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Abstract

Cognitive applications that involve complex decision making such as smart light-

ing have non-deterministic input-output relationships, i.e., more than one out-

put may be acceptable for a given input. We refer them as non-deterministic

multiple output classification (nDMOC) problems, which are particularly dif-

ficult for machine learning (ML) algorithms to predict outcomes accurately.

Evaluating ML algorithms based on commonly used metrics such as Classifica-

tion Accuracy (CA) is not appropriate. In a batch setting, Relevance Score (RS)

was proposed as a better alternative, which determines how relevant a predicted

output is to a given context. We introduce two variants of RS to evaluate ML

algorithms in an online setting. Furthermore, we evaluate the algorithms us-

ing different metrics for two datasets that have non-deterministic input-output

relationships. We show that instance-based learning provides superior RS per-

formance and the RS performance keeps improving with an increase in the

number of observed samples, even after the CA performance has converged to

its maximum. This is a crucial result as it illustrates that RS is able to capture

the performance of ML algorithms in the context of nDMOC problems while
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1. Introduction

Consider a cognitive system such as smart lighting [1] that employs ma-

chine learning (ML) to automatically select light presets that are desirable in

different observed contexts. Here, the observed context can be expressed using

features such as the user count, user preferences learned from history, time of5

the day and more. Assume that a user, Tom enters his living room and upon

detecting his context the smart lighting system predicts a lighting preset LA

and actuates it. LA is known to have satisfied Tom at a previous time for the

same context. Therefore, it is rather a safe prediction. However, Tom at this

time prefers a different lighting preset LB and as a result goes to the control10

interface to switch to this preset. This kind of inconsistent behavior is rather

common in applications that involve humans, whereby cognitive factors such as

perception play an important role. As these are very difficult to measure, the

observed context in practice does not include non-deterministic factors such as

psychophysics (e.g. the human audio-visual system has limited accuracy) [2];15

psychology (e.g. biases and mood affect perception of reality) [3, 4]; cost and

lifestyle (e.g. expectations grow substantially with economic implications) [5];

and all sorts of other cognitive elements [6, 7].

In the literature, classification problems are broadly categorized into multi-

class classification and multi-label classification problems. Multi-class classifi-20

cation problems [8] are those categories of problems where, for a given input

instance, there is exactly one correct output class. Examples of multi-class clas-

sification include image recognition and patient diagnosis [9]. Multi-label classi-

fication problems [10] constitute the category of problems where more than one
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output classes are selected for each input instance. Examples of multi-label clas-25

sification include text [11] and music categorization [12]. There exists another

class of applications, as illustrated by the smart lighting example above [13],

where the aim is to predict the most suitable lighting preset (among several

suitable presets) based on an observed context. These applications pose what

we call a non-deterministic multiple output classification (nDMOC) problem.30

An interesting property of such an application is that; i) the relationship

between input and output is not deterministic and varies over time (due to

human inconsistency, bias drift, or other high-level cognitive factors), which

means that there may be more than one acceptable output that is satisfactory

for a given context, ii) the most desirable output may change unpredictably35

over time [14]. Precisely, statistical regularity is difficult to observe in such

applications. By this we mean that the underlying probability distribution

from which the outputs are drawn is not fixed over a period of time. These

types of problems arise when, i) it is not possible to identify all the features

that are relevant to determine the output or ii) it is very challenging to model40

some features such as user mood and perception. In such cases, while the ML

algorithms that are used in multi-class classification problems suit the need,

their performances vary.

We must select an appropriate metric to assess the performance of the ML

algorithms, as some performance metrics would produce results that are mean-45

ingless in nDMOC applications [15, 16]. Note that different metrics are indi-

cators for different performance aspects of ML algorithms [17]. For instance,

in the smart lighting case, the commonly used metrics such as classification

accuracy (CA) can only measure whether the predicted output matches Tom’s

current preference. However, these metrics such as CA, precision and recall50

fail to capture whether the output is consistent with Tom’s past behavior and

whether or not it is relevant for the current context. CA gives a score of zero

for an inaccurate prediction, which is not suitable for nDMOC problems. In

our earlier work [18], we proposed a new evaluation metric, dubbed Relevance

Score (RS) that suitably penalizes the performance of ML algorithms, when the55
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predicted outputs show inconsistencies compared with the earlier choices of the

user.

RS is the degree of relevance of a predicted output for a given context with

respect to the actual output [18, 19]. When there is a mismatch between pre-

dicted and actual outputs, RS will account for the level of inconsistency of60

non-deterministic multiple-output cases. Thus, for instance, if a user is consis-

tently inconsistent with his choices, any predicted output will be highly relevant

(high RS), although CA will be low. The RS metric will determine the relevance

of a prediction based on the number of times these outputs have been selected

before in a similar context. Therefore, the RS metric does not deal with the65

learning aspects of existing prediction algorithms. Instead, RS allows evaluating

predictions from a different perspective where the CA metric fails.

In our earlier work [18, 19], we have studied the performance of ML algo-

rithms in a batch learning setting, where the ML algorithms are trained on a

fixed set of samples. Subsequently, the concept learned was used to predict out-70

puts on newly observed contexts. We found that ML algorithms in the batch

setting are not appropriate in the context of nDMOC problems, as the underly-

ing input-output relationships change over time. This motivated us to explore

online ML frameworks for nDMOC problems. In an online setting, the ML al-

gorithm learns from one sample at a time. Here, the input arrives as a sequence75

of individual samples, in contrast to the batch learning [20]. Upon receiving an

input, the algorithm predicts the output. The actual output is then shown to

the algorithm, which is used as a feedback to improve future predictions.

In our previous work [21], we studied the performance of ML algorithms in an

online setting, particularly in the context of smart lighting. We created a smart80

lighting dataset, based on a user-centric environment, whereby our subjects’

interaction with the system were traced, recording also contextual information

such as user identity, type of activity, influence of external light, time of the day

and more [22]. The dataset contains 236 samples where six contextual features

are mapped to one of the eight preset lighting conditions [1]. What came out of85

the study is that ML algorithms failed to make accurate predictions but were
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more effective in predicting relevant outputs.

