
IEEE TRANSACTIONS ON BROADCASTING, VOL. , NO. , MAY 2017 1

Resilience of Video Streaming Services to Network
Impairments

Maria Torres Vega, Member, IEEE, Cristian Perra, Senior Member, IEEE,4b
and Antonio Liotta, Senior Member, IEEE

Abstract—When dealing with networks, performance man-
agement through conventional Quality of Service (QoS) based
methods becomes difficult and is often ineffective. In fact, quality
emerges as an end-to-end factor, for it is particularly sensitive
to the end-user perception of the overall service, i.e. the user’s
Quality of Experience (QoE). However, the two are not indepen-
dent from each other and their relationship has to be studied
through metrics that go beyond the typical network parameters.
To better explore the value of assessing QoE alongside QoS in
high-speed, lossy networks, this paper presents an experimental
methodology to understand the relation between network QoS
onto service QoE, with the aim to perform a combined network-
service assessment. Using video streaming services as the test-
case (given their extended usage nowadays), in this work, we
provide studies on three network-impaired video-sets with the
aim to provide a comprehensive evaluation of the effects of
networks on video quality. First, the ReTRIeVED video set
provides the means to understand the most impairing effects
on networks. Furthermore, it triggered the idea to create our
own sets, specialized in the most impairing conditions for 2D
and 3D: the LIMP Video Quality Database and the 3D-HEVC-
Net Video Quality Database. Our study and methodology are
meant to provide service providers with the means to pinpoint
the working boundaries of their video-sets in face of different
network conditions. At the same time, network operators may
use our findings to predict how network control policies affect
the user’s perception of the service.

Index Terms—2D Video streaming services, 3D Video stream-
ing services, quality of experience, network impairments

I. INTRODUCTION

Satisfying users, devices and services’ requirements is fun-
damental to successfully manage an ever-growing world-wide
wireless network [1]. To achieve this, it is essential to perform
a real-time monitoring of the applications and networks,
and act upon them when improvements are required. This
monitoring task has traditionally been studied in the context
of network Quality of Service (QoS) management. However,
due to the variability in channel conditions, services over
wireless networks incurs quality degradations even when there
is sufficient nominal capacity. QoS factors reflect the status of
individual networks but do not comprehensively capture the
end-to-end features that affect the overall quality delivered to
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the user. To address these elements, Quality of Experience
(QoE) management represents a much better proposition [2].

When it comes to Internet services, humans become the
quality meters [3], and their expectations, perceptions and
needs carry a great value. The overall goal of QoE man-
agement is therefore to optimize the end-user QoE (end-user
perspective), while making efficient use of network resources
(current and future) and maintaining a satisfied customer
base (provider perspective). Successfully managing QoE for a
specific application requires understanding and identifying the
multiple factors that affect it (subjective and objective), from
the point of view of various actors in the service provisioning
chain. Among all factors, QoS impairments have demonstrated
to have a great influence on QoE [4]. Understanding the
relationship between network-based QoS parameters and user-
perceived QoE provides important input for the QoE manage-
ment process, in particular to network providers with control
over network resource planning and provisioning mechanisms.
Extensive research has been done to find the relation between
QoS and QoE [5]. However, the effect of QoS is highly non-
linear; thus, developing a generic model that could work over
a broad range of conditions becomes a challenging task.

Particularly crucial is the case of video streaming ser-
vices, which are the most widespread and used service types
nowadays [6]. New streaming protocols increase bandwidth
requirements and transmission complexity, which are critical
elements for service and network providers [7]. In this type
of services the relation between QoS parameters and their
effect on the experienced quality becomes more challenging.
The effect of the QoS impairments on the user’s perceived
quality will heavily depend on the transmission protocol used
for streaming. This also means that QoE has to be mod-
eled in a protocol-dependent way. For example, a streaming
service based on HTTP/TCP (such as MPEG-DASH [8]) is
more susceptible to temporal impairments (retransmissions
alleviate the influence of the lost packets). As such, the
methods used to assess quality have to focus on temporal
impairments. Examples of these are the temporal approach of
Duanmu et al. [9], the DASH quality assessments of Zegarra
et al. [10], Rodrı́guez et al. [11] and Zhao et al. [12] or
even the Video Multimethod Assessment Fusion (VMAF)
of Netflix. In contrast, when the streaming service is RTP-
based (teleconferencing systems or IPTV), due to the fact
that RTP does not provide retransmission mechanisms, it is
easier to study the direct effect of the QoS impairments (packet

https://github.com/Netflix/vmaf
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loss, jitters, throttles). These can be measured by traditional
objective metrics such as the Peak to Noise Ratio (PSNR)
or Structural Similarities (SSIM). However, generalizing the
effect of each one of the impairments isolated under a broad
range of videos and conditions is still under investigation.

In this work, we present a general experimental method-
ology to assess the effects of QoS on QoE for RTP-based
video streaming services. We have applied our methodology
to three network-impaired video-sets with the aim to provide a
comprehensive evaluation of the effects of networks on video
quality. First, the ReTRIeVED video set [13] provided the
means to understand the most impairing effects on networks.
Furthermore, it triggered the idea to create our own sets,
specializing in the most impairing conditions for 2D and 3D:
the LIMP Video Quality Database [14] and the 3D-HEVC-
Net Video Quality Database. Our study and methodology are
meant to provide service providers with the means to pinpoint
the working boundaries of their video-sets in face of different
network conditions. At the same time, network operators may
use our findings to predict how network control policies affect
the user’s perception of the service.

The remainder of this paper is organized as follows. Sec-
tion II provides a short introduction to QoE and how it
is measured for RTP video streaming services. Looking for
a general, systematic and comprehensive methodology for
understanding the effects of QoS parameters onto QoE and
pinpointing the breaking conditions, we set up the controlled
evaluation environment presented in Section III. Section IV,
presents the quantitative results of the deployment of this
experimental method considering a broad range of network
impaired video contents (the three video sets). Section V,
provides further insights on the non-linear relations between
QoS and QoE, as well as setting a group of boundary rules
for the benefit of network and service providers. Finally,
Section VI draws key conclusions.

II. BACKGROUND: VIDEO QUALITY ASSESSMENT OF RTP
VIDEO STREAMING SERVICES

Measuring QoE of RTP video streaming services in a fast
and accurate manner is still an open area of research. Due to
its subjective essence, the legitimate judges of visual quality
are the humans, whose opinion can be obtained through
subjective analyses [15]. In practice, presented stimuli (for
example impaired video sequences) are rated by subjects under
controlled conditions. These ratings express the subjective
QoE (sQoE) described typically by the Mean Opinion Score
(MOS). However, due to the time-consuming nature and bias
of subjective experiments, in the last years great effort has
been placed onto developing objective quality metrics which
could provide with a valid alternative, i.e. objective QoE
(oQoE) [15]. In this work, we have explored the latter avenue,
which allows not only to automate the QoE measurement and
control loop, but also doing so in real-time.

The ultimate goal of the oQoE metrics is to provide the best
possible correlation to subjective studies and the human vision
system (HVS) by means of only the reference (original) and
the received (distorted) material. Depending on the amount

of reference information necessary to perform the assessment,
the oQoE approaches are classified in three categories: Full-
Reference (FR), Reduced-Reference (RR) and No-Reference
(NR). FR metrics require the original material to perform
their assessment. Thus, they are, in general, considered more
accurate than the other two categories [16]. One simple
example of these metrics is the Peak-Signal to Noise Ratio
(PSNR) algorithm, which relies on the root mean square error
(RMSE) for its assessment. Although very simple and compu-
tationally efficient, PSNR fails to provide an accurate enough
assessment, particularly when videos have been distorted by
network impairments [17].

