugal, June 2016, pp. 1–6.