The main contribution of this paper is that we introduce two variants of

the RS metric. This allows us to investigate the behavior of ML algorithms

in different scenarios, where the data are derived either from a single distribu-90

tion or multiple distributions. We use a much larger dataset than our previous

work to further investigate the behavior of ML algorithms, particularly when

the input-output relationship has various degrees of randomness. We consider

the well-known Wine dataset [23] for experiments. Even though there are other

candidate nDMOC datasets such as Abalone and Ecoli [24], we selected the95

Wine dataset for the following reasons: i) it contains more samples i.e. around

5000; ii) it contains more output classes; and iii) human factors are involved in

selecting outputs, where human experts make decision on the quality of wine

based on their senses. The experiments are performed using several ML algo-

rithms in an online setting with the CA and RS metrics. The results show that100

instance-based learning is the most suitable approach in the context of nDMOC

problems. The RS metric captures the non-deterministic relationship that exists

between input and output more effectively than the CA metric, and accounts

for the randomness that is intrinsic in human-perception. Also, we find that

the learning rate of the ML algorithms vary significantly as measured using RS,105

based on the degree of randomness present in the data.

The paper is organized as follows. Section 2 gives an introduction to the

existing ML frameworks and discusses the drawbacks of conventional ML per-

formance metrics in the context of nDMOC problems. Section 3 proposes how

to adapt the RS metric for evaluating ML algorithms in an online setting at110

runtime. Section 4 describes the experimental setting and presents results that

demonstrate the significance of the online RS metric. Section 5 discusses our

findings and Section 6 draws conclusions.
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2. Existing Machine Learning Frameworks

Generally, classification problems that rely on labeled data (data with output115

labels) are addressed using ML algorithms, either in batch learning mode or

online learning mode.

2.1. Batch Learning

In batch learning, ML algorithms are trained using a set of labeled samples.

These algorithms then predict for the unseen contexts based on the knowledge120

gained from the training samples. These constitute a parametric class of algo-

rithms, meaning that the data is assumed to be derived from a known distribu-

tion [25], which can be summarized using a finite number of parameters. This

means that the observed pattern in the dataset remains the same over a long

period of time. In nDMOC problems, dynamic factors such as changing user125

preferences, mood and perception may lead to inconsistent output selections. A

fixed data distribution cannot be assumed because the observed pattern in the

training samples changes over time.

In batch learning, ML algorithms do not adapt when the input-output re-

lationships change. This is because they are trained on a fixed set of labeled130

samples. Subsequently, the concept learned is used to predict outputs on newly

observed context. When we studied the performance of ML algorithms in a

batch learning setting [1] we found that they are not appropriate in the context

of nDMOC problems. This has motivated us to study the ML algorithms in an

online setting.135

2.2. Online Learning

These algorithms fall under the category of non-parametric models, which

do not assume any fixed distribution [26] and hence can adapt continuously

to unknown or changing distributions. This makes online learning algorithms

preferable when the distribution from which the samples are drawn is unknown.140

In contrast to batch learning, in online setting, the input arrives as a sequence

of samples [20]. As a new input arrives, the ML algorithm should predict an
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output. Immediately after the prediction is made, the actual output is made

available to the ML algorithm. This information is used as a feedback to update

the prediction hypothesis used by the algorithm. A key advantage of online145

learning over batch learning is that the algorithm adapts itself with every new

observed context.

In formal terms, at each step i, the algorithm is given a context xi ∈ X

where X = X1 × X2 × X3 × . . . × Xn is an n-dimensional input space and

xi = (xi1, xi2, . . . , xin). The algorithm predicts an output class label yP ∈ Y =150

{y(1), y(2), . . . , y(L)} as a function of the context xi and weights wi. Each weight

wi is an n-dimensional real-valued vector (wi1, wi2, . . . , win) that determines the

contribution of xi. These weights depend on the observed contexts and their

corresponding predicted outputs. After yP is predicted, the algorithm receives

the true output class label yA ∈ Y . The quality of the yP is then assessed by a155

loss function l(yP , yA). Based on the result of l(yP , yA), the algorithm modifies

wi based on an update function ∆ = f(wi, l(yP , yA)) to predict better outputs

for future contexts.

In this paper, we have considered two online learning algorithms for our ex-

periments that are implemented in LIBOL (A Library for Online Algorithms) [27]160

i.e. Adaptive Regularization of Weights (AROW) [28], and Soft-Confidence

Weighted (SCW) algorithm [29]. We use the default parameters implemented

in LIBOL. AROW and SCW are second-order algorithms. In multi-class clas-

sification problems, online learning algorithms maintain classification functions

for each output class label. First-order learning algorithms keep updating these165

functions using only the information from the input features. However, second-

order online algorithms make use of underlying patterns in the data in addition

to relationships among features.

Adaptive Regularization Of Weights. Crammer et al. introduced AROW to ad-

dress the need for fast convergence and resistance to over fitting due to noisy170

samples (samples with false output labels) [28]. The algorithm has several com-

bined properties: large margin training, confidence weighting and the capacity
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to handle non-separable data. AROW performs adaptive regularization of the

prediction function, when processing each new context in each learning step.

This makes it more robust to sudden changes in the prediction function due to175

noisy labels in the learning tasks. Noisy labels refer to a setting where the out-

put class labels are corrupted [30]. The main idea is to retain the formalization

of parameter confidence introduced by the Confidence-Weighted (CW) learning

method [31], which is aggressive in learning. AROW removes the aggressiveness

by softening the margin requirement thus achieving robustness to training noise180

without affecting the convergence speed.

Soft Confidence Weighted. Wang et al., proposed SCW as an improvement over

CW and AROW [29]. Even though the aggressive updating strategy of CW

learning results in faster learning, it could wrongly change the parameters of the

distribution while dealing with a noisy context, leading to erroneous learning.185

This can make the CW algorithm perform poorly in many real-world applica-

tions with relatively large noise. The SCW learning algorithm was proposed to

overcome these limitations by relaxing the update strategy. Like the AROW

algorithm, SCW has the following three properties: large margin training, con-

fidence weighting, and capability to handle non-separable data. Additionally,190

SCW also employs adaptive margins.