The Structural Similarities (SSIM) algorithm has shown
better correlation to the HVS [18]. SSIM was originally
developed to assess still images, but was later adapted to video.
It is based on the observation that a natural image or frame
in a video is highly structured [19]. Structural information
is defined as the attributes that represent the structure of
objects in the scene, independent of the average luminance
and contrast. Hence SSIM combines comparisons in terms of
luminance, contrast and structure. Since the HVS is highly
adapted to structural information, the performance of SSIM is
better correlated with sQoE than other simpler oQoE metrics
such as PSNR.

Specifically, because of its good correlation with subjective
values, the Video Quality Metric (VQM) [20] is broadly
chosen as a better option when subjective studies are not
available. The VQM calculation involves extracting perception
based features (spatial alignment, valid region estimation,
gain and level offset calculations and temporal alignment),
computing video quality measurements and combining the
parameters to provide the overall quality measurement. This
process is computationally more expensive than SSIM and
PSNR. Thus, VQM is commonly used as the benchmark FR
metric [21] or when real-time measurements are not required.

Finally, another very accurate FR model is the MOVIE
(MOtion-based Video Integrity Evaluation) algorithm [22].
MOVIE integrates both spatial and temporal aspects of dis-
tortion in its assessment. It uses explicitly motion information
from the reference video and evaluates the quality of the test
video along the motion trajectories of the reference video.
Despite its accuracy, MOVIE is so computationally demanding
that it can hardly be used on large video datasets, which is why
we have not used it in our assessment.

III. QOS-QOE ASSESSMENT METHODOLOGY

The driving motivation for our work is to provide a system-
atic and general analysis of the effect of QoS parameters on the
end-user experience of the service (QoE). For this reason, our
first step was to deploy streaming services in real networks and
assess the end-user quality while the network was monitored.
Examples of these studies are presented in [23], [24]. These
studies, while providing solutions shaped to the networks
under scrutiny, lacked on general behavioral conclusions.
In addition, due to the changing conditions of real-network
systems, it is very difficult to obtain a benchmark solution. For
this reason, our next research question was to understand the
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Fig. 1: Experimental Evaluation Methodology for mapping the network QoS to the end-user QoE.

influence of the different QoS parameters on video streaming
services on a broad, general and systematic manner. Such
analysis is meant to provide video and network managers with
the means to perform actions, both on the videos streams and
on the network control plane. To achieve this, it was necessary
to have a controlled environment in which network and video
conditions could be assessed in an isolated manner. Herein,
we present our controlled evaluation set-up.

We engineered the indoor network video evaluation system
shown in Figure 1. In it, an RTP-video server streams to
a connected RTP-video client. Between client and server a
network emulator is located. This emulator (Hurricane II from
PacketStorm is able to emulate network conditions in real-
time as well as full ITU network impairment models [25]. On
video reception, the client performs an objective video quality
assessment by means of a full-reference comparison between
the original and the impaired materials. At the same time,
the network emulator provides the real-time assessment of the
conditions employed. Finally, both QoS and QoE assessments
are used to understand how the first affects the second one.
This analysis consists of an overall quality degradation as-
sessment, quality colormaps in which conditions and videos
are unfolded. In addition, as introduced in Section II, the
relation between QoE and QoS can be modeled by means
of psychometric curves [5]. In this QoS-QoE evaluation we
include a final sigmoid psychometric fit.

Wireless networks suffer from instantaneous changes on
conditions derived from congestion in densely populated areas,
low reception (due to long distances to the access point), etc.
These changes translate in QoS impairments which can be
classified in four basic types: delay, jitter, packet loss (PLR)
and throughput constraints (in terms of throttle) [26]. For our
systematic analysis, instead of using the full network models
installed on the network emulator, we decided to do an isolated
analysis of each of these four QoS impairments.

As we explained in the background section, PSNR has
been deemed inaccurate. On the other hand, the excessive
computational times of MOVIE made it inadequate for large

http://packetstorm.com/packetstorm-products/hurricane-ii-software/

scale assessment. VQM and SSIM were best suited metrics
to act as benchmark and could be used for our general and
systematic methodology. The decision of which benchmark to
use was made on the accuracy of each of the candidates to
the HVS, as it will be shown next.

IV. QUANTITATIVE EVALUATION OF THE NETWORK
IMPAIRED VIDEO SETS

In this section we present the quantitative results of ap-
plying our experimental QoS-QoE method to three video
datasets. Our first step in the assessment was to pick a
quality benchmark in line with subjective assessment. We
performed this validation on the ReTRiEVED dataset, which
comes with MOS (Section IV-A). Once the objective FR
benchmark was selected, our purpose was to find and pinpoint
the most impairing conditions. For it, we again evaluated the
ReTRiEVED dataset (Section IV-B). Based on these results,
Section IV-C and Section IV-D present the analysis of our
own network impaired videosets, which provide a deeper and
broader analysis of the effect of the most impairing conditions
(PLR and bandwidth) for 2D and 3D videos, respectively.

A. Objectivizing the Subjective Perception of Network Im-
paired Videos

QoE is inherently subjective [27] and the most extended
procedure to measure perceived quality is by means of MOS
indexes. However, as we introduced in the previous section,
subjective studies, while providing accurate measurements,
are unsuitable to perform quality analyses at large scale.
Furthermore, their biased essence makes them difficult to map
to a general viewer condition. For these reasons, objective
metrics, which focus on the objective degradation of videos,
are better suited to measure quality degradations. The first
investigation we performed was to look for an objective metric
that would fit the user’s subjective experience accurately.

In the previous Section we picked SSIM and VQM as
benchmark quality candidates. Thus, the subjective benchmark
fit was performed using SSIM and VQM.
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TABLE I: ReTRIEVED Video Dataset parameters in terms of video types (acronym, name, description) and network
impairments. Videos are subjected to each of the 23 different conditions individually. This makes a total of 184 impaired
videos to evaluate.

Video type Network condition
Acronym Name Size FR Length Description Delay Jitter Throughput PLR

[Pixel] [fps] [s] [s] [ms] [Mbps] [%]
cr Crowdrun 704× 576 25 9 Still; forest; people running 0 0 No 0
do Duckstakeoff 704× 576 25 9 Still; water; ducks take off 0.1 1 5 0.1
hb Harbour 704× 576 30 9 Still; water; Sailing boat race 0.3 2 3 0.4
ic Ice 704× 576 30 7 Still; outdoor ice rink; young people ice skating 0.5 3 2 1
pj Parkjoy 704× 576 25 8 Horizontal tor train; river edge; people running 0.8 4 1 3
sc Soccer 704× 576 30 7 Horizontal tor train; close up football match 1 5 0.5 5
re Restaurant 720× 576 25 9 Horizontal tor train; restaurant; man drinking 8
ru Running 720× 576 25 8 Horizontal tor train; forest; two persons running 10

TABLE II: PCC indexes of the FR metrics VQM and SSIM to the subjective MOS for all videos of the ReTRiEVED data set
averaged per video type and network condition. Delay is given in seconds, jitter in milliseconds, bandwidth throttle in Mbps
and packet loss ratio in percentage. Cell colors give qualitative correlation levels: green (best); and red (worst).

VQM SSIM
Video Network Condition Network Condition
Type Delay[s] Jitter[ms] Through.[Mbps] PLR[%] ALL Delay[s] Jitter[ms] Through.[Mbps] PLR[%] ALL

cr 0.308 0.994 0.954 0.842 0.775 -0.162 -0.425 0.776 0.394 0.146
do -0.32 0.747 0.754 0.78 0.49 -0.341 0.71 0.649 0.335 0.337
hb 0.112 0.996 0.99 0.923 0.755 -0.05 0.749 0.726 0.14 0.392
ic 0.7553 0.971 0.974 -0.456 0.871 0.756 0.836 0.535 0.186 0.578
pj 0.7323 0.895 0.928 0.879 0.859 0.412 0.83 0.894 0.238 0.594
sc -0.773 0.985 0.934 0.887 0.508 -0.73 0.777 0.529 0.283 0.217
re -0.42 0.98 0.98 0.828 0.59 -0.486 0.823 0.795 0.623 0.439
ru 0.507 0.95 0.99 0.86 0.83 0.695 0.887 0.86 0.77 0.803
All 0.113 0.9398 0.939 0.84 0.709 0.0134 0.648 0.72 0.371 0.438

±0.57 ±0.08 ±0.08 ±0.05 ±0.4 ±0.55 ±0.44 ±0.14 ±0.22 ±0.19

In order to assess the accuracy of these two FR metrics, we
picked the ReTRIEVED Video Quality database [26], [13].
This set is composed by 184 test videos, obtained from 8
different original sources. These videos (encoded to MPEG2)
are characterized by a broad range of spatial and temporal
information, which allows drawing general conclusions out
of the assessment. The 8 original videos are then subjected
to practical transmission impairment scenarios, generated by
a network emulator (NETEM) and Video LAN [28]. Packet
loss rate, jitter, delay, and throughput have been considered as
possible distortions resulting from video transmission, whereas
their values are chosen based on ITU and ETSI recommen-
dations [28], [26]. Table I shows the characteristics of this
dataset in terms of video types (acronym, name, size, frame
rate, length and description) and the four condition types and
levels of impairment. Each of the 184 impaired videos of this
dataset was evaluated by a set of 40 people using the well-
known standardized MOS scoring system.

VQM and SSIM indexes were obtained for all the videos
of the video set. Their values were normalized to provide
quality levels, i.e. one for “full quality” and zero for “full
degradation”. Subsequently, the accuracy of the full reference
assessments was evaluated by means of the Pearson Correla-
tion Index [29] to the average MOS.

Table II presents the overall correlation values of VQM and
SSIM to MOS, considering all the videos of the dataset and
network conditions. While each of the columns corresponds to
the results of the videos subjected to a particular impairment,
the rows show the average Pearson Correlation Coefficient
(PCC) [29] per video type. Overall correlations across all

network conditions and video types are shown in the last
column and the last row, respectively. The PCC correlations
are performed along the impairment level. This means, for
example, that to assess the PCC of VQM to MOS for video
‘cr’ at 1% packet loss, the correlation is done for all quality
indexes from 0 (no impairment) up to 1%.

The first conclusion from this analysis is that VQM clearly
outperforms SSIM in most of the videos and conditions. Only
three out of the 8 videos of the delay assessment provide
better correlation with SSIM than with VQM. Furthermore,
VQM has an overall correlation of over 70% in the whole
dataset. This gives already an idea of the good performance
of VQM. However, the standard deviation is close to 40%.
The reason for this behavior can be found looking at the
impairments one by one. While the results on jitter (column
2), throughput (column 3), and packet loss (PLR) (column
4) are very good (reaching values between 85% and 95%),
the overall correlation in the case of the delay barely reaches
20%. This comes from the fact that the perception of delay
on videos varies greatly among subjects, while the objective
metric gives a more general (more objective) measurement.

In order to explore these discrepancies in greater detail,
Figure 2 shows the correlation results unfolded for the level
of the impairment both for VQM (Figure 2a) and SSIM
(Figure 2b). Each of the four colormaps shows one impairment
type (Delay, Jitter, Throughput and PLR) in the two figures.
The x-axes indicate the impairment level for each of the four
conditions, while the y-axis labels each of the video types with
a different number (1 to 8). Dark blue is presented for very
high or close to 1 PCC correlation between the metrics. When
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(a) Correlation of VQM to the subjective studies on the ReTRIeVED Video Quality Database.

(b) Correlation of SSIM to the subjective studies on the ReTRIeVED Video Quality Database.

Fig. 2: PCC colormaps of the two FR candidates to MOS on the ReTRiEVED Video Quality database.

the correlation starts degrading, the blue starts fading to yellow
(0 or no correlation) to a final red (-1 or anticorrelation).

Looking at the colormaps provides a more evident reasoning
behind the low correlations in the delays. Basically the videos
‘sc’ (6th line) and ‘re’ (7th line) show full anticorrelation
to the MOS in the case of delays, while the correlation
of the video ‘do’ degrades dramatically after 0.3 ms. Apart
from that, colormaps are dominated by blue, indicating an
overall good (though not perfect) correlation to the subjective
assessment results (MOS). This imperfect correlation between
objective (VQM) and subjective (MOS) metrics is well-known
and certainly within the acceptability boundary. These results
made us select VQM as the benchmark quality of preference
for those cases where subjective assessment available. The
evaluations shown next are performed using VQM.

B. Discovering the Most Impairing Network QoS condition:
Assessing the ReTRIeVED Video Quality Database

The next step was to pinpoint the most affecting conditions
on video streaming services. To achieve this, we again turned
to the ReTRiEVED video quality database [26], [13] (Table I),
which focuses on the effect of the most known impairments
on Standard Definition (SD) videos. We followed the experi-
mental QoS-QoE method presented in Section III.

We first calculated the VQM indexes for all the videos
on the dataset. VQM assesses the degradation of videos,
returning values between ‘zero’ (no degradation) and ‘one’
(full degradation) [20]. In order to provide a more intuitive
assessment in terms of quality, the VQM values are inverted.

In this way, the benchmark quality index returns ‘one’ if the
video when the highest achievable quality and ‘zero’ when the
degradation is complete.

Table III provides the quality results of all the videos,
on the four different network conditions, with three selected
sensing points between the lowest to the highest level of the
impairment. Furthermore, the videos have been reorganized
from the least to the most resilient one. In addition to the table,
Figure 3 presents the colormaps that show the evolution of the
quality from unimpaired to fully-impaired network conditions.

Different video types experiment diverse degradation. This
can be seen in the behavioral pattern of the most affected
videos (do and pj), which for most of the network conditions
suffer a higher degradation than the others. This is a known
concept broadly discussed in literature. However, if we take
a comparative look at the videos, it is possible to group their
behavioral patterns in three different classes, according to the
effect that networks have on the degradation of the videos. As
such, while the videos ‘do’, ‘pj’ and ‘cr’ are heavily affected
by the four impairments (corresponding to the first class), the
videos ‘hb’ and ‘ic’ and ‘sc’ are less affected and follow a
very similar patter (second class). Finally ‘re’ and ‘ru’ are
the most resilient videos and can be grouped into the third
class. Looking at the composition of the videos inside each
defined category, it is possible to understand the videos similar
behavior. For example, the videos ‘do’, ‘pj’ and ‘cr’ present
very complex scenes and a substantial degree of motion. The
videos ‘re’ and ‘ru’ present nearly static scenes and very little
motion. Based on this early classification, it is possible to
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TABLE III: Quality degradation by means of the benchmark quality (1-VQM) for all the videos and conditions of the
ReTRiEVED Video quality Database. Videos are organized from the least to the most resilient. For each of the network
impairments, three sensing points are given. Cell colors provide a qualitative degree of quality (where 0 means maximum
degradation and 1 full quality): red (0-0.1), orange (0.1-0.25), yellow (0.25-0.5), green (0.5-0.75), turquoise (0.75-0.95) and
dark blue (1-0.95).