2.3. Instance-based Learning

In this form of learning, the input-output relationship is not deduced when

the training samples are provided. It is deduced when a new input whose output

needs to be predicted arrives. In other words, instance based learning algorithms195

do not generate any useful representations from the observed samples [32]. To

assign a class label for a new instance, its relationship to the samples that were

already encountered is determined. The main advantage of this kind of learning

is that the target function is estimated for each new instance to be predicted

rather than estimating once [33]. This makes instance-based learning useful200

when the input-output relationship changes over time.
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k-Nearest Neighbor (kNN) is the most popular instance-based algorithm as

it is simple and efficient. It can be used either as a batch learner or as an online

learner. In online learning mode, it works as follows. The samples are in the

form of input-output pairs. When a new context or input arrives, for which205

the output class label needs to be determined, the new context is compared to

every context in the training set (set of already observed samples). The most

similar contexts (nearest neighbors) with their output class labels are taken.

The integer value k, determines the number of nearest neighbors to consider.

Finally, from the k nearest neighbors, the output class label that occurs the210

most (majority voting) is assigned as the output class label for the new context.

Formalizing the kNN algorithm. Let X = X1 × X2 × X3 × . . . × Xn denote

an n-dimensional input feature space where the ith sample xi ∈ X is given

by xi = (xi1, xi2, . . . , xin). Let yi denote the output class label where yi ∈

Y = {y(1), y(2), . . . , y(L)} and L is the number of possible outcomes. Let m215

denote the number of samples in the training set i.e., i = 1, 2, . . . ,m. The

goal is to determine the output class label for a new context xq. The set of

k nearest neighbors from the training set to xq is determined by computing

the distances from each training sample (di where i = 1, 2, . . . ,m). One of

the following distance functions are commonly used to compute the distance220

between two contexts [34]; i) Manhattan (d1(xi, xq) =
∑n

j=1 |xij − xqj |), ii)

Euclidean (d2(xi, xq) =
√∑n

j=1(xij − xqj)2), or iii) Minkowski (dz(xi, xq) =

z

√∑n
j=1(xij − xqj)z) where z > 2. The output class label yq is assigned as

follows; yq = argmax
yi

(#(yi)) for i = 1, 2, . . . , k.

For our experiments, we use Manhattan distance to compute the distance225

between two contexts, as we find that it provides better CA performance than

the Euclidean distance on the smart lighting dataset [1]. It is straightforward to

compute the Manhattan distance for contexts with numerical features. However,

for categorical features, we assign a value of 1, if the compared features are not

equal; otherwise it is 0. If we have different scales for the features of numerical230

data type, then the distance computed between two contexts will be a function
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of features with larger values, thereby ignoring the role of features with smaller

values. Therefore, we normalize the distance computed between two numerical

values of a feature as follows. The normalized distance for a feature is the ratio

of the absolute distance to the range for that feature. The absolute distance is235

the actual difference between the numerical values of a feature for two different

contexts. In this paper, we use the following kNN methods.

Conventional k-Nearest Neighbor (in the remainder referred to as kConv). This

algorithm is same as kNN. In an online setting, we do not have any fixed train-

ing samples and the algorithm should predict from the first context observed.240

Therefore, for practical purposes we do not have a fixed k value and the value

of k is updated as the number of observed samples increases. We compute the

value of k as the square root of the number of contexts observed [35], i.e. at

step i, if an output needs to be predicted for context xi, then k =
√
i.

Distance weighted kNN (in the remainder referred to as Dwk). In kConv, equal245

weights are given to the distance computed from a new context xq to k nearest

neighbors. However, the output class labels to be assigned to the test context

xq may be influenced by the distances of its nearest neighbors, i.e. the closest

neighbors may contribute more than the farther ones. This has motivated the

need for applying weights to the computed distances between the contexts. For250

our experiments, the weights on the distances are assigned as follows [36]. If

the distance of k nearest neighbors to a new context are ordered from closest to

farthest as dj where j = 1, 2, . . . , k, the weight wj attributed to the j-th nearest

neighbor is defined by

wj =


dk − dj
dk − d1

, dk 6= d1,

1, dk = d1.

Once the weights wj are computed, the algorithm assigns the new context255

an output class label, for which the weights among the k-nearest neighbors sum

to the largest value. As in the case of kConv, the Dwk algorithm is used with

k =
√
i.
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Figure 1: CIE (International Commission on Illumination) 1931 color space

a. Spatially distinct points A and B on the color space that is perceived to be same

b. An example of categories of light conditions where two points inside a category is assumed

to be same

2.4. Drawbacks of Conventional Performance Metrics

The commonly used performance evaluation metrics for multi-class classifi-260

cation problems are CA, precision and recall. For a set of samples, CA is the

proportion of predicted cases that are accurately predicted. Precision is the pro-

portion of predicted positive cases that are true positives. Conversely, recall is

the proportion of true positive cases that are correctly predicted as positive [37].

The commonly used performance evaluation metrics for multi-label classifica-265

tion problems are hamming-loss, precision and recall [38]. Hamming-loss is the

fraction of the wrong labels to the total number of labels. Generally, the per-

formance of a learning algorithm in an online setting is evaluated along its run

on a sequence of question-answer pairs [39]. For the classification problems,

CA is the most commonly used performance metric. However, CA is not an270

appropriate metric to evaluate the ML algorithms in the context of nDMOC

problems.

To better understand the drawbacks of CA, consider a smart lighting system
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as exemplified in the introduction, where the goal is to predict and provide a

desired lighting condition to users for every observed context. Figure 1 shows275

the CIE 1931 color space from which the smart lighting system can create an

ambient lighting condition. Current generation of lighting systems can provide

millions of saturated colors [40]. This means that if an ML model is used to

predict a suitable lighting condition, there will be a choice of millions of output

class labels. However, this is not practical because it is very unlikely that a280

human eye can differentiate between similar lighting conditions. For example,

Figure 1a shows two spatially separated points, A and B, on the color space

that appear to be same. A solution can be to group similar colors into separate

categories as shown in Figure 1b, where a million class labels are reduced to

eight categories.285

Let us assume that an ML algorithm h encounters ten data samples from

a user Tom. For a given fixed context x, Tom selects a lighting preset LA six

times, lighting preset LB three times, lighting preset LC one time and does not

select the lighting preset LD. This means that for x the output probabilities

for LA, LB , LC and LD based on frequency of occurrence are 0.6, 0.3, 0.1 and290

0.0, respectively, i.e. a sample x can be classified into multiple output classes.

Assume that, for a new context xq, h selects LB , whereas the Tom actually

desires LC . Here, h is not right in selecting the desired output, but it is not

entirely wrong either, as Tom has not been consistent in selecting the desired

lighting presets for the observed context. If CA were used as a metric to evaluate295

the performance of h, the selection made would be assessed as completely wrong.

This is neither correct nor desirable. CA would not make a separation between

selecting LA or LD. CA fails to capture the non-deterministic nature of this

problem, as it is more desirable to measure how relevant the output is, for an

observed context.300

Let us now consider precision and recall metrics in the context of nDMOC

problems. These metrics are generally used in binary classification problems

where there are only two output classes (positive and negative). However,

Sokolova and Lapalme [41] present different mechanisms to compute precision
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Table 1: Representational comparison of two ML performance metrics for a smart lighting

system considering a series of five predictions

Actual Output Predicted Output CA Metric Alternative Metric

LA LB 0 Very Relevant (80)

LC LC 100 Absolutely Relevant (100)

LB LC 0 Absolutely irrelevant (0)

LB LB 100 Absolutely relevant (100)

LA LC 0 Moderately relevant (70)

Average 200/5 = 40% 350/5 = 70%

and recall for the case of multi-class classification problems.305

In general, for a given classification problem, the goal is to select an ML

algorithm that have high precision and recall (as close to 1.0) on all the con-

sidered output classes. For the above example and from Table 1, the precision

for LA is the ratio of the count of accurately predicted LA and the count of

predicted LA, i.e. 0. Similarly, precision for LB and LC are 1/2 = 0.5 and 1/3310

= 0.33 respectively. The recall for LA is the ratio of the count of accurately

predicted LA and the count of actual LA, i.e. 0/2 = 0, whereas the recall for

LB and LC are 1/2 = 0.5 and 1/1 = 1 respectively. In this example, we observe

that the precision and recall are too low for most output classes. Due to non-

deterministic input-output relationships in the data, ML algorithms are unable315

to precisely select or recall an output for a given context. Therefore, precision

and recall are also not appropriate for such applications.

From the application point-of-view, it is more desirable to measure how rele-

vant the selection is for a given input. The example in Table 1 shows that when

the predicted and actual outputs do not match, CA fails to capture the rele-320

vance of the predicted output. The hypothetical Alternative metric exemplified

in Table 1 computes the relevance of the predicted output for a given context

and is more appropriate than CA.
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In this direction, we use RS as the performance metric, which is more suitable

for the category of nDMOC applications. Per sample RS is a score between 0325

and 100, whereas for CA, it is either 0 or 100. In particular, it provides a

performance function that maps an input-output pair (x, y) to a real number

RS : (x, y) ∈ (X,Y )→ [0, 100] rather than {0, 100} as in CA.

3. Proposed Modifications to Relevance Score

In this section, we present the RS metric tailored to evaluate ML algorithms330

in an online setting for nDMOC problems. We describe the steps to compute

two variants of RS, dubbed Relevance Score - Case-by-Case (RSCC) and Rel-

evance Score - General (RSGen). When we use the term RS, it refers to both

RSCC and RSGen. A key step in computing RS is to compute an error score

(ErrScore), which is a real number that indicates the degree of mismatch be-335

tween an actual output yA and a predicted output yP for an input x.

3.1. Relevance Score - Case-by-Case

We compute RSCC for a given predicted output, yP by an ML algorithm in

a number of steps. First, we define the concept of distance between outputs.

For a given context, in a batch learning setting, RSCC is computed as described340

in Gopalakrishna et. al [18] [19]. In online learning, similar to the case of batch

learning, RSCC is computed in two phases; i) computing posterior probabilities,

and ii) evaluating the predicted output.

3.1.1. Computing Posterior Probabilities

Assume that for a context xq ∈ X, an ML algorithm predicts an output yP ,345

while the actual output is yA where yP , yA ∈ Y . The posterior probabilities for

the output class labels are then computed from the set of observed samples. Let

{x1, x2, . . . , xm} denote the set of observed samples where xm = xq, Compute

P (y(l)|xq) where l = 1, 2, . . . , L using the observed samples. These probabilities

are used to compute ErrScore. For the context xq, the posterior probability of350

the predicted output is denoted by P (yP ), the probability of the actual output
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is denoted by P (yA) and the probability of the most frequently selected output

is denoted by P (yH).

A major difference in computing RS under batch and online learning settings

is that, in batch learning, RS is computed based on the knowledge acquired355

from the entire dataset. This means that the underlying distribution is known

to the RS function. However, in online learning, the samples arrive in sequence

and there is no prior knowledge about the underlying distribution in the data.

Therefore, the posterior probabilities need to be recomputed every time when

an output is predicted for a new input.360

3.1.2. Evaluating the Prediction

In this phase, the predicted outputs on the test data are evaluated. For a

given context x, let d denote the probability distance between two outputs in

general. We define d as the difference between the probabilities of two different

outputs. The d value for different outputs is given by the following equations 1,365

2 and 3.

dHP = |P (yH)− P (yP )| (1)

dPA = |P (yP )− P (yA)| (2)

dHA = |P (yH)− P (yA)| (3)

For a fixed context x, there are several possibilities based on the predicted

and the actual outcomes and their computed probabilities. The cases may be

evaluated qualitatively in terms of relevance of the predicted outputs. The

decreasing order of relevance we consider for different cases is summarized in370

Table 2. The ordering is based on the consequence of individual cases as ex-

plained next. ErrScore is thus a score obtained by quantifying these cases.

Case 1: yP = yA. In this case, the predicted output and the actual output are

equal. Thus, there is no error in the predicted output i.e., ErrScore = 0.
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Table 2: Possibilities based on the predicted output, actual output, relationship between their

probabilities and the corresponding decreasing order of relevance of the predicted output in

qualitative terms

Case Outcome Probability Condition Qualitative Relevance

1 yP = yA - Absolutely Relevant

2 yP 6= yA P (yH) = P (yP ) = P (yA) Very Relevant

3 yP 6= yA P (yH) = P (yP );P (yP ) > P (yA) Relevant

4 yP 6= yA P (yH) > P (yP ) > P (yA) Moderately Relevant

5 yP 6= yA P (yH) > P (yA) > P (yP ) Slightly Irrelevant

6 yP 6= yA P (yH) = P (yA);P (yA) > P (yP ) Absolutely Irrelevant

Case 2: yP 6= yA;P (yH) = P (yP ) = P (yA). In this case, the predicted output375

and the actual output are not equal, whereas their probabilities are equal. This

means that the yH , yP and yA have occurred equally frequently, i.e., any of

these three outcomes is equally good (statistically) for that context. Therefore,

the ErrScore in this case is also zero.