Video Network Condition
Type Delay[s] Jitter[ms] Through.[Mbps] PLR[%]

0.1 0.5 1 1 3 5 5 2 0.5 0.1 3 10
do 0.55 0.549 0.52 0.49 0.27 0.14 0.67 0.65 0 0.53 0.35 0.12
pj 0.65 0.54 0.54 0.52 0.24 0 0.68 0.68 0 0.59 0.43 0.206
cr 0.67 0.6 0.68 1 0.12 0 1 1 0.1 0.6 0.49 0.21
hb 0.91 0.96 0.96 0.88 0 0 0.41 0.46 0.1 0.91 0.62 0.31
ic 0.96 0.961 0.96 0.95 0.15 0.09 0.84 0.78 0 0.96 0.59 0.345
sc 1 0.993 .9 0.86 0.07 0 0.56 0.52 0 0.97 0.48 0.17
re 0.9 0.9 0.9 0.85 0.02 0 0.64 0.64 0 0.88 0.62 0.41
ru 1 0.87 0.98 0.93 0.1 0 0.9 0.7 0 0.96 0.46 0.03
All 0.83 0.78 0.8 0.81 0.098 0.01 0.71 0.7 0 0.8 0.5 0.22

±0.2 ±0.2 ±0.2 ±0.15 ±0.1 ±0.1 ±0.2 ±0.18 ±0.1 ±0.2 ±0.1 ±0.1

Fig. 3: Benchmark quality in all the videos of the ReTRIeVED Video Quality Database.

derive some general conclusions of the resilience about these
videos to networks.

In general, the least impairing artifact is the delay. Only
three of the videos (do, pj and cr, the first class) are affected
by it, while the other 5 provide good resilience (average
of 0.8 quality with maximum averages delays of 1 second).
Moreover, the effect of delays is flat, meaning that for the
videos more affected and the ones more resilient there is no
significant difference between low levels of delay (such as
0.1s) or the highest ones (1s).

The jitter shows a generalized behavioral pattern for all the
videos. Nearly full quality or 50% for the two most affected
videos, do and pj) up to 1 ms to full degradation for any
higher level of impairment. The reason for this comes from
the buffering effect of the encoders on the receiver side. Jitter
affects the most when the buffer is full but data is still missing.
In that case, quality is completely lost. More recent encoding
techniques than MPEG2 (such as H.264 and H.265) already
show buffering mechanisms to counter the effects of the jitter.

Finally, the throughput and packet loss provide the broadest
range of impairing effects. As a general rule, in terms of
transmission/compression shrinking (throughput), as the band
reduces down to 1Mbps, the quality is lost for most of the
videos. Regarding the packet loss, in general videos still have
reasonably good quality up to 3% drops. However, three of the
videos (again ‘do’, ‘pj’ and ‘cr’) start loosing quality already
with 0.4% (quality decreases down to roughly 0.6).

To sum up, video types and compositions get affected by
network impairments in a different manner, but some general
patterns can be extrapolated from a comparative analysis.
Delay infers a constant and low degradation. Jitter, although
very much affecting the video streaming services, is providing
the same behavior independently from the video type under
scrutiny. This allows for countering actions by the network
provider, such as maintaining it below 1ms to stream. Finally,
the effect of both network drops (packet loss) and bandwidth
constraints is strong on the videos. However, it is heavily
dependent on video type and condition. Thus, it is not easy to
reach general rules with the assessment of this first video set.

Based on this reasoning, we decided to explore in more
detail the effect of both packet loss and bandwidth. Thus,
we generated and assessed the two video-sets presented and
evaluated in the next two subsections.

C. Broad Analysis of 2D-SD Videos: Generating and Assess-
ing the LIMP Video Quality Dataset

Given the lessons learned from the assessment of the
ReTRiEVED dataset [26], [13], the purpose of this second
analysis was to develop and assess a video quality database
focusing on the effect of packet loss and bandwidth com-
pression. For it, we made use of the test-bed presented in
Section III and streamed the LIMP (Loss Impaired) Video
Quality Database [14].
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TABLE IV: LIMP Video Quality dataset parameters range in terms of video types (acronym, name and description), compression
and network packet loss ratio. Compression bitrate is provided in kbps and the packet loss ratio in percentages. Each of the
10 original video sources is subjected to all of the 8 bandwidth constraints and the 12 packet loss levels. This means a total
of 960 videos to evaluate.

Video type Condition
Acronym Name Size FR Length Description Bitrate PLR

[Pixels] [fps] [s] [kbps] [%]
bs1 Blue Sky 768× 432 25 10 Circular motion; Blue sky and trees 64 0 0.5
mc1 Mobile Calendar 768× 432 25 10 Pan, horizontal tor train; Calendar vertical 640 1 1.5
pa1 Pedestrian Area 768× 432 25 10 Still; People on intersection 768 2 2.5
pr1 Park Run 768× 432 25 10 Pan; Person across a park 1024 3 3.5
rb1 River Bed 768× 432 25 10 Still; River bed, pebbles in the water 2048 4 4.5
rh1 Rush Hour 768× 432 25 10 Still; Rush hour traffic on the street 3072 5 10
sf1 Sunflower 768× 432 25 10 Still; Bee over sunflower 4096
sh1 Shields 768× 432 25 10 Pan, still, zoom; Person across display 5120
st1 Station 768× 432 25 10 Still; Railway track, train and people
tr1 Tractor 768× 432 25 10 Pan; Tractor across the fields

TABLE V: Quality degradation by means of the benchmark quality for all the videos and conditions of the LIMP Video
Quality Database. Videos are organized from the least to the most resilient to packet loss and compression. 5 sensing points
are provided between the minimum and maximum level of network losses. Bitrate compression of each of the videos is given
in kbps and the packet loss level in percentage. Cell colors provide a qualitative degree of quality (where 0 means maximum
degradation and 1 full quality): red (0-0.1), orange (0.1-0.25), yellow (0.25-0.5), green (0.5-0.75), turquoise (0.75-0.95) and
dark blue (1-0.95).