Case 3: yP 6= yA;P (yH) = P (yP ) > P (yA). In this case, as shown in Figure 2a,380

the probabilities of the predicted output and the most frequently selected output

are equal, i.e., we have dHP = 0. This means that the prediction algorithm has

selected the most frequently selected output but it has not been able to capture

the change in output. The error is small and is equal to β · dPA where β is a

positive real constant, whose value depends on the application.385

Case 4: yP 6= yA;P (yH) > P (yP ) > P (yA). In this case, as shown in Figure 2b,

the probabilities of predicted, actual and most frequently selected outcomes are

not equal. The probability of the predicted output lies in between that of

the most frequently selected output and the actual output. This means that

the prediction algorithm has predicted an output that is not most frequently390

selected, but it is more likely than the actual output. Hence, the error is equal
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Figure 2: Possibilities that arise when predicted and actual outcomes are not same:

(a) yP 6= yA and P (yH) = P (yP );P (yP ) > P (yA)

(b) yP 6= yA and P (yH) > P (yP ) > P (yA)

(c) yP 6= yA and P (yH) > P (yA) > P (yP )

(d) yP 6= yA and P (yH) = P (yA);P (yA) > P (yP )

to (α · dHP + β · dPA) where α denotes the positive real constant.

Case 5: yP 6= yA;P (yH) > P (yA) > P (yP ). In this case, as shown in Figure 2c,

the probability of the predicted output is less than that of the most frequently

selected output and of the actual output. This means that the prediction algo-395

rithm has predicted an output that is not most frequently selected, and is less

probable than the actual output. Hence, dHP is higher than that in Case 4 and

the error is equal to (α · dHP + β · dPA) as in Case 4.

Case 6: yP 6= yA;P (yH) = P (yA) > P (yP ). In this case, as shown in Figure 2d,

the probability of the actual output and that of the most frequently selected400

output are equal, but the ML algorithm predicts a different output. The perfor-

mance of the ML algorithm was not sufficiently good to select the same output,

the error is much higher than that of the previous cases. Since dHP = dPA, the

error is equal to (α+ β) · dHP .

Combining above equations and normalizing over (α + β), we have the fol-405

17



lowing ErrScore computation as given by 4,

ErrScore =
α(dHP ) + β(dPA)

α+ β
. (4)

The RS value for a context x is thus calculated as a function of ErrScore

as given by 5 and 6,

RSCC = (1− ErrScore)× 100, (5)

RSCC = (1− α(dHP ) + β(dPA)

α+ β
)× 100. (6)

3.2. Relevance Score - General

As mentioned in Section 1, one of the main reasons for nDMOC problems to410

arise is that been difficult to model certain features such as user mood, behavior

and other cognitive factors. In nDMOC applications, if there are features that

capture or identify only certain aspect of an entity, we dub them as abstract

features. For example, in case of smart lighting example, the feature User ID

only identifies who the user is, but there are no other features that reflect their415

characteristics such as mood, behavior and other cognitive factors. Hence, UID

can be considered abstract feature. It is important to note that every nDMOC

application need not necessarily have abstract features.

RSGen is a variant of RS, computed by discarding the values of abstract

features. Leaving the abstract feature out during the RS computation makes the420

dataset as if it is derived from a single distribution. Note that the ML algorithms

are not rerun on the new dataset. By ignoring the values of the abstract feature

(c), the input dimension is reduced by one (X−c). The posterior probabilities

P (y(l)|x) for l = 1, 2, . . . , L are then computed. The remaining process to

compute RSGen is same as that of the RSCC. The motivation to compute RSGen425

is to study the performance of ML algorithms when the data seems to be from a

single distribution, although the dataset still has non-deterministic input-output

relationships.
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4. Experiments and Results

We perform the experiments to study the behavior of ML algorithms in an430

online setting using CA and RS as metrics, in the context of nDMOC problems.

The performance of the ML algorithms in an online setting is analyzed through

learning curves. A learning curve gives a measure of predictive performance

(for example, CA) on a given task as a function of some measure of varying

amounts of learning effort such as time and number of samples [42]. Generally,435

in ML and statistics, a learning curve represents the generalization performance

of the algorithm as a function of the number of observed samples (training

set) [43], i.e. error measured on the test samples versus the number of observed

samples. If an ML algorithm is deployed in production, the learning curves help

in analyzing its runtime performance. The crossing of learning curves indicates440

that an ML algorithm may perform better than the other for a larger number

of observed samples [44]. In our experiments, a learning curve represents the

prediction performance of an ML algorithm as a function of the number of

observed samples.

We explain the process of producing learning curves using the CA metric.445

The process is repeated for the RS metric in the same way. The selection of

α and β parameters depends on the application. In the RS computation, the

parameters α and β are the weights on the probabilistic distances dHP and

dPA respectively. Therefore, having α higher than the β penalizes RS when the

predicted output is far from the frequently selected output; and β higher than α450

penalizes RS when the predicted output is away from the actual output. Since

human factors are involved in both the applications that we have considered, in

the long term, it is less likely that most humans tend to switch their preferences

very often [1]. Hence, the RS metric is used with α = 2 and β = 1 [18] [19]. For

each sample i in the considered dataset, we compute the CA of the predicted455

output (CAi). Subsequently, for each sample i in the dataset, we compute the

average CA until the sample i written as CA(i), as in equation 7. (CA(i)) is

then plotted as a function of i. In order to obtain a smooth learning curve, we
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Table 3: Description of Datasets

Dataset Breakout Wine (White)

Number of samples 236 4898

Number of input features 6 8

Type of input features 5-Categorical 11-Numeric

1-Numeric

Output Cardinality 8 10

Type of output Categorical Categorical

Numerical

repeat the process on 10 randomly shuffled datasets for each learning algorithm

and then average the resulting curves.460

CA(i) =

∑i
k=1 CAk

i
(7)

We perform the experiments using the Breakout dataset [1] and the Wine

dataset available from the UCI machine learning repository. The datasets are

summarized in Table 3. While the Breakout dataset contains 236 samples,

the Wine dataset contains 4898 samples. The number of input features in the

Breakout dataset is 6 and that of the Wine dataset is 8. The number of output465

class labels or output categories in the Breakout dataset is 8, while that of the

Wine dataset is 11. As discussed in Section 2.2, we have considered two online

ML algorithms; AROW and SCW, and two instance-based algorithms (in an

online setting); kConv and Dwk.