Video Bitrate PLR [%] Video Bitrate PLR [%]
Type [kbps] 0 1 3 5 10 Type [kbps] 0 1 3 5 10
sh1 5120 0.61 0.53 0.44 0.32 0.1 pr1 5120 0.78 0.65 0.5 0.46 0.24

4096 0.6 0.54 0.35 0.29 0.01 4096 0.75 0.64 0.46 0.36 0.21
3072 0.58 0.47 0.43 0.36 0.06 3072 0.64 0.55 0.44 0.4 0.24
2048 0.55 0.49 0.5 0.38 0.24 2048 0.56 0.47 0.45 0.39 0.29
1024 0.51 0.55 0.4 0.31 0.23 1024 0.4 0.38 0.34 0.32 0.22
768 0.47 0.41 0.33 0.33 0.2 768 0.36 0.33 0.3 0.27 0.27
640 0.45 0.37 0.37 0.36 0.17 640 0.33 0.3 0.3 0.25 0.24
64 0.024 0.011 0 0 0 64 0.04 0.04 0.04 0.04 0.03

rb1 5120 0.79 0.64 0.54 0.45 0.42 tr1 5120 0.89 0.63 0.51 0.34 0.15
4096 0.76 0.61 0.52 0.44 0.4 4096 0.86 0.7 0.45 0.4 0.09
3072 0.67 0.58 0.49 0.47 0.39 3072 0.81 0.6 0.47 0.33 0.18
2048 0.6 0.51 0.46 0.44 0.36 2048 0.74 0.61 0.51 0.36 0.22
1024 0.46 0.44 0.42 0.4 0.37 1024 0.59 0.48 0.41 0.4 0.29
768 0.42 0.39 0.36 0.36 0.32 768 0.53 0.41 0.32 0.37 0.31
640 0.39 0.36 0.36 0.33 0.32 640 0.49 0.36 0.32 0.31 0.27
64 0.22 0.23 0.24 0.21 0.21 64 0.02 0 0 0.01 0.01

pa1 5120 0.94 0.58 0.42 0.33 0.18 mc1 5120 0.88 0.69 0.41 0.34 0.12
4096 0.91 0.64 0.4 0.34 0.15 4096 0.85 0.62 0.35 0.29 0.18
3072 0.86 0.61 0.44 0.34 0.19 3072 0.81 0.66 0.43 0.32 0.09
2048 0.78 0.575 0.44 0.39 0.29 2048 0.76 0.67 0.46 0.4 0.17
1024 0.59 0.51 0.4 0.36 0.29 1024 0.67 0.56 0.34 0.35 0.21
768 0.51 0.45 0.35 0.33 0.25 768 0.62 0.49 0.47 0.32 0.27
640 0.47 0.41 0.35 0.31 0.28 640 0.58 0.43 0.41 0.37 0.25
64 0.13 0.12 0.12 0.12 0.08 64 0.18 0.16 0.15 0.15 0.14

rh1 5120 0.96 0.76 0.52 0.36 0.17 st1 5120 0.96 0.81 0.61 0.47 0.3
4096 0.94 0.64 0.53 0.3 0.16 4096 0.91 0.78 0.53 0.5 0.32
3072 0.9 0.69 0.5 0.31 0.14 3072 0.88 0.81 0.62 0.55 0.36
2048 0.83 0.74 0.51 0.41 0.17 2048 0.83 0.75 0.65 0.45 0.43
1024 0.67 0.58 0.52 0.36 0.24 1024 0.71 0.65 0.57 0.56 0.44
768 0.59 0.47 0.38 0.39 0.28 768 0.67 0.6 0.58 0.51 0.39
640 0.54 0.44 0.38 0.35 0.19 640 0.64 0.56 0.54 0.47 0.29
64 0.16 0.14 0.13 0.14 0.1 64 0.23 0.23 0.23 0.19 0.21

sf1 5120 0.96 0.84 0.59 0.52 0.31 bs1 5120 0.95 0.85 0.61 0.51 0.29
4096 0.96 0.77 0.7 0.54 0.23 4096 0.94 0.81 0.6 0.52 0.45
3072 0.93 0.84 0.61 0.48 0.29 3072 0.91 0.8 0.58 0.49 0.4
2048 0.88 0.76 0.67 0.53 0.36 2048 0.87 0.8 0.64 0.55 0.41
1024 0.78 0.67 0.62 0.61 0.39 1024 0.78 0.69 0.64 0.52 0.44
768 0.72 0.65 0.57 0.51 0.36 768 0.74 0.67 0.6 0.59 0.46
640 0.69 0.56 0.59 0.49 0.37 640 0.71 0.62 0.57 0.51 0.5
64 0.12 0.12 0.11 0.1 0.07 64 0.3 0.29 0.28 0.28 0.29

Ten original raw high quality videos were obtained from
the Live Quality Video Database [30], [31] (10 seconds and

25fps). Each of these videos is of a different dynamic com-
position and type (Table VI). These videos were compressed



IEEE TRANSACTIONS ON BROADCASTING, VOL. , NO. , MAY 2017 8

to H.264/MPEG4 with a resolution of 768x432 at 8 different
bitrates (64kbps, 640kbps, 768kbps, 1024kbps, 2048 kbps,
3072kbps, 4096kbps and 5120 kbps). We selected H.264
given its higher robustness and efficiency than MPEG2. The
selection of the compression bitrates was done to obtain the
most diverse variety of video qualities. For example, one
could think that with the new ultra-high speed networks
(such as the one envisioned by 5G or optical wireless), very
low quality transmissions (64kbps) would not be necessary
anymore. However, these rates are still visible in congested
mobile networks or in adaptive streaming applications that
bootstrap at the lowest bitrate and then slowly adapt the quality
to the actual network conditions. With this variety of bitrates,
our dataset covers a broad range of video types, which allows
for a comprehensive QoS-QoE analysis.

In addition to bandwidth constraints, packet loss has been
demonstrated to be the main cause of degradation in RTP
video transmissions [17], [32], as we also showed in the
previous Section. Thus, for the generation of the full dataset,
80 original videos (10 types at 8 compression levels each)
were transmitted from server to client through a lossy network
(using the experimental test set-up presented in Section III).
Each video type and bitrate was streamed through the network
11 times. Each iteration the video was subjected to a different
levels of packet loss (0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%,
4%, 4.5%, 5% and 10%). The final output was a video set
consisting of 960 videos, obtained from 10 original videos,
each encoded at 8 different bitrates and 12 different conditions
(1 compression degradation + 11 compression degradation and
packet loss).

As in the previous case, we performed a VQM assessment of
all the videos. The original reference video was obtained from
the original 10 videos encoded at maximum quality (given
by the encoder ffmpeg [33]). Once the VQM indexes were
obtained, they were inverted to measure quality instead of
degradation.

Table V presents the quantitative results of each of the
videos for the different compression rates. In this case five
sensing points are provided (0%, 1%, 3%, 5% and 10%).
The videos are again organized from the least to the most
resilient. Two sets of colormaps present the views of the data
focused on the video type (Figure 4a) and the compression
rate (Figure 4b). Finally, averages per video types and bitrate
are provided in Figure 4c and Figure 4d. These five elements
provide a comprehensive analysis of the effect of packet loss
and compression on 2D-SD videos.

First, we can have a look at the effect of networks losses
and compression on each of the video types. As it is to be
expected, some of them are more resilient than others. While
sh1 is the most impaired video (Figure 4a, first row first
column) provides a very impaired pattern during both sweeps
of compression and packet loss, bs1 (Figure 4a, second row,
fifth column) maintains good levels of quality (over 70%) up
to 3% packet loss. This gives an idea of the variety of the
videos of the set.

However, looking at the video averages (Figure 4c), it
is possible, as in the previous case, to classify the videos
according to their resilience to networks. On the least resilient

end, the videos sh1 and pr1 show already from the start, very
bad performance (meaning that they are heavily influenced
by the compression impairment). Furthermore, their average
quality drops below 0.4 from 2% packet loss on. On the
other end of the spectrum, bs1, sf1 and st1 maintain average
quality values higher than 0.5% up to 5%. In between those
two patterns, rb1 has the flattest pattern of all, during the
full packet loss sweep the quality degrades barely 20%. This
gives the impression that the complexity of this video is more
affected by video compression than by network losses. The
final four videos have a similar trend, keeping average values
over 0.5 up to 2%. It is worth noting that the low average
results come from the influence of the 64kbps version of the
videos, which brings the average qualities down. As in the
case of the ReTRiEVED video set, there is a high correlation
between the composition of the videos and their resilience to
networks. While sh1 and pr1 present very rich scene and fast
motion, sf1, bs1 and st1 present very low motion and scene
complexity.

If we look at the behavior from the compression point of
view, as a general note, as the bitrate decreases, the videos’
robustness to network losses increases. This counter-intuitive
effect can be seen on Table V. Bitrates from 768kbps to 64kbps
suffer a maximum of 30% degradation over the full packet loss
sweep, while higher bitrates, such as 5, 4 or 3 Mbps, suffer
70% degradation in the least. This effect can also be seen
in the figures (the three last colormaps on Figure 4b and the
grey, brown and cyan lines of Figure 4d). In addition, all of
the averaged qualities except the 64kbps, are kept over 0.4 up
to 5% packet loss.

The bitrates can be easily classified according to their
strength against packet loss. 64kbps, as it was expected,
provides the lowest quality at all times. 640kbps and 768kbps
provide very low quality but similar quality. In the same way, 1
and 2 Mbps have their own performance group and the highest
bitrates (5, 4 and 3 Mbps) as well. Putting all these notions
to service and network providers could provide many hints as
to how to use certain videos and networks, as we show in
Section V.

D. Broad Analysis of Stereoscopic 3D Videos: Generating and
Assessing the 3D-HEVC-Net Video Quality Dataset

3D video streaming application are booming [34], to fulfill
the demand of high-quality media [35]. However, with their
high quality and bandwidth requirements come more stringent
constraints on networks [36]. In this situation, it is fundamental
to understand how the network limitations impact quality [23].
Early studies, such as the one presented by Hewage et al. [37]
or Politis et al. [36] have shown the effects of QoS artifacts
onto user QoE in small sets of video-samples. Our purpose was
to study the non-linear distortion effects that lossy networks
have onto 3D videos in a general, systematic manner with a
broad range of video types and conditions.

A freely available dataset of high quality 3D Stereoscopic
video sequences was chosen for the proposed experimen-
tal analysis [35]. This was composed of 10 high-definition
stereoscopic sequences. The resolution of the sequences is
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(a) Quality colormaps of the LIMP Quality Database organized per video type.

(b) Quality Colormaps of the LIMP Video Quality Database organized per bitrate compression.

0 1 2 3 4 5 10
Packet loss [%]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Be
nc

hm
ar

k 
qu

al
ity

 [1
-V

QM
]

bs1
mc1
pa1
pr1
rb1

rh1
sf1
sh1
st1
tr1

(c) Averages degradation per video type.

0 1 2 3 4 5 10
Packet loss [%]

0.2

0.4

0.6

0.8

Be
nc

hm
ar

k 
qu

al
ity

 [1
-V

QM
]

5Mbps
4Mbps
3Mbps
2Mbps

1Mbps
768Kbps
640Kbps
64Kbps

(d) Averages degradation per bitrate.

Fig. 4: Quality results for all the videos, bitrates and packet loss levels of the LIMP Video Quality database. The videos are
organized from the least to the most resilient to impairments. The bitrates go from lowest to highest compression.

1920 × 1080 pixels, the color sampling Y UV 420, the frame
rate 25fps, and the duration 16s for all the sequences except

for the last one (13s). The stereoscopic video sequences were
first processed in order to obtain a side-by-side dataset of Full-
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HD videos.
Common formats for 3D video are conventional stereo

video (CSV), mixed resolution stereo (MRS), and video plus
depth (V+D) [38]. For the generation of the dataset, we
chose the CVS format with frame-compatibility in side-by-side
arrangement [39]. The frame-compatibility approach combines
the left and the right views into a standard 2D video format,
keeping in this way the compatibility towards 2D video coding
tools. The stereoscopic frames can be arranged in a 2D frame
in several ways. Common approaches are side-by-side, top-
and-bottom, row interleaving, column interleaving. A side-by-
side frame is obtained by subsampling the left and the right
frame of a stereoscopic sequence along the horizontal axis by
a factor of two. Hence the new left and right views embedded
in a side-by-side had resolution 960× 1080.

Table VI provides a description of the video types, descrip-
tions, bitrates and network conditions. We compressed each
of the original stereoscopic, 3D, two-views, 10 sequences to
H.265/HEVC [40] at six compression levels (0.5Mbps, 1Mbps,
1.5Mbps, 2Mbps, 3Mbps, and 4Mbps) with a GOP of 15
frames (1 I, 3 P, 11 B). Subsequently, each of the compressed
sequences was merged into a single stream for each bitrate.
Each stream (total length 157s) was sent over the emulated
network configured at 7 levels of packet loss (0.1%, 0.2%,
0.5%, 1.0%, 3.0%, 5.0%, 10.0%), for a total of 42 testing
condition. Each streaming experiment was repeated 10 times
for each bitrate and for each drop rate. On reception, the video
sequences were split and assessed in a full-reference manner.
This made a total of 4200 videos for analysis (10 iterations of
10 videos at 6 compressions and 7 packet loss levels) [41].

As in the previous two cases, we performed a VQM
assessment of all the videos. For it, the original reference
video was picked on the highest bitrate HEVC versions of the
videos (i.e. 4Mbps). In this way, 1/6 of the data set (videos
encoded at 4Mbps) evaluated only the effect of the network,
while the remaining 5/6 provided compression and network
loss assessment. Furthermore, we used VQM due to its proven
performance in 3D Stereoscopic [37]. Subsequently, values
were inverted, as in the previous datasets.

As for the 2D videos, we show a two folded (videos and
compression) analysis by means of five elements. Table VII
presents the quantitative results of each of the videos at the
different compression rates. In this case, as there are more
packet loss levels, six points of the evolution are given (0%,
0.5%, 1%, 3% , 5% and 10%). The videos of the table are
organized from the least to the most resilient to drops. Two
sets of colormaps present the views of the data focused on the
video type (Figure 5a) and the compression rate (Figure 5b).
Finally, we presents the averages over the video types and
bitrates across all videos (Figure 5c) and bitrates (Figure 5d).

We can first have a look at the effect of networks losses
and compression per video type. Similarly to 2D videos,
some of the 3D videos present more resilient patterns than
others. While ‘tb’ (Figure 5a, first row first column) degrades
dramatically already for low packet loss (with a 0.5% of losses,
its quality is already down to 0.3) for all its compression
variants, ‘pc’ (Figure 5a, second row, fifth column) maintains
acceptable levels of quality (higher than 0.5) up to 3% packet

loss.
In the same way as it occurred with the 2D videos, it is

still possible to classify the behavioral pattern of each of the
videos within different categories, taking into account their
performance against the network impairments. On one side of
the spectrum, the video ‘tb’ conforms its own category having
the worst performance of all from the start. It keeps average
values below 0.15, from 1% packet loss. On the other end,
‘nr’ and ‘pc’ provide values close to 0.7 for 1% and only
drop below 0.5 for losses higher than 3%. In between those
two patterns, ‘sc’, ‘hl’ and ‘ul’ outperform ‘tb’. Finally ‘lb’,
‘bg’, ‘bk’, and ‘bx’ are in average degraded to their 50% with
more than 1% packet loss.