4.1. Experiments on the Breakout dataset470

The Breakout dataset is used for the purpose of developing smart lighting

by identifying the relationship between the contexts and their corresponding

output lighting conditions. The dataset contains 236 samples with six input

features and eight output class labels. The inputs include data gathered implic-

itly from sensors (Passive Infra Red (PIR) sensors for monitoring movements,475
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sound pressure sensors for monitoring sound volume intensity and light sensors

for measuring external light influence) and explicitly from users that constitute

a context. The output class labels are of categorical data type that consists

of eight preset lighting conditions from which the users can select a lighting

condition for a given context. The output lighting conditions are a combina-480

tion of the following three lighting properties: Warm/Cool, Bright/Dim and

Dynamic/Static [1]. For example, Warm-Dim-Static is one combination of a

lighting condition. Therefore, the problem can be viewed as a classification

task. Of all the features, the feature Time of the Day (ToD) is of numerical

data type and the rest are of categorical data type. Since the categorical data485

types are needed for computing RS values, the feature ToD is converted into

categorical data type by assigning a category to each of its feature value. In

our experiments, we have assigned the following categories: Category 1 [8.00,

12.00], Category 2 (12.00, 16.00], Category 3 (16.00, 20.00] and Category 4

(20.00, 8.00). We also reduce the number of categories to two for the feature490

Intensity of Activity (IoA) where Category 1 [0-2] and Category 2 [3-10].

Figure 3 shows the learning curves for the online and instance-based ML

algorithms with CA as the metric. The CA performance of the online ML

algorithms is much lower compared to that of instance-based algorithms and

both perform poorly according to CA assessment. The CA performance of495

AROW varies significantly as a function of the number of samples. However,

the learning curve of the SCW algorithm is smoother. It can be observed that

after around 30 samples, while the CA performance of AROW almost converges,

the CA performance of SCW still improves. Even though the initial learning

rate is low for SCW, it consistently improves to provide better performance than500

AROW. In case of instance-based algorithms, the performance of Dwk converges

after around 30 samples, similar to AROW. The kConv algorithm provides better

CA performance than Dwk.

Figure 4 shows the learning curves for the online and instance-based ML

algorithms with RSCC as the metric. The learning curve using the RSCC metric505

indicates how relevantly the ML algorithms predict as a function of the observed
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Figure 3: Learning curves of the Online and Instance-based ML algorithms for the Breakout

dataset with Classification Accuracy as the metric

samples. Similar to the case of the CA metric, the RSCC performance of online

ML algorithms is much lower compared to that of the instance-based algorithms.

As expected, the RSCC performance of the ML algorithms is higher than that

of the CA performance. This indicates that the predicted outputs may not510

be accurate but are still relevant for the given contexts. kConv provides the

maximum RSCC performance among all the considered ML algorithms. We

can see that the sample size is not enough to observe the convergence of the

performance of the considered ML algorithms.

Figure 5 shows the learning curves for the online and instance-based ML515

algorithms with RSGen as the metric. RSGen is computed by ignoring the ab-

stract feature i.e. user-identity UID from the Breakout dataset. The RSCC

metric evaluates how well the ML algorithms predict for each context described
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Figure 4: Learning curves of the Online and Instance-based ML algorithms for the Breakout

dataset with Relevance Score - Case-by-Case as the metric

by five objective features and the user. By ignoring UID, in case of RSGen, the

dataset looks as if it is collected from a single user. Therefore, the RSGen metric520

evaluates how well the ML algorithms predict for each context without being

specific to users.

Therefore, the RSGen learning curves indicate that when there is large num-

ber of samples for each user, the RS performance will become smoother and

keep improving. The RSGen performance of the online ML algorithms is lower525

compared to that of the instance-based algorithms. The learning curves of the

ML algorithms are smoother compared to that of the CA and RSCC. Again,

kConv provides the maximum RSGen performance among all the considered ML

algorithms. In case of the instance-based algorithms, the learning curve of kConv

crosses that of Dwk after around 170 samples, indicating better RSGen perfor-530
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Figure 5: Learning curves of the Online and Instance-based ML algorithms for the Breakout

dataset with Relevance Score - General as the metric

mance can be achieved using kConv in the long run. As in the case of RSCC, the

sample size is not enough to observe the convergence of the performance of the

considered ML algorithms.

From this study, we observe that even though the considered ML algorithms

are not designed for the nDMOC problems, the ML algorithms still continue to535

learn as the number of observed samples increases. The learning curves using

RSGen indicate that as more samples are collected from each user, the predic-

tion gets better and consistent. However, these algorithms cannot predict more

accurately with increasing samples as seen in the learning curves using the CA

metric. Also, we observe that the standard deviation of the prediction perfor-540

mance, which is very high initially as indicated in the Table 4, reduces as more

samples are observed, meaning that the performance becomes more consistent
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Table 4: The performance of the k-Nearest Neighbor (kConv) algorithm as a function of the

number of samples observed.

Number of Classification Std. Dev Relevance Std. Dev Relevance Std. Dev

Samples Accuracy (%) (CA) Score - CC (%) (RSCC) Score - Gen (%) (RSGen)

50 29.6 10.6 36.4 15.7 45.3 12.5

100 31.0 8.8 37.2 12.1 53.0 8.1

150 33.8 6.0 40.3 8.2 57.3 6.7

200 35.4 2.8 42.1 4.5 61.9 3.5

236 35.6 1.4 43.1 1.9 64.1 2.0

i.e. the variability in the performance reduces. Therefore, the experimental

results using the RS metrics indicate that the ML algorithms still learn and

also provide better relevant outputs. Also, we see that the performance of the545

ML algorithms measured using all the three metrics considered is quite poor i.e.

we do not see where the performance converges. This is due to the size of the

dataset.