Studying the behavior from the point of view of the
compressions provides the first striking result. Unlike, 2D
videos, in which the quality was gradually dropping as the
losses increased, 3D videos show dramatic drops, going from
qualities of 0.9-0.8 at 0.1%-0.2% to roughly 0.5 for 1% packet
loss and down to 0.25 for 3%. The reason for this comes from
the higher resolutions of the videos and bitrates, apart from
the fact that 3D videos transport more complex information
within the two views. In addition, as in the 2D case, as the
bitrate decreases, the resilience of the videos to packet loss
increases (Figure 5b).

Finally, the bitrates can be easily classified according to
their strength against packet loss. The highest compression
(500Kbps) provides the lowest quality of the group, up to 3%.
From that moment on, it over-passes all the other compres-
sions. This proves again the statement that lower compressed
videos are more resilient to network losses. The second highest
compression (1Mbps) has a similar behavioral pattern but with
a higher slope, providing lower quality than all the lower
compressions (1.5 Mbps to 4Mbps) up to 1% losses. After
that, it offers better performance than all of them together.
The behavioral pattern of each of the other compressions can
be classified in two groups. Medium-low compression (1.5, 2
Mbps) starts lower than the highest bitrates, but provides a
better average performance than the highest rates up to 1%.
Finally, 3Mbps and 4Mbps conform their own category with
a very similar pattern. This is also interesting, given the fact
that 4Mbps only carries network degradation, while 3Mbps
has degradations from both compression and drops.

These notions and the ones extracted from the 2D videos
can be used in a real network or video server to obtain a grasp
of the state of their network and videos and adjust in case it
is necessary. The next section provides some hints for a real
case scenario.

V. DISCUSSION: HINTS FOR SERVICE AND NETWORK
PROVIDERS

The purpose of this section is to provide insights derived
from the study of the three datasets which could, in turn, be
instrumental to video services and network providers. Suppose
a video service provider has stored video content both on 2D-
SD and 3D-HD formats. For illustration purposes we have
focused on the LIMP and the 3D-HEVC-Net datasets. In
order to adapt the streamed videos to the network and client
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TABLE VI: 3D-HEVC-Net Video Quality dataset parameters range in terms of video types (acronym, name and description),
compression and network packet loss ratio. The videos bitrates are given in Mbps. The packet loss ratios are given in percentages.
Each of the videos was streamed at one of the 6 bitrates and one of the 8 PLR levels. Each of the experiments was repeated
10 times. This makes a total of 4000 videos to evaluate.

Video type Condition
Acronym Name Size FR Length Description Bitrate PLR

[Pixels] [fps] [s] [Mbps] [%]
bg Barrier gate 1920× 1080 25 16 Still on gate. Barrier opens, car passes. 0.5 0
bk Basket 1920× 1080 25 16 Still on basketball game; Pan, action from one side to another. 1 0.1
bx Boxers 1920× 1080 25 16 Still on boxer training;still on two boxers fighting. 1.5 0.2
hl Hall 1920× 1080 25 16 Still on hotel hall from ceiling;two people meet in one corner. 2 0.5
lb Lab 1920× 1080 25 16 Still on two scientists working on a lab. 3 1
nr News Report 1920× 1080 25 16 Still on two men sitting behind table, reading the news. 4 3
pc Phone Call 1920× 1080 25 16 Still on man behind a table picking up the phone. 5
sc Soccer 1920× 1080 25 16 Still from behind the soccer goal; men scoring. 10
tb Tree Branches 1920× 1080 25 16 Still on tree branches; leaves moved by the wind.
ul Umbrella 1920× 1080 25 13 Still; man opens umbrella and starts turning it.

TABLE VII: Quality degradation by means of the benchmark quality for all the videos and conditions of the 3D-HEVC-Net
Video Quality Database. Videos are organized from the least to the most resilient to packet loss and compression. Compression
bitrate is provided in Mbps; Packet loss ratio in percentages. Cell colors provide a qualitative degree of quality (where 0
means maximum degradation and 1 full quality): red (0-0.1), orange (0.1-0.25), yellow (0.25-0.5), green (0.5-0.75), turquoise
(0.75-0.95) and dark blue (1-0.95).

Video Bitrate PLR [%] Video Bitrate PLR [%]
Type [Mbps] 0 0.5 1 3 5 10 Type [Mbps] 0 0.5 1 3 5 10

tb 4 1 0.3 0 0 0 0 hl 4 0.86 0.47 0.35 0 0 0
3 0.78 0.34 0 0 0 0 3 0.86 0.46 0.35 0 0 0
2 0.7 0.4 0.27 0 0 0 2 0.8 0.47 0.36 0 0 0

1.5 0.61 0.43 0.34 0 0 0 1.5 0.74 0.47 0.08 0 0 0
1 0.48 0.3 0.29 0.06 0 0 1 0.63 0.42 0.37 0.21 0.02 0

0.5 0.3 0.24 0.19 0.15 0.13 0 0.5 0.42 0.34 0.29 0.15 0.12 0
sc 4 1 0.48 0.16 0 0 0 ul 4 1 0.62 0.24 0 0 0

3 0.9 0.46 0.21 0 0 0 3 0.78 0.5 0.33 0 0 0
2 0.85 0.45 0.23 0.04 0 0 2 0.7 0.45 0.4 0.001 0 0

1.5 0.78 0.47 0.34 0.02 0 0 1.5 0.63 0.44 0.42 0.17 0 0
1 0.67 0.5 0.34 0.1 0.02 0 1 0.52 0.42 0.37 0.26 0.07 0

0.5 0.42 0.34 0.3 0.17 0.14 0 0.5 0.36 0.32 0.29 0.23 0.22 0.06
bk 4 1 0.66 0.53 0 0 0 lb 4 1 0.62 0.43 0 0 0

3 0.86 0.6 0.45 0 0 0 3 0.83 0.51 0.38 0.02 0 0
2 0.79 0.54 0.45 0.15 0 0 2 0.75 0.43 0.43 0.14 0 0

1.5 0.73 0.53 0.46 0.24 0.03 0 1.5 0.67 0.49 0.42 0.24 0 0
1 0.63 0.47 0.46 0.32 0.18 0 1 0.56 0.45 0.35 0.24 0.16 0

0.5 0.43 0.38 0.33 0.24 0.19 0.09 0.5 0.35 0.32 0.27 0.16 0.14 0.05
bg 4 1 0.64 0.43 0 0 0 bx 4 1 0.73 0.58 0.17 0 0

3 0.84 0.54 0.39 0 0 0 3 0.85 0.62 0.5 0.19 0 0
2 0.77 0.55 0.43 0.13 0 0 2 0.78 0.56 0.52 0.3 0.11 0

1.5 0.71 0.52 0.4 0.26 0 0 1.5 0.72 0.62 0.51 0.37 0.16 0.002
1 0.61 0.5 0.4 0.26 0.16 0 1 0.61 0.56 0.42 0.32 0.25 0.03

0.5 0.41 0.34 0.32 0.22 0.17 0.12 0.5 0.42 0.38 0.37 0.28 0.22 0.12
nr 4 1 0.82 0.7 0.39 0.02 0 pc 4 1 0.83 0.63 0.32 0 0

3 0.93 0.74 0.67 0.37 0.2 0 3 0.92 0.78 0.66 0.41 0.2 0
2 0.88 0.75 0.67 0.39 0.28 0.02 2 0.87 0.77 0.73 0.51 0.41 0.06

1.5 0.83 0.73 0.63 0.43 0.33 0.06 1.5 0.83 0.73 0.7 0.52 0.43 0.18
1 0.75 0.69 0.62 0.43 0.31 0.18 1 0.74 0.67 0.64 0.47 0.44 0.29

0.5 0.56 0.53 0.52 0.39 0.35 0.2 0.5 0.56 0.54 0.52 0.43 0.39 0.29

requirements, the content and compressions available could
be classified. In the previous section we introduced a possible
classification of the content according to the video resilience
to networks, by direct analysis and grouping of video behavior.
(Table VIII). In addition, the resilience is heavily dependent
on the content type and characteristics (for example in terms
of scene composition and video motion). This notion could be
used to cluster and pre-classify content types according to their
composition (for example using a classification similar to the
previous one). As new videos are added into the system, these
could be classified according to their characteristics (such as

complexity, motion, etc.) within one of the known classes.
This means that the administrators would only be required
to have a small set of analysed video classes available (such
as the one we present in Table VIII) in order to understand
the behavior of a wide range of video services, making the
solution scalable.

The next step would be to understand the sensitivity of the
videos and compression classes to network losses. This can
be done by a psychometric curve fitting. With this notion, the
quantitative quality indexes of the videos, and the classifica-
tions (Table VIII), it is possible to fit a sigmoid psychometric
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(a) Quality colormaps for the 3D-HEVC-Net Video Quality Database organized per video type.

(b) Quality colormaps for the 3D-HEVC-Net Video Quality Database organized per bitrate.
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(c) Averages degradation per video type.
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Fig. 5: Quality plots for all the videos, bitrates and packet loss levels of the 3D-HEVC-Net Video Quality database. The
videos are organized from the least to the most resilient to impairments. The bitrates go from lowest to highest compression.
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TABLE VIII: Classification of the videos and bitrates of the LIMP and the 3D-HEVC-Net video quality databases. Video classes
are organized according to their resilience to network losses in four classes per video-set, ranging from 1 (least resilience
to network drops) to 4 (most resilient to packet loss). Bitrates classes are organized in four categories: VHC (Very High
Compression, very low bitrates), MHC (Medium High Compression, medium low bitrates), MLC (Medium Low Compression,
medium high bitrates) and VLC (Very Low Compression, very high bitrates).

2D-SD Videos (LIMP) 3D-HD Videos (3D-HEVC-Net)
Video Class Video Class

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4
sh1 rb1 tr1 st1 tb sc lb nr
pr1 pa1 sf1 hl bg pc

mc1 bs1 ul bk
rh1 bx

Comp. MP4/H.264 Part 10 HEVC/H.265
VHC MHC MLC VLC VHC MHC MLC VLC

64Kbps 640Kbps 1Mbps 3Mbps 500Kbps 1000Kbps 1500Kbps 3000Kbps
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(a) Psychometric fits per class video types and compression of the LIMP Video Quality Database.
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Quality Database.

Fig. 6: Psychometric fits for the videos of the two video datasets. a) LIMP Video Quality Database; b) 3D-HEVC-Net Video
Quality Database.

curve to each of the video and bandwidth classes (Figure 6).
From these two sets of psychometric curves it is evident to
see the difference on resilience to packet loss between 2D and
3D. While for the 2D videos transmitting with highly lossy
networks (3-5%) can still be recommendable for transmission
for most video types, transmitting any of the 3D videos with
network losses higher than 1% inflict degradations higher than
50%.

The information contained in this type of plots brings with

it the understanding of the trade-off between video classes
and compressions to the next level. Such an analysis can
be used from the point of view of the network provider to
adjust/improve the quality of the network, when a given video
class and compression type are required by a client. One
example of this type of assessment and management can be
found on Table IX. It shows an analysis of the best suited
video-bandwidth to the various conditions. In it, the lossy
network conditions are split in five intervals, ranging from
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TABLE IX: Video and compression class combinations depending on the sensed network conditions interval. Videos from the
two selected sets 2D-SD (LIMP) and 3D-HD (3D-HEVC) are shown classified according to the video and bandwidth classes
presented in Table VIII. Packet loss ratios are divided in five intervals: no packet loss (0%); low packet loss (0.1-1%); medium
packet loss (1-3%); high packet loss (3-5%); very high packet loss (5-10%).

Videos Packet loss Interval [%]
Set Class 0 0.1-1 1-3 3-5 5-10

1 VLC VLC VLC VLC MLC
2D 2 VLC VLC VLC VLC VLC
SD 3 VLC VLC VLC MLC MHC

4 VLC VLC VLC MLC MHC
1 VLC MLC VHC VHC VHC

3D 2 VLC MHC VHC VHC VHC
HD 3 VLC VLC MHC VHC VHC

4 VLC VLC MLC MHC VHC

no losses (0% packet loss) to a fully impaired scenario (5%-
10% packet loss). Based on the psychometric curve fits shown
in Figure 6, and the loss intervals defined, Table IX presents
the best suited bandwidth, for each of the video categories
both in 2D and in 3D. Tables such as this one will provide
valuable to network and service providers, to pursue resource
efficiency and user satirsfaction (trades-offs). On the one hand,
from the point of view of the video service provider, if a client
were to request a 3D-HD video of class 2, this would only
be transferred at the highest quality if the network is clean
(0% loss). However, where any disturbances were sensed on
the network, the video provider could decide to transmit the
video on a higher compression rate, to prevent loss of quality
on the client side. On the other hand, if we take the network
manager perspective, when the requested 3D-HD video class
2 were to be set to the maximum transmission rate (the client
requests the best quality for its 3D video transmission), the
network manager would be required to ensure for the network
to remain clean (i.e., having virtually no losses) during the
whole streaming session. When this could not be guaranteed,
other improving actions would be needed. Such actions can
range from prioritizing the client’s traffic (in the case of end-
to-end networks) or increasing transmission power (for indoor
wireless communications).

VI. CONCLUSION

When dealing with lossy networks, a mere QoS-based
analysis comes insufficient. We find, that in this case quality
emerges as an end-to-end factor, for it is particularly sensitive
to the end-user perception of the overall service, i.e. the user’s
experienced quality (QoE).

To better explore the value of assessing QoE alongside QoS
in high-speed, lossy networks, in this work we have presented
an experimental, systematic, general evaluation methodology
to map QoS onto QoE. To demonstrate the generality of our
approach and understand the behavioural differences among
video compressions and types, we have generated three dif-
ferent video sets (one of 2D videos and one of stereoscopic
3D videos).

Derived from our analysis, we have shown the high re-
silience of RTP-video streaming services against temporal
impairments such as network delay and jitter. In addition, we
have pinpointed the resilient differences among different type
of 2D video streaming services compared to 3D videos.

Our study and methodology are meant to provide service
providers with the means to pinpoint the working boundaries
of their video sets in face of different network conditions.
Based on the results shown on the video sets, we have
used psychometric functions to provide with a comprehensive
analysis of the implications this type of evaluation can have
for service and network providers.
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