4.2. Experiments on the Wine dataset

In order to further understand the behavior of the ML algorithms such as550

the learning curve and convergence on a larger dataset, we performed the ex-

periments on Wine [23] dataset available from the UCI ML repository. Like

the Breakout dataset, the Wine dataset also has one-to-many input-output re-

lationships. However, it has more samples compared to the Breakout dataset.

The Wine dataset is used to determine the quality of a wine sample based on555

the measurements from objective tests such as pH values, density and sulphates.

The Wine dataset is of two types: red with 1599 samples and white with 4898

samples. The inputs include measurements from objective tests that are of

numerical data type and the output is based on sensory data (median of at least

3 evaluations made by wine experts). The output class labels are numeric and560

ordered with the wine quality ranging between 0 (very bad) and 10 (excellent).

Therefore, the problem addressed using the Wine dataset can be considered
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Figure 6: Learning curves of the Online and Instance-based ML algorithms using Classification

Accuracy as the metric for the Wine (white) dataset (W5) with each feature having 5 categories

either as a classification or a regression task. For our experiments, we consider

the Wine (white) dataset as a classification task.

In order to apply RS, we need the input features to be of categorical data type565

whereas the input features in the Wine dataset are of numerical data type. Thus,

for our experiments, we divide each input feature into 5 equal categories. We

denote the corresponding dataset by W5. The output class labels are unaltered.

We use the same ML algorithms: kConv, Dwk, AROW and SCW that were used

for the Breakout dataset. We do not consider the RSGen metric, as all the input570

features in the Wine dataset are measurements using objective tests and there

are no abstract features.

Figure 6 shows the learning curves of the considered ML algorithms for W5

with the CA metric. The learning curves start to converge after 1000 samples.

26



0

30

60

90

0 1000 2000 3000 4000 5000
Number of Samples

R
el

ev
an

ce
 S

co
re

 −
 C

as
e−

by
−

C
as

e 
(%

)

AROW

SCW

kConv

Dwk

Figure 7: Learning curves of the Online and Instance-based ML algorithms using Relevance

Score - Case-by-Case as the metric for the Wine (white) dataset (W5) with each feature having

5 categories

This means that after 1000 samples, the ML algorithms do not continue to learn.575

Hence, the performance of these algorithms remains the same. The instance-

based algorithms perform slightly better than the online ML algorithms i.e.

around 2%. Unlike in the case of Breakout dataset, AROW provides better CA

performance (about 2%) than SCW. An interesting behavior of the instance-

based algorithms is observed with the CA metric. Initially, when there are few580

samples, their CA performance increases drastically to 60%. Then, the perfor-

mance gradually decreases to 50%, when more samples are observed. However,

in the case of online algorithms, the CA performance keeps steadily increasing.

The reason is that in case of online ML algorithms, the weights are modified

based on the observed context and the actual output, when new samples are585
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Table 5: The performance of the Distance weighted k-Nearest Neighbor algorithm on the

Wine (White) dataset as a function of the number of samples observed.

Number of Classification Std. Dev Relevance Std. Dev

Samples Accuracy (%) (CA) Score - CC (%) (RSCC)

1000 49.6 4.3 71.1 2.9

2000 49.6 2.9 75.7 1.7

3000 50.1 2.1 78.3 0.9

4000 51.0 1.3 80.4 0.4

4898 51.2 0.4 81.6 0.4

encountered. This makes the learning of online ML algorithms, slow and steady.

Figure 7 shows the learning curves of the considered ML algorithms for

W5 with the RSCC metric. While the CA performance of the ML algorithms

converge after 1000 samples, the RSCC performance still keeps improving even

after 4500 samples. This shows that for nDMOC problems, the ML algorithms590

can provide more relevant output with more number of observed samples, even

though their accuracy does not improve after a certain number of samples.

Here, the Dwk algorithm provides the best performance among the considered

algorithms. This indicates that the distance of the neighboring contexts has

significant influence on the output selection. This means that the closest neigh-595

bors represent the observed context more than the farthest neighbors. Also,

we observe that the standard deviation of the prediction performance, which is

very high initially as indicated in the Table 5, reduces as the more number of

samples are observed.

From the experiment using Wine dataset with 4898 samples, we confirm that600

in the context of nDMOC problems, the ML algorithms continue to learn as the

number of samples increases. Even though the ML algorithms cannot predict

more accurately after few samples, the relevance of the predicted outputs keeps

improving.
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4.3. Significance of the Relevance Score Metric605

The objective of this experiment is to demonstrate the significance of RS

metric in the context of nDMOC problems. As mentioned earlier, the output

class labels in the Wine dataset are numeric and ordered with the wine quality

ranging between 0 (very bad) and 10 (excellent). Therefore, the Absolute Dif-

ference (AD) can also be considered as a metric to evaluate the performance of610

prediction algorithms. AD is computed as the difference between the predicted

and actual output. The key difference between CA and AD is that CA measures

whether the predicted output is right or wrong, whereas AD depends on the ac-

tual error. Therefore, for the Wine dataset, the performance measured using

AD represents the ground truth against which the performance using CA and615

RSCC can be compared. The performance values obtained using the AD metric

have been normalized to 100 i.e., [0, 100] using the expression (10−Error)×10

whereby Error = |yA − yP |, so that the results can be directly compared with

those of the CA and RSCC metrics.

We use the Dwk algorithm as it provides the maximum prediction perfor-620

mance among the other considered algorithms. Since the RS metric can be

computed when the input features are categorical, we consider two cases. In

each case we divide each input feature of the Wine dataset into 5 and 3 equal

categories. We denote the corresponding datasets by W5 and W3, respectively.

The output class labels are unaltered. When we divide each input feature into625

5 equal categories, we group the feature values that are close to each other into

a category. This means that we are introducing uncertainty between the input

and output by creating the overlap in the input space. Consequently, there is

more possibility of observing the same input being mapped to different output

class labels. It is more difficult for an ML algorithm to predict the exact output630

for a given input, when there is more than one acceptable output.

Figure 8 shows the learning curves for the Dwk algorithm for the W5 with

all the three metrics considered. In case of W5, there are not many samples

that have one-to-many input-output relationships and the input space is less

overlapped. As a result, the CA performance of W5 remains low. Also, the635
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Figure 8: Learning curves of the Distance weighted k-Nearest Neigbor (Dwk) algorithm for

the Wine (white) dataset (W5) with each feature having 5 categories

considered input features are not sufficient to determine the output more accu-

rately. However, the performance measured using the AD metric is very high

i.e. around 95%, which means that (when yP 6= yA) for the given contexts, the

ML algorithm is predicting outputs that are not totally wrong. For example, if

yP = 3 and yA = 4 the CA metric scores a zero whereas the AD metric scores640

90%. The performance measured using the RSCC metric is more close to AD

than the CA.

Figure 9 shows the learning curves for the Dwk algorithm for the W3 with

all the three metrics considered.In case of W3, we increase the overlapping of

the input space, i.e. we introduce more uncertainty between the input and645

output by reducing the number of categories for each input feature to 3. It

can be seen that for W3 the performance goes below 50% with the CA metric.

This shows that when the input-output relationship in the dataset becomes

more uncertain, i.e. when the randomness increases, it becomes more difficult

for Dwk to predict accurate outputs. However, the performance with the AD650
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Figure 9: Learning curves of the Distance weighted k-Nearest Neigbor (Dwk) algorithm for

the Wine (white) dataset (W3) with each feature having 3 categories

metric is almost the same as in case of W3. This reflects that introducing

little uncertainty does not really affect the performance of the Dwk algorithm

as seen through the AD metric. When yP 6= yA, Dwk predicts a relevant

output despite the increased randomness. The performance measured using the

RSCC metric increases significantly and tends to get closer to the performance655

measured using the AD metric. This shows that when there are one-to-many

input-output relationships in a dataset, RSCC gets closer to the ground truth.

An observation is that the ML algorithms achieve high RSCC performance

more quickly in the case of W3 than in W5. Moreover, the CA performance of

the Dwk algorithm starts to decrease after 1000 samples. However, since the660

predicted outputs are still relevant for the contexts, high RSCC performance

is achieved, even with few samples. When more samples are observed, the

uncertainty between the input-output still remain high and hence the RSCC

performance remains high, but with reduced learning rate. From this study,

we find that when there is less uncertainty in the dataset, the initial RSCC665
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performance of ML algorithms will be low, after that the learning proceeds in

a faster rate. When there is more uncertainty in the dataset, the initial RSCC

performance of ML algorithms will be high, after that the learning proceeds in

a slower rate. For the nDMOC problems, we observe that using CA as a metric

the learning converges faster with lower performance, which is not really the670

case as observed using the RS metric.

5. Discussion

In general, the performance of online ML algorithms is lower than that of the

instance-based algorithms for all the considered metrics. This may be because

the online ML algorithms do not store the observed samples, and hence signif-675

icant information is lost. In online algorithms, the learning happens smoothly,

while for the instance-based algorithms, learning becomes smooth only after an

initial set of samples has been observed. This behavior is even more evident with

the Wine dataset, meaning that sufficient information (underlying distribution

of the samples) is obtained with more samples.680

The experiments using the CA and RS metrics shows that RS is more appro-

priate to evaluate the performance of the ML algorithms for nDMOC problems.

ML algorithms are not very accurate within the first few observed samples.

However, they keep learning and provide more relevant predictions as the num-

ber of observed samples increases, which is particularly true for the RS metric.685

This means that the ML algorithms predict relevant outputs more consistently

than the accurate outputs.

The experiments using the two different natured Wine dataset show that

when there is more uncertainty in the input-output relationship, the ML algo-

rithms achieve high RSCC performance more quickly and then the learning rate690

decreases significantly as the number of samples increases. In contrast, when

there is less uncertainty in the input-output relationship, the ML algorithms

have low RSCC initially but are able to keep learning at a faster rate over time.
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6. Conclusions

In cognitive applications involving ML, nDMOC problems are characterized695

by a one-to-many relationship between input and output. By this we mean that

there is no single output that may be entirely right for a given context. In such

cases, conventional ML algorithms fail to make accurate predictions. Even more,

when common metrics such as CA are used, the overall performance is poor,

often leading to inconsistent or misleading results. We considered consistency700

of users’ preferences and relevance of predicted outputs, which allowed us to

tackle the difficult case of cognitive systems.

In this paper, we experimented with the instance-based and online ML al-

gorithms, discussing the crucial impact that various metrics have in assessing

the performance of these algorithms. We focused on the Relevance Score metric705

and its effectiveness in an online setting. The RS metric evaluates the perfor-

mance of an ML algorithm by the relevance of the predicted output rather than

considering its accuracy. We further introduced two variants of RS: Relevance

Score - Case-by-Case (RSCC) and Relevance Score - General (RSGen) that can

be used to study various aspects of an ML algorithm. The RS for a predicted710

output and a given context is computed based on the posterior probabilities

computed from all the observed samples in a dataset.

The behavior of the ML algorithms is studied through experiments, first

on the Breakout dataset and then on the Wine dataset, using the CA and RS

metrics. The performance of the ML algorithms is analyzed and compared to715

each other using learning curves. We found that the instance-based algorithms

provide better prediction performance than online ML algorithms in the context

of nDMOC problems. The learning curves also show that using the RS met-

ric, the performance of the ML algorithms keeps improving as the number of

observed samples grows, even after the CA performance converges. The exper-720

iments on two variants of the Wine dataset show that the RS metric becomes

more appropriate than the CA metric as the uncertainty between the input

and output increases. Furthermore, the learning rate of the ML algorithms de-
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pends on the degree of uncertainty in the dataset. Finally, we conclude that

instance-based learning is the most suitable approach and RS is an appropriate725

performance metric for the class of applications where dynamic factors such as

variable human perceptions lead to nDMOC problems.

When it comes to predicting human preferences, the focus should not be

to aim for 100% accuracy but, rather, in determining the degree of relevance

of a prediction, considering a given context. In cases such as smart lighting,730

being able to achieve an absolute accuracy of 50% would not be a great result

if the users were 100% consistent in their choices. However, a similar accuracy

in the case of very inconsistent users, if the RS score is high, we conclude

that the algorithm makes very relevant predictions even when it fails to make

accurate predictions. ML algorithms cannot make accurate predictions for users735

who are consistently inconsistent, which is the case where human predictions

would fail too. However, we have shown that ML can indeed still be used for

nDMOC problems and that they keep learning, while the convergence may take

a significantly large number of instances.
